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CHAPTER 1

INTRODUCTION

1.1 Background

General topology is an important mathematical branch which is applied for

many fields of applied sciences. Continuity is a basic concept for the study in

topological spaces. Generalization of this concept by using weaker forms of open sets

such as semi-open sets [1], preopen sets [2] and β-open sets [3] is one of the main

research topics of general topology. In 1983, Monsef et al. [4] introduced the classes

of β-open sets called semi-preopen sets by Andrijević in [3]; moreover, Monsef et

al. [4] introduced almost β-continuous functions in topological spaces. From 1992

to 1993, the authors[5] obtained several characterizations of β-continuity and showed

that almost quasi-continuity [6] investigated by Borsik and Dobos was equivalent

to β-continuity. Therefore, in 1997, Nasef and Noiri [7] investigated fundamental

characterizations of almost β-continuous functions. A year later, Popa and Noiri [8]

investigated further characterizations of almost β-continuous functions. In 1992, Khedr

et al.[9] generalized the notions of β-open sets and investigated β-continuous functions

in bitopological spaces. Furthermore, in [10], [11], and [12] from 1996 to 2000, the

authors extended these functions to multifunctions by introducing and characterizing

the notions of β-continuous multifunctions, almost β-continuous multifunctions, and

weakly β-continuous multifunctions in topological spaces.

Therefore, we are interested in defining upper and lower β(τ1, τ2)-continuous

multifunctions and investigating some characterizations of these multifunctions.

Furthermore, almost β(τ1, τ2)-continuous multifunctions and weakly β(τ1, τ2)-continuous

multifunctions were investigated.

1.2 Objective of the research

The purposes of the research are:

1.2.1 To define and investigate the characterizations of upper and lower

β(τ1, τ2)-continuous multifunctions.
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1.2.2 To define and investigate the characterizations of upper and lower almost

β(τ1, τ2)-continuous multifunctions.

1.2.3 To define and investigate the characterizations of upper and lower weakly

β(τ1, τ2)-continuous multifunctions.

1.3 Research methodology

The research procedure of this thesis consists of the following steps:

1.3.1 Criticism and possible extension of the literature review.

1.3.2 To define and investigate the characterizations of upper and lower

β(τ1, τ2)-continuous multifunctions.

1.3.3 To define and investigate the characterizations of upper and lower almost

β(τ1, τ2)-continuous multifunctions.

1.3.4 To define and investigate the characterizations of upper and lower

weakly β(τ1, τ2)-continuous multifunctions.

1.3.5 To make the conclusions and do a complete report to offer Mahasarakham

University.

1.4 Scope of the study

The scopes of the study are: defining and investigating the characterizations

of upper and lower β(τ1, τ2)-continuous multifunctions, the characterizations of upper

and lower almost β(τ1, τ2)-continuous multifunctions, and the characterizations of upper

and lower weakly β(τ1, τ2)-continuous multifunctions.



 

 

 

CHAPTER 2

PRELIMINARIES

In this chapter, we will give some definitions, notations, dealing with some

preliminaries and some useful results that will be duplicated in later chapter.

2.1 Bitopological spaces

Definition 2.1.1. [13] Let X 6= ∅ and τ be a collection of subsets of X . Then, τ is

called a topology on X if and only if τ satisfies the properties:

1. ∅, X ∈ τ .

2. If G1, G2 ∈ τ then G1 ∩G2 ∈ τ .

3. If Gi ∈ τ for all i ∈ J then ∪i∈JGi ∈ τ .

The pair (X, τ) is called a topological space. Sometimes this research, spaces

(X, τ) (or simply X) always mean topological spaces.

Definition 2.1.2. [13] Let X be a topological space, and A ⊆ X . The interior of A is

the set given by Int(A) = ∪{U ⊆ X : U ⊆ A and U is open}.

Theorem 2.1.3. [13] If X is a space and A ⊆ X , then the following are true:

1. Int(A) is an open set.

2. Int(A) ⊆ A.

3. If A ⊆ B ⊆ X , then Int(A) ⊆ Int(B).

4. If U is an open set with U ⊆ A, then U ⊆ Int(A), that is Int(A) is the largest

open set contained in A.

5. For every A ⊆ X and B ⊆ X , Int(A ∩B) =Int(A)∩ Int(B).

6. For every A ⊆ X , A is open if and only if A = Int(A).
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Definition 2.1.4. [13] If A is a subset A of a topological space X , then the closure

of A is the set given by Cl(A) = ∩{F ⊆ X : F is closed and A ⊆ F}.

Theorem 2.1.5. [13] If X is a space and A ⊆ X , then the following are true:

1. Cl(A) is an closed set.

2. A ⊆ Cl(A).

3. If A ⊆ B ⊆ X , then Cl(A) ⊆ Cl(B).

4. If F is an closed set with A ⊆ F , then Cl(A) ⊆ F , that is Cl(A) is the smallest

closed set containing in A.

5. For every A ⊆ X and B ⊆ X , Cl(A ∪B) = Cl(A) ∪ Cl(B).

6. For every A ⊆ X , A is closed if and only if A = Cl(A).

Proposition 2.1.6. [3] For a subset A of a topological space (X, τ), the following

properties hold:

(1) Cl(A) ∩G ⊆ Cl(A ∩G) for every open set G.

(2) Int(A ∪ F ) ⊆ Int(A) ∪ F for every closed set F .

Definition 2.1.7. [15] A collection A of subsets of a space X is said to cover X , or

to be a covering of X , if the union of the element of A is equal to X . It is called an

open covering of X if its elements are open subsets of X .

In this investigation, we study on bitopological spaces. According to Kelly

[14], a bitopological space (X, τ1, τ2) is a set X with two topologies, τ1 and τ2 on the

space. Let A be a subsets of bitopological space (X, τ1, τ2). The closure of A and the

interior of A with τi are denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2.

Definition 2.1.8. [16] Let (X, τ1, τ2) be a bitopological space and let A ⊆ X . Then,

A is called (i, j)-semi-open if A ⊆ jCl(iInt(A)), where i 6= j = 1, 2. The complement

of (i, j)-semi-open set is (i, j)-semi-closed.
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Definition 2.1.9. [17] Let (X, τ1, τ2) be a bitopological space and let A ⊆ X . Then, A

is called (i, j)-regular-open if A = iInt(jCl(A)), where i 6= j = 1, 2. The complement

of (i, j)-regular-open set is (i, j)-regular-closed.

Definition 2.1.10. [18] Let (X, τ1, τ2) be a bitopological space and let A ⊆ X . Then,

A is called (i, j)-preopen if A ⊆ iInt(jCl(A)). The complement of (i, j)-preopen set

is (i, j)-preclosed.

Definition 2.1.11. [9] Let (X, τ1, τ2) be a bitopological space and let A ⊆ X . Then,

A is called (i, j)-β-open if A ⊆ jCl(iInt(jCl(A))). The complement of (i, j)-β-open

set is (i, j)-β-closed.

Note: In our research, we let τ1τ2-semi-open, τ1τ2-preopen, τ1τ2-β-open and

τ1τ2-regular-open represent (2, 1)-semi-open, (1, 2)-preopen, (2, 1)-β-open and (1, 2)-

regular-open respectively; moreover, we do complement of those in the similar way.

Example 2.1.12. Let X = {a, b, c} with topologies τ1 = {∅, {a}, {b}, {a, b}, X} and

τ2 = {∅, {a}, {a, b}, X}.

1. It is easy to verify that there are five τ1τ2-semi-open such as ∅, {a}, {a, b}, {a, c},

and X; furthermore, five τ1τ2-semi-closed sets on X are ∅, {b, c}, {c}, {b}, and

X .

2. It is easy to verify that there are three τ1τ2-regular-open such as ∅, {b} and X;

furthermore, three τ1τ2-regular-closed sets on X are ∅, {a, c}, and X .

3. It is easy to verify that the τ1τ2-preopen on X are ∅, {a}, {b}, {a, b}, {a, c} and

X; furthermore, six τ1τ2-preclosed sets on X are ∅, {b, c}, {a, c}, {c}, {b}, and

X .

4. It is easy to check that {a} is a τ1τ2-β-open set but {c} is not a τ1τ2-β-open

set. Therefore, we know the complement of {a} is τ1τ2-β-closed set.

Definition 2.1.13. [19] Let (X, τ1, τ2) be a bitopological space and A be a subset of

X . Then, τ1τ2-semi-closure of A denoted by τ1τ2-sCl(A) is defined as

τ1τ2-sCl(A) = ∩{F ⊆ X : F is τ1τ2-semi-closed in X and A ⊆ F}.
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Definition 2.1.14. [9] Let (X, τ1, τ2) be a bitopological space and A be a subset of X .

Then, τ1τ2-preclosure of A denoted by τ1τ2-pCl(A) is defined as

τ1τ2-pCl(A) = ∩{F ⊆ X : F is τ1τ2-preclosed in X and A ⊆ F}.

Definition 2.1.15. [9] Let (X, τ1, τ2) be a bitopological space and A be a subset of X .

Then, τ1τ2-β-closure of A denoted by τ1τ2-βCl(A) is defined as

τ1τ2-βCl(A) = ∩{F ⊆ X : F is τ1τ2-β-closed in X and A ⊆ F}.

Example 2.1.16. Let X = {a, b, c} with topologies τ1 = {∅, {a}, {b}, {a, b}, X}

and τ2 = {∅, {a}, {a, b}, X}. Let A = {c}. Then, (X, τ1, τ2) is a bitopological space.

In example 2.1.12, τ1τ2-semi-closed in X are ∅, {b, c}, {c}, {b}, and X . Clearly, A ⊆

{b, c} and A ⊆ {c}, then τ1τ2-sCl(A) = {b, c} ∩ {c} = {c}. Moreover, in example

2.1.12, τ1τ2-preclosed in X are ∅, {b, c}, {a, c}, {b}, {c}, and X . Clearly, A ⊆ {b, c},

A ⊆ {c} and A ⊆ {a, c}. Hence, τ1τ2-pCl(A) = {b, c} ∩ {c} ∩ {a, c} = {c}.

Moreover, it is easy to check that τ1τ2-βCl(A) = {c}.

Definition 2.1.17. [19] Let (X, τ1, τ2) be a bitopological space and A be a subset of

X . Then, τ1τ2-semi-interior of A denoted by τ1τ2-sInt(A) is defined as

τ1τ2-sInt(A) = ∪{G ⊆ X : G is τ1τ2-semi-open in X and G ⊆ A}.

Definition 2.1.18. [20] Let (X, τ1, τ2) be a bitopological space and A be a subset of

X . Then, τ1τ2-preinterior of A denoted by τ1τ2-pInt(A) is defined as

τ1τ2-pInt(A) = ∪{G ⊆ X : G is τ1τ2-preopen in X and G ⊆ A}.

Definition 2.1.19. [9] Let (X, τ1, τ2) be a bitopological space and A be a subset of X .

Then, τ1τ2-β-interior of A denoted by τ1τ2-βInt(A) is defined as

τ1τ2-βInt(A) = ∪{G ⊆ X : G is τ1τ2-β-open in X and G ⊆ A}.

Example 2.1.20. Let X = {a, b, c} with topologies τ1 = {∅, {a}, {b}, {a, b}, X}

and τ2 = {∅, {a}, {a, b}, X}. Let A = {a, c}. Then, (X, τ1, τ2) is a bitopological

space.

In example 2.1.12, τ1τ2-semi-open in X are ∅, {a}, {a, b}, {a, c}, and X . Clearly,

∅ ⊆ A, {a} ⊆ A and {a, c} ⊆ A, then τ1τ2-sInt(A) = ∅ ∪ {a} ∪ {a, c} = {a, c}.
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Moreover, in example 2.1.12 is that τ1τ2-preopen in X are ∅, {a}, {b}, {a, c}, {a, b},

and X . Clearly, ∅ ⊆ A, {a} ⊆ A and {a, c} ⊆ A. Hence, τ1τ2-pInt(A) = ∅ ∪ {a} ∪

{a, c} = {a, c}. Moreover, it is easy to check that τ1τ2-βInt(A) = {a, c}.

Definition 2.1.21. [21] Let (X, τ1, τ2) be a bitopological space and let A ⊆ X . Then,

A is called τ1τ2-open if A = τ1-Int(τ2-Int(A)). The complement of τ1τ2-open set is

τ1τ2-closed.

Example 2.1.22. Let X = {a, b, c} with topologies τ1 = {∅, {b}, {c}, {b, c}, X} and

τ2 = {∅, {a}, {b, c}, X}. It is easy to check that {b, c} is a τ1τ2-open set but {c} is

not a τ1τ2-open set. Therefore, we know the complement of {b, c} is τ1τ2-closed set.

Definition 2.1.23. [21] Let (X, τ1, τ2) be a bitopological space and A be a subset of

X . Then, τ1τ2-closure of A denoted by τ1τ2-Cl(A) is defined as

τ1τ2-Cl(A) = ∩{F ⊆ X : F is τ1τ2-closed in X and A ⊆ F}.

Example 2.1.24. Let X = {a, b, c} with topologies τ1 = {∅, {b}, {c}, {b, c}, X}

and τ2 = {∅, {a}, {b, c}, X}. Let A = {a}. Then, (X, τ1, τ2) is a bitopological space.

It is easy to verify that τ1τ2-closed in X are ∅, {a}, and X . Clearly, A ⊆ {a} and

A ⊆ X , then τ1τ2-Cl(A) = {a} ∩X = {a}.

Definition 2.1.25. [21] Let (X, τ1, τ2) be a bitopological space and A be a subset of

X . Then, τ1τ2-interior of A denoted by τ1τ2-Int(A) is defined as

τ1τ2-Int(A) = ∪{G ⊆ X : G is τ1τ2-open in X and G ⊆ A}.

Example 2.1.26. Let X = {a, b, c} with topologies τ1 = {∅, {b}, {c}, {b, c}, X}

and τ2 = {∅, {a}, {b, c}, X}. Let A = {b, c}. Then, (X, τ1, τ2) is a bitopological

space. It is easy to verify that τ1τ2-open in X are ∅, {b, c}, and X . Clearly, ∅ ⊆ A

and {b, c} ⊆ A, then τ1τ2-Int(A) = ∅ ∪ {b, c} = {b, c}.

Definition 2.1.27. [21] A set N of a bitopological space (X, τ1, τ2) is said to be τ1τ2-

neighbourhood of x ∈ X if there exists a τ1τ2-open set V of (X, τ1, τ2) such that

x ∈ V ⊆ N .
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Example 2.1.28. Let X = {a, b, c} with topologies τ1 = {∅, {b}, {c}, {b, c}, X}

and τ2 = {∅, {a}, {b}, {a, b}, {b, c}, X}. Let N = {a, b}.

Then, (X, τ1, τ2) is a bitopological space. It is easy to verify that τ1τ2-open in X are

∅, {b}, {b, c}, and X . Clearly, b ∈ {b} ⊆ N , then N is τ1τ2-neighbourhood of b ∈ X .

Definition 2.1.29. A set N of a bitopological space (X, τ1, τ2) is said to be τ1τ2-

preneighbourhood of x ∈ X if there exists a τ1τ2-preopen set V of (X, τ1, τ2) such

that x ∈ V ⊆ N .

Example 2.1.30. Let X = {a, b, c} with topologies τ1 = {∅, {a}, {b}, {a, b}, X},

τ2 = {∅, {a}, {a, b}, X} and N = {a, c} , then (X, τ1, τ2) is the bitopological space. In

example 2.1.12, the τ1τ2-preopen on X are ∅, {a}, {b}, {a, b}, {a, c} and X . Clearly,

a ∈ {a} ⊆ N , then N is τ1τ2-preneighbourhood of a ∈ X .

Proposition 2.1.31. [21] Let A and B be subsets of a bitopological space (X, τ1, τ2).

For the τ1τ2-closure, the following properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).

(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).

(3) τ1τ2-Cl(A) is τ1τ2-closed.

(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).

(5) τ1τ2-Cl(X − A) = X − τ1τ2-Int(A).

Proposition 2.1.32. Let (X, τ1, τ2) be a bitopological space. If A is τ1τ2-semi-open

and B is τ1τ2-open in X , then A ∩B is τ1τ2-semi-open.

Proof. Suppose that A is τ1τ2-semi-open and B is τ1τ2-open in X .

Then, A ⊆ τ1-Cl(τ2-Int(A)) and B = τ1-Int(B) = τ2-Int(B). Therefore, we obtain

A ∩B ⊆ τ1-Cl(τ2-Int(A)) ∩B. By Proposition 2.1.6(1), we have

A ∩B ⊆ τ1-Cl(τ2-Int(A)) ∩B ⊆ τ1-Cl(τ2-Int(A) ∩B) = τ1-Cl(τ2-Int(A ∩B)).

Hence, A ∩B is τ1τ2-semi-open.

Theorem 2.1.33. [9] Let (X, τ1, τ2) be a bitopological. Let {Aγ|γ ∈ 5} be a family

of subsets of X . The following properties are hold:
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(1) If Aγ is τ1τ2-semi-open for each γ ∈ 5, then ∪γ∈5Aγ is τ1τ2-semi-open.

(2) If Aγ is τ1τ2-semi-closed for each γ ∈ 5, then ∩γ∈5Aγ is τ1τ2-semi-closed.

Proof. 1. Suppose that Aγ is τ1τ2-semi-open for each γ ∈ 5. Then, we have

Aγ ⊆ τ1-Cl(τ2-Int(Aγ)) ⊆ τ1-Cl(τ2-Int(∪γ∈5Aγ)), and hence

∪γ∈5Aγ ⊆ τ1-Cl(τ2-Int(∪γ∈5Aγ)). This shows that ∪γ∈5Aγ is τ1τ2-semi-open.

2. Suppose that Aγ is τ1τ2-semi-closed for each γ ∈ 5. Then, we have

X − Aγ is τ1τ2-semi-open and X − ∩γ∈5Aγ = ∪γ∈5(X − Aγ). Therefore, by

(1), X − ∩γ∈5Aγ is τ1τ2-semi-open, and hence ∩γ∈5Aγ is τ1τ2-semi-closed.

Proposition 2.1.34. For a subset A of a bitopological space (X, τ1, τ2), the following

properties hold:

(1) τ1τ2-sInt(A) is τ1τ2-semi-open.

(2) τ1τ2-sCl(A) is τ1τ2-semi-closed.

(3) A is τ1τ2-semi-open if and only if A = τ1τ2-sInt(A).

(4) A is τ1τ2-semi-closed if and only if A = τ1τ2-sCl(A).

Proof. (1) and (2) follows from Proposition 2.1.33 (3) and (4) follows from (1) and

(2).

Proposition 2.1.35. For a subset A of a bitopological space (X, τ1, τ2),x ∈ τ1τ2-sCl(A)

if and only if U ∩ A 6= ∅ for every τ1τ2-semi-open set U containing x.

Proof. Let x ∈ τ1τ2-sCl(A). We shall show that U ∩ A 6= ∅ for every τ1τ2-semi-open

set U containing x. Suppose that U ∩A = ∅ for some τ1τ2-semi-open set U containing

x. Then, A ⊆ X −U and X −U is τ1τ2-semi-closed. Since x ∈ τ1τ2-sCl(A), we have

x ∈ τ1τ2-sCl(X − U) = X − U ; hence x /∈ U , which is a contradiction that x ∈ U .

Therefore, U ∩ A 6= ∅.

Conversely, we assume that U∩A 6= ∅ for every τ1τ2-semi-open set U containing

x. We shall show that x ∈ τ1τ2-sCl(A). Suppose that x /∈ τ1τ2-sCl(A). Then, there

exists a τ1τ2-semi-closed set F such that A ⊆ F and x /∈ F . Therefore, we obtain
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X − F is a τ1τ2-semi-open set containing x such that (X − F ) ∩ A = ∅. This a

contradiction to U ∩ A 6= ∅; hence x ∈ τ1τ2-sCl(A).

Proposition 2.1.36. For a subset A of a bitopological space (X, τ1, τ2), the following

properties hold:

(1) X − τ1τ2-sCl(A) = τ1τ2-sInt(X − A).

(2) X − τ1τ2-sInt(A) = τ1τ2-sCl(X − A).

Proof. (1) Let x ∈ X − τ1τ2-sCl(A). Then, x /∈ τ1τ2-sCl(A). By Proposition 2.1.35,

there exists a τ1τ2-semi-open set V containing x such that V ∩A = ∅. Then, V ⊆ X−A,

and hence x ∈ τ1τ2-sInt(X−A). This shows that X−τ1τ2-sCl(A) ⊆ τ1τ2-sInt(X−A).

Let x ∈ τ1τ2-sInt(X − A). Then, there exists a τ1τ2-semi-open set V

containing x such that V ⊆ X −A, and hence V ∩A = ∅. By Proposition 2.1.35, we

have x /∈ τ1τ2-sCl(A); hence x ∈ X − τ1τ2-sCl(A). Therefore,

τ1τ2-sInt(X − A) ⊆ X − τ1τ2-sCl(A).

Consequently, we obtain X − τ1τ2-sCl(A) = τ1τ2-sInt(X − A).

(2) This follow from (1).

Proposition 2.1.37. For a subset A of a bitopological space (X, τ1, τ2), the following

properties hold:

(1) τ1τ2-sCl(A) = τ1-Int(τ2-Cl(A)) ∪ A.

(2) If A is τ1-open in X , then τ1τ2-sCl(A) = τ1-Int(τ2-Cl(A)).

Proof. (1) Since τ1τ2-sCl(A) is τ1τ2-semi-closed, we have

τ1-Int(τ2-Cl(τ1τ2-sCl(A))) ⊆ τ1τ2-sCl(A).

Thus, τ1-Int(τ2-Cl(A)) ⊆ τ1τ2-sCl(A). Hence, τ1-Int(τ2-Cl(A)) ∪ A ⊆ τ1τ2-sCl(A).

To establish the opposite inclusion, we observe that

τ1-Int(τ2-Cl(τ1-Int(τ2-Cl(A)) ∪ A)) ⊆ τ1-Int(τ2-Cl(A) ∪ A)

= τ1-Int(τ2-Cl(A)).
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Therefore,

τ1-Int(τ2-Cl(τ1-Int(τ2-Cl(A)) ∪ A)) ⊆ τ1-Int(τ2-Cl(A)) ⊆ τ1-Int(τ2-Cl(A)) ∪ A.

Hence, τ1-Int(τ2-Cl(A)) ∪ A is τ1τ2-semi-closed. Then,

τ1τ2-sCl(A) ⊆ τ1-Int(τ2-Cl(A)) ∪ A.

Consequently, we obtain τ1τ2-sCl(A) = τ1-Int(τ2-Cl(A)) ∪ A.

(2) Let A be a τ1-open set, then A = τ1-Int(A) ⊆ τ1-Int(τ2-Cl(A)). Therefore, by

(1), we have τ1τ2-sCl(A) = τ1-Int(τ2-Cl(A)).

Proposition 2.1.38. Let (X, τ1, τ2) be a bitopological space and {Aγ | γ ∈ Γ} a family

of subsets of X . The following properties hold:

(1) If Aγ is τ1τ2-β-open for each γ ∈ Γ, then ∪
γ∈Γ

Aγ is τ1τ2-β-open.

(2) If Aγ is τ1τ2-β-closed for each γ ∈ Γ, then ∩
γ∈Γ

Aγ is τ1τ2-β-closed.

Proof. 1. The proof follows from Theorem 3.2 of [9].

2. The proof follows from Lemma 2.1 of [22].

Proposition 2.1.39. [22] For a subset A of a bitopoligical space (X, τ1, τ2), the

following properties hold:

(1) τ1τ2-βInt(A) is τ1τ2-β-open.

(2) τ1τ2-βCl(A) is τ1τ2-β-closed.

(3) A is τ1τ2-β-open if and only if A =τ1τ2-βInt(A).

(4) A is τ1τ2-β-closed if and only if A =τ1τ2-βCl(A).

Proposition 2.1.40. [22] For a subset A of a bitopological space (X, τ1, τ2),

x ∈ τ1τ2-βCl(A) if and only if U ∩ A 6= ∅ for every τ1τ2-β-open set U containing x.

Proposition 2.1.41. [22] For a subset A of a bitopological space (X, τ1, τ2), the

following properties hold:
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(1) X− τ1τ2-βCl(A) = τ1τ2-βInt(X − A).

(2) X− τ1τ2-βInt(A) = τ1τ2-βCl(X − A).

2.2 Multifunctions

A multifunction F : X → Y is a point-to-set correspondence from X to Y.

We always assume that F (x) 6= ∅ for all x ∈ X . We shall denote the upper and

lower inverse [23] of a set B of Y by F+(B) and F−(B), respectively, that is

F+(B) = {x ∈ X|F (x) ⊆ B} and F−(B) = {x ∈ X|F (x) ∩B 6= ∅}.

Example 2.2.1. Let X = {1, 2, 3} and Y = {a, b, c, d, e}. A multifunction

F : X → Y is defined as follows : F (1) = {c}, F (2) = {b, d} and F (3) = {a, e}.

Then, F+({a, b, c, d}) = {1, 2} and F−({a, b, c, d}) = {1, 2, 3}. Moreover, it is easy

to check that F−({a}) = {3}.

Definition 2.2.2. [23] A multifunction F : X → Y and A ⊆ X , then direct image

of A under the multifunction F is the set F (A) = ∪x∈AF (x).

Example 2.2.3. Let X = {1, 2, 3} and Y = {a, b, c, d, e}. A multifunction F : X → Y

is defined as follows : F (1) = {c}, F (2) = {b, d} and F (3) = {a, e}.

Therefore, if A = {1, 2} ⊆ X , then F (A) = F (1) ∪ F (2) = {c} ∪ {b, d} = {b, c, d}.

Lemma 2.2.4. Let F : (X, τ1, τ2)→ (Y, σ1, σ2) be a multifunction and U ⊆ X, V ⊆ Y .

Then, the following properties hold:

(1) If F (U) ⊆ V , then U ⊆ F+(V ).

(2) If F (z) ∩ V 6= ∅ for every z ∈ U , then U ⊆ F−(V ).

(3) If U ⊆ V then F+(U) ⊆ F+(V ).

(4) If U ⊆ V then F−(U) ⊆ F−(V ).

(5) X − F−(V ) = F+(Y − V ).

Proof. (1) Let x ∈ U . Since ∪x∈UF (x) = F (U) ⊆ V , F (x) ⊆ F (U) ⊆ V . Thus,

F (x) ⊆ V ; hence x ∈ F+(V ). This shows that U ⊆ F+(V ).
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(2) Suppose that F (z) ∩ V 6= ∅ for every z ∈ U . Let x ∈ U . Therefore,

F (x) ∩ V 6= ∅. Hence, x ∈ F−(V ). This shows that U ⊆ F−(V ).

(3) Let x ∈ F+(U). Therefore, F (x) ⊆ U . Since U ⊆ V , F (x) ⊆ V . Thus,

x ∈ F+(V ). This shows that F+(U) ⊆ F+(V ).

(4) Let x ∈ F−(U). Therefore, F (x)∩U 6= ∅. Since U ⊆ V , F (x)∩V 6= ∅. Thus,

x ∈ F−(V ). This shows that F−(U) ⊆ F−(V ).

(5) Let x ∈ X−F−(V ). Then, x /∈ F−(V ). Therefore, F (x)∩V = ∅. Thus, F (x) ⊆

Y − V. Hence, x ∈ F+(Y − V ). This implies that X − F−(V ) ⊆ F+(Y − V ). On the

other hand, suppose that x ∈ F+(Y −V ), so F (x) ⊆ Y −V . Therefore, F (x)∩V = ∅.

Then, we obtain x /∈ F−(V ). Thus, x ∈ X−F−(V ); hence, F+(Y −V ) ⊆ X−F−(V ).

Consequently, X − F−(V ) = F+(Y − V ).



 

 

 

CHAPTER 3

β(τ1, τ2)-CONTINUOUS MULTIFUNCTIONS

3.1 Characterizations of upper and lower β(τ1, τ2)-continuous multifunctions

In this section, we introduce the notions of upper and lower β(τ1, τ2)-

continuous multifunctions, and investigate some characterizations of these multifunctions.

Definition 3.1.1. A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be:

(1) upper β(τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open set V of

Y containing F (x), there exists a τ1τ2-β-open set U containing x such that

F (U) ⊆ V ;

(2) lower β(τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open set V of Y

such that F (x)∩ V 6= ∅, there exists a τ1τ2-β-open set U containing x such that

F (z) ∩ V 6= ∅ for every z ∈ U ;

(3) upper (resp. lower) β(τ1, τ2)-continuous if F has this property at each point of

X .

Example 3.1.2. Let X = {a, b, c} with topologies τ1 = {∅, {a}, {b}, {a, b}, X} and

τ2 = {∅, {a}, {a, b}, X}. Let Y = {1, 2, 3, 4, 5} with topologies

σ1 = {∅, {1}, {2, 3, 4, 5}, Y } and σ2 = {∅, {2}, {3}, {2, 3}, {2, 3, 4, 5}, Y }.

A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is defined as follow: F (a) = {2, 3}, F (b) =

{1, 2}, F (c) = {1, 4, 5}. Then, F is upper and lower β(τ1, τ2)-continuous.

Theorem 3.1.3. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is upper β(τ1, τ2)-

continuous at x ∈ X if and only if x ∈ τ1τ2-βInt(F+(V )) for every σ1σ2-open

set V of Y containing F (x).

Proof. Let V be a σ1σ2-open set containing F (x). Consequently, there exists a τ1τ2-

β-open set U containing x such that F (U) ⊆ V . Therefore, x ∈ U ⊆ F+(V ). Since

U is τ1τ2-β-open, we have x ∈ τ1τ2-βInt(F+(V )).

14
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Conversely, let V be a σ1σ2-open set containing F (x). By the hypothesis, x ∈ τ1τ2-

βInt(F+(V )). There exists a τ1τ2-β-open set G containing x such that G ⊆ F+(V );

hence, F (G) ⊆ V . This shows that F is upper β(τ1, τ2)-continuous at x.

Theorem 3.1.4. A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is lower

β(τ1, τ2)-continuous at x ∈ X if and only if x ∈ τ1τ2-βInt(F−(V )) for every σ1σ2-open

set V of Y such that F (x) ∩ V 6= ∅.

Proof. The proof is similar to that of Theorem 3.1.3.

Theorem 3.1.5. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following

properties are equivalent:

(1) F is upper β(τ1, τ2)-continuous;

(2) F+(V ) is τ1τ2-β-open in X for every σ1σ2-open set V of Y ;

(3) F−(K) is τ1τ2-β-closed in X for every σ1σ2-closed set K of Y ;

(4) τ1τ2-βCl(F−(B)) ⊆ F−(σ1σ2-Cl(B)) for every subset B of Y ;

(5) τ1-Int(τ2-Cl(τ1-Int(F−(B)))) ⊆ F−(σ1σ2-Cl(B)) for every subset B of Y .

Proof. (2) ⇒ (1): Let x ∈ X and V be a σ1σ2-open set containing F (x). By (2),

F+(V ) is a τ1τ2-β-open set containing x. Putting U = F+(V ), we obtain U is

a τ1τ2-β-open set containing x such that F (U) ⊆ V . This shows that F is upper

β(τ1, τ2)-continuous.

(1)⇒ (2): Let V be a σ1σ2-open set of Y and x ∈ F+(V ). By 2.2.4, F (x) ⊆ V ,

then there exists a τ1τ2-β-open set U containing x such that F (U) ⊆ V . Consequently,

we obtain x ∈ U ⊆ τ1-Cl(τ2-Int(τ1-Cl(U))) ⊆ τ1-Cl(τ2-Int(τ1-Cl(F+(V )))). Thus,

F+(V ) ⊆ τ1-Cl(τ2-Int(τ1-Cl(F+(V )))). This shows F+(V ) is τ1τ2-β-open in X .

(2) ⇒ (3): This follows from the fact that F+(Y − B) = X − F−(B) for every

subset B of Y .

(3) ⇒ (4): For each subset B of Y , σ1σ2-Cl(B) is σ1σ2-closed in Y . By (3),

F−(σ1σ2-Cl(B)) is τ1τ2-β-closed in X; therefore,τ1τ2-βCl(F−(B)) ⊆ F−(σ1σ2-Cl(B)).

(4)⇒ (5): Let B be a subset of Y . By Proposition 2.1.39(2), we obtain

τ1-Int(τ2-Cl(τ1-Int(F−(B)))) ⊆ τ1-Int(τ2-Cl(τ1-Int(τ1τ2-βCl(F−(B)))))
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⊆ τ1τ2-βCl(F−(B)).

Consequently, τ1-Int(τ2-Cl(τ1-Int(F−(B)))) ⊆ F−(σ1σ2-Cl(B)) by (4).

(5)⇒ (2): Let V be a σ1σ2-open set of Y , so Y − V is σ1σ2-closed in Y . By (5)

and Lemma 2.2.4,

X − τ1-Cl(τ2-Int(τ1-Cl(F+(V )))) = τ1-Int(τ2-Cl(τ1-Int(X − F+(V ))))

= τ1-Int(τ2-Cl(τ1-Int(F−(Y − V ))))

⊆ F−(σ1σ2-Cl(Y − V ))

= X − F+(σ1σ2-Int(V ))

⊆ X − F+(V ).

Therefore, we obtain F+(V ) ⊆ τ1-Cl(τ2-Int(τ1-Cl(F+(V )))), and hence F+(V ) is

τ1τ2-β-open in X .

Theorem 3.1.6. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following

properties are equivalent:

(1) F is lower β(τ1, τ2)-continuous;

(2) F−(V ) is τ1τ2-β-open in X for every σ1σ2-open set V of Y ;

(3) F+(K) is τ1τ2-β-closed in X for every σ1σ2-closed set K of Y ;

(4) τ1τ2-βCl(F+(B)) ⊆ F+(σ1σ2-Cl(B)) for every subset B of Y ;

(5) τ1-Int(τ2-Cl(τ1-Int(F+(B)))) ⊆ F+(σ1σ2-Cl(B)) for every subset B of Y .

Proof. It is shown similarly to the proof of Theorem 3.1.5 that the statements (1), (2),

(3), (4) and (5) are equivalent.

Definition 3.1.7. [24] Let (X, τ1, τ2) be bitopological space. A covering B is called a

refinement of covering U if every τ1τ2-open set of B is contained in some τ1τ2-open

set of U .

Definition 3.1.8. [21] A collection U of subsets of a bitopological space (X, τ1, τ2) is

said to be τ1τ2-locallyfinite if every x ∈ X has a τ1τ2-neighborhood which intersects

only finitely many elements of U.
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Definition 3.1.9. [21] A subset A of a bitopological space (X, τ1, τ2) is said to be:

(1) τ1τ2-paracompact if every cover of A by τ1τ2-open sets of X is refined by a

cover of A which consists of τ1τ2-open sets of X and is τ1τ2-locally finite in X;

(2) τ1τ2-regular if for each x ∈ A and each τ1τ2-open set U of X containing x,

there exists a τ1τ2-open set V of X such that x ∈ V ⊆ τ1τ2-Cl(V ) ⊆ U .

Lemma 3.1.10. [21] If A is a τ1τ2-regular τ1τ2-paracompact set of a bitopological

space (X, τ1, τ2) and U is a τ1τ2-open neighbourhood of A, then there exists a τ1τ2-

open set V of X such that A ⊆ V ⊆ τ1τ2-Cl(V ) ⊆ U .

Definition 3.1.11. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is called punctually

(τ1, τ2)-paracompact (resp. punctually (τ1, τ2)-regular) if for each x ∈ X , F (x) is

τ1τ2-paracompact (resp. τ1τ2-regular).

For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), by

βClF~ : (X, τ1, τ2)→ (Y, σ1, σ2),

we denote the multifunction defined as follows: βClF~(x) = σ1σ2-βCl(F (x)) for each

x ∈ X.

Example 3.1.12. Let X = {1, 2, 3} with topologies

τ1 = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, X} and τ2 = {∅, {1}, {1, 2}, X}.

Let Y = {a, b, c} with topologies σ1 = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, Y }, σ2 =

{∅, {a}, {b}, {a, b}, Y }. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is defined as

follow: F (1) = {a, b}, F (2) = {a}, F (3) = {b}. Then, F is punctually (τ1, τ2)-

paracompact.

Example 3.1.13. Let X = {1, 2, 3} with topologies

τ1 = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, X}

and τ2 = {∅, {1}, {1, 2}, X}. Let Y = {a, b, c} with topologies σ1 = {∅, {b, c}, Y } and

σ2 = {∅, {a, c}, Y }. A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is defined as follow:

F (1) = F (2) = F (3) = {a, b}. Then, F is punctually (τ1, τ2)-regular.
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Lemma 3.1.14. Let (X, τ1, τ2) be a bitopological space. Then, τ1τ2-βCl(A) ⊆

τ1τ2-Cl(A) for every subset A of X .

Proof. Let x ∈ X − τ1τ2-Cl(A). By Proposition 2.1.31, x ∈ τ1τ2-Int(X − A) and

there exists a τ1τ2-open set V such that x ∈ V ⊆ X − A. Since every τ1τ2-open

set is τ1τ2-β-open, we have x ∈ τ1τ2-βInt(X − A). By Proposition 2.1.41(1), x ∈

X − τ1τ2-βCl(A), so X − τ1τ2-Cl(A) ⊆ X− τ1τ2-βCl(A). Consequently, we obtain

τ1τ2-βCl(A) ⊆ τ1τ2-Cl(A).

Lemma 3.1.15. If F : (X, τ1, τ2)→ (Y, σ1, σ2) is punctually (τ1, τ2)-paracompact and

punctually (τ1, τ2)-regular, then βClF+
~ (V ) = F+(V ) for every σ1σ2-open V of Y .

Proof. Let V be a σ1σ2-open set of Y and x ∈ βClF+
~ (V ). Then, we have

σ1σ2-βCl(F (x))) ⊆ V and F (x) ⊆ V . Therefore, we have x ∈ F+(V ), and hence

βClF+
~ (V ) ⊆ F+(V ). On the other hand, let x ∈ F+(V ). Then, F (x) ⊆ V and by

Lemma 3.1.10, there exists a σ1σ2-open set U of Y such that F (x) ⊆ σ1σ2-Cl(U) ⊆

U ⊆ V . By Lemma 3.1.14, we have σ1σ2-βCl(F (x)) ⊆ σ1σ2-Cl(U) ⊆ V. This

shows that x ∈ βClF+
~ (V ), and hence F+(V ) ⊆ βClF+

~ (V ). Consequently, we obtain

βClF+
~ (V ) = F+(V ).

Theorem 3.1.16. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be punctually (τ1, τ2)-paracompact

and punctually (τ1, τ2)-regular. Then, F is upper β(τ1, τ2)-continuous if and only if

βClF~ : (X, τ1, τ2)→ (Y, σ1, σ2) is upper β(τ1, τ2)-continuous.

Proof. Suppose that F is upper β(τ1, τ2)-continuous. Let x ∈ X and V be a σ1σ2-open

set of Y such that βClF~(x) ⊆ V . By Lemma 3.1.15, we have x ∈ βClF+
~ (V ) =

F+(V ). Since F is upper β(τ1, τ2)-continuous, there exists a τ1τ2-β-open set U

containing x such that F (U) ⊆ V . Since F (z) is σ1σ2-paracompact and σ1σ2-regular

for each z ∈ U , by Lemma 3.1.10 there exists a σ1σ2-open set H such that F (z) ⊆ H ⊆

σ1σ2-Cl(H) ⊆ V. By Lemma 3.1.14, we have σ1σ2-βCl(F (z)) ⊆ σ1σ2-Cl(H) ⊆ V for

each z ∈ U , and hence βClF~(U) ⊆ V . This shows that βClF~ is upper β(τ1, τ2)-

continuous.

Conversely, we suppose that βClF~ : (X, τ1, τ2) → (Y, σ1, σ2) is upper β(τ1, τ2)-

continuous. Let x ∈ X and V be a σ1σ2-open set of Y such that F (x) ⊆ V . By
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Lemma 3.1.15, we have x ∈ F+(V ) = βClF+
~ (V ), and hence βClF~(x) ⊆ V . Since

βClF~ is upper β(τ1, τ2)-continuous, there exists a τ1τ2-β-open set U of containing x

such that βClF~(U) ⊆ V ; hence, F (U) ⊆ V . This shows that F is upper β(τ1, τ2)-

continuous.

Lemma 3.1.17. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), it follows that for

each σ1σ2-β-open set V of Y βClF−~ (V ) = F−(V ).

Proof. Suppose that V is a σ1σ2-β-open set Y . Let x ∈ βClF−~ (V ). Then,

σ1σ2-βCl(F (x)) ∩ V 6= ∅. Hence, F (x) ∩ V 6= ∅. Therefore, we obtain x ∈ F−(V ).

This shows that βClF−~ (V ) ⊆ F−(V ). On the other hand, let x ∈ F−(V ). Then, we

have ∅ 6= F (x) ∩ V ⊆ σ1σ2-βCl(F (x)) ∩ V . Thus, x ∈ βClF−~ (V ). This shows that

F−(V ) ⊆ βClF−~ (V ). Consequently, we obtain βClF−~ (V ) = F−(V ).

Theorem 3.1.18. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is lower β(τ1, τ2)-

continuous if and only if βClF~ : (X, τ1, τ2) → (Y, σ1, σ2) is lower β(τ1, τ2)-

continuous.

Proof. By utilizing Lemma 3.1.17, this can be proved similarly to that of Theorem

3.1.16.

For a multifunction F : X → Y , the graph multifunction GF : X → X × Y is

defined as follows: GF (x) = {x} × F (x) for every x ∈ X .

Lemma 3.1.19. [10] The following hold for a multifunction F : X → Y :

(i) G+
F (A×B) = A ∩ F+(B),

(ii) G−F (A×B) = A ∩ F−(B),

for any subsets A ⊆ X and B ⊆ Y .

Lemma 3.1.20. Let (X, τ1, τ2) be a bitopological space. If A is τ1τ2-β-open and B is

τ1τ2-open in X , then A ∩B is τ1τ2-β-open.

Proof. Suppose that A is τ1τ2-β-open and B is τ1τ2-open in X . Then, we have

A ⊆ τ1-Cl(τ2-Int(τ1-Cl(A))) and B = τ1-Int(B) = τ2-Int(B). By Proposition 2.1.6(1),

A ∩B ⊆ τ1-Cl(τ2-Int(τ1-Cl(A))) ∩B
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⊆ τ1-Cl(τ2-Int(τ1-Cl(A)) ∩B)

= τ1-Cl(τ2-Int(τ1-Cl(A) ∩B))

⊆ τ1-Cl(τ2-Int(τ1-Cl(A ∩B))).

Consequently, we obtain A ∩B is τ1τ2-β-open.

Definition 3.1.21. [21] A bitopological space (X, τ1, τ2) is said to be τ1τ2-compact if

every cover of X by τ1τ2-open sets of X has a finite subcover.

By ρi we denote the product topology τi × σi for i = 1, 2.

Theorem 3.1.22. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be a multifunction such that F (x)

is σ1σ2-compact for each x ∈ X . Then, F is upper β(τ1, τ2)-continuous if and only if

GF : (X, τ1, τ2)→ (X × Y, ρ1, ρ2) is upper β(τ1, τ2)-continuous.

Proof. Suppose that F : (X, τ1, τ2) → (Y, σ1, σ2) is upper β(τ1, τ2)-continuous. Let

x ∈ X and W be a ρ1ρ2-open set of X × Y containing GF (x). For each y ∈

F (x), there exist τ1τ2-open set U(y) of X and σ1σ2-open set V (y) of Y such that

(x, y) ∈ U(y) × V (y) ⊆ W . The family {V (y) | y ∈ F (x)} is σ1σ2-open cover of

F (x) and there exists a finite number of points, say, y1, y2, ..., yn in F (x) such that

F (x) ⊆ ∪{V (yi) | 1 ≤ i ≤ n}. Put

U = ∩{U(yi) | 1 ≤ i ≤ n} and V = ∪{V (yi) | 1 ≤ i ≤ n}.

Then, we have U is τ1τ2-open in X and V is σ1σ2-open in Y such that {x}×F (x) ⊆

U × V ⊆ W . Since F is upper β(τ1, τ2)-continuous, there exists a τ1τ2-β-open set

G containing x such that F (G) ⊆ V . By Lemma 3.1.19 and 2.2.4(3), we have

U ∩G ⊆ U ∩ F+(V ) = G+
F (U × V ) ⊆ G+

F (W ). By Lemma 3.1.20, U ∩G is τ1τ2-β-

open in X , and GF (U ∩ G) ⊆ W by Lemma 2.2.4(1). This shows that GF is upper

β(τ1, τ2)-continuous.

Conversely, we suppose that GF : (X, τ1, τ2)→ (X × Y, ρ1, ρ2) is upper β(τ1, τ2)-

continuous. Let x ∈ X and V be a σ1σ2-open containing F (x). Since X × V is ρ1ρ2-

open in X×Y and GF (x) ⊆ X×V, there exists a τ1τ2-β-open set U containing x such

that GF (U) ⊆ X × V . Therefore, by Lemma 2.2.4(1) and 3.1.19, U ⊆ G+
F (X × V ) =

F+(V ), and F (U) ⊆ V . This shows that F is upper β(τ1, τ2)-continuous.
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Theorem 3.1.23. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is lower β(τ1, τ2)-

continuous if and only if GF : (X, τ1, τ2) → (X × Y, ρ1, ρ2) is lower β(τ1, τ2)-

continuous.

Proof. Suppose that F : (X, τ1, τ2) → (Y, σ1, σ2) is lower β(τ1, τ2)-continuous. Let

x ∈ X and W be a ρ1ρ2-open set of X × Y such that GF (x) ∩W 6= ∅. There exists

y ∈ F (x) such that (x, y) ∈ W , and hence (x, y) ∈ U×V ⊆ W for some τ1τ2-open set

U of X and σ1σ2-open set V of Y . Since F (x)∩V 6= ∅, there exists a τ1τ2-β-open set

G containing x such that F (z)∩V 6= ∅ for each z ∈ G; hence G ⊆ F−(V ). By Lemma

3.1.19 and Lemma 3.1.20, we have U ∩ G ⊆ U ∩ F−(V ) = G−F (U × V ) ⊆ G−F (W ).

Moreover, U ∩G is a τ1τ2-β-open set containing x, and hence GF is lower β(τ1, τ2)-

continuous.

Conversely, we suppose that GF : (X, τ1, τ2)→ (X × Y, ρ1, ρ2) is lower β(τ1, τ2)-

continuous. Let x ∈ X and V be a σ1σ2-open set of Y such that F (x)∩V 6= ∅. Then,

we have X × V is ρ1ρ2-open in X × Y and

GF (x) ∩ (X × V ) = ({x} × F (x)) ∩ (X × V ) = {x} × (F (x) ∩ V ) 6= ∅.

There exists a τ1τ2-β-open set U containing x such that GF (z) ∩ (X × V ) 6= ∅ for

each z ∈ U . By Lemma 3.1.19, we obtain U ⊆ G−F (X × V ) = F−(V ).

This shows that F is lower β(τ1, τ2)-continuous.

3.2 Characterizations of upper and lower almost β(τ1, τ2)-continuous multifunctions

In this section, we introduce the concepts of upper and lower almost β(τ1, τ2)-

continuous multifunctions. Moreover, several interesting characterizations of these

multifunctions are discussed.

Definition 3.2.1. A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be:

(1) upper almost β(τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open set V

of Y containing F (x), there exists a τ1τ2-β-open set U containing x such that

F (U) ⊆ σ1-Int(σ2-Cl(V ));

(2) lower almost β(τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open set V
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of Y such that F (x)∩V 6= ∅, there exists a τ1τ2-β-open set U containing x such

that F (z) ∩ σ1-Int(σ2-Cl(V )) 6= ∅ for every z ∈ U ;

(3) upper almost (resp. lower almost) β(τ1, τ2)-continuous if F has this property at

each point of X .

Remark. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following implication

holds:

upper β(τ1, τ2)-continuity⇒ upper almost β(τ1, τ2)-continuity.

The converse of the implication is not true in general. We give an example for the

implication as follows.

Example 3.2.2. Let X = {a, b, c} with topologies τ1 = {∅, {a}, {b}, {a, b}, X} and

τ2 = {∅, {a}, {a, b}, X}. Let Y = {1, 2, 3, 4, 5} with topologies

σ1 = {∅, {1}, {2, 3, 4, 5}, Y } and σ2 = {∅, {2}, {3}, {2, 3}, {2, 3, 4, 5}, Y }.

A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is defined as follow:

F (a) = {1}, F (b) = {2, 3}, F (c) = {4, 5}. Then, F is upper almost β(τ1, τ2)-

continuous, but F is not upper β(τ1, τ2)-continuous.

Remark. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following implication

holds:

lower β(τ1, τ2)-continuity⇒ lower almost β(τ1, τ2)-continuity.

The converse of the implication is not true in general. We give an example for the

implication as follows.

Example 3.2.3. Let X = {a, b} with topologies τ1 = {∅, {b}, X} and

τ2 = {∅, X}. Let Y = {1, 2, 3, 4} with topologies σ1 = {∅, {1, 2}, Y } and σ2 =

{∅, {1}, {1, 2}, Y }. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is defined as follow:

F (a) = {1, 2}, F (b) = {3}. Then, F is lower almost β(τ1, τ2)-continuous, but F is

not lower β(τ1, τ2)-continuous.
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Theorem 3.2.4. A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is upper almost β(τ1, τ2)-

continuous at x ∈ X if and only if x ∈ τ1τ2-βInt(F+(σ1σ2-sCl(V ))) for every σ1σ2-

open set V of Y containing F (x).

Proof. Let V be a σ1σ2-open set containing F (x). Then, there exists a τ1τ2-β-open

set U containing x such that F (U) ⊆ σ1σ2-sCl(V ). Then, x ∈ U ⊆ F+(σ1σ2-sCl(V )).

Therefore, x ∈ τ1τ2-βInt(F+(σ1σ2-sCl(V ))).

Conversely, let V be a σ1σ2-open set containing F (x). Moreover, we have x ∈

τ1τ2-βInt(F+(σ1σ2-sCl(V ))). There exists a τ1τ2-β-open set G containing x such that

G ⊆ F+(σ1σ2-sCl(V )), and hence F (G) ⊆ σ1σ2-sCl(V ) = σ1-Int(σ2-Cl(V )). This

shows that F is upper almost β(τ1, τ2)-continuous at x.

Theorem 3.2.5. A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is lower almost β(τ1, τ2)-

continuous at x ∈ X if and only if x ∈ τ1τ2-βInt(F−(σ1σ2-sCl(V ))) for every σ1σ2-

open set V of Y such that F (x) ∩ V 6= ∅.

Proof. The proof is similar to that of Theorem 3.2.4.

Theorem 3.2.6. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following

properties are equivalent:

(1) F is upper almost β(τ1, τ2)-continuous;

(2) for each x ∈ X and each σ1σ2-open set V of Y containing F (x), there exists a

τ1τ2-β-open set U of X containing x such that F (U) ⊆ σ1σ2-sCl(V );

(3) F+(V ) ⊆ τ1τ2-βInt(F+(σ1σ2-sCl(V ))) for every σ1σ2-open set V of Y ;

(4) τ1τ2-βCl(F−(σ1σ2-sInt(K))) ⊆ F−(K) for every σ1σ2-closed set K of Y .

Proof. (1)⇒ (2): The proof follows from Definition 3.2.1(1).

(2)⇒ (3): Let V be a σ1σ2-open set of Y and x ∈ F+(V ). Then, F (x) ⊆ V and

there exists a τ1τ2-β-open set U containing x such that F (U) ⊆ σ1-Int(σ2-Cl(V )) =

σ1σ2-sCl(V ). Therefore, we have x ∈ U ⊆ F+(σ1σ2-sCl(V )). Thus,

x ∈ τ1τ2-βInt(F+(σ1σ2-sCl(V ))).
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Consequently, we obtain F+(V ) ⊆ τ1τ2-βInt(F+(σ1σ2-sCl(V ))).

(3) ⇒ (4): Let K be a σ1σ2-closed set of Y . Since Y − K is σ1σ2-open, by

Lemma 2.2.4(5) we obtain

X − F−(K) = F+(Y −K)

⊆ τ1τ2-βInt(F+(σ1σ2-sCl(Y −K)))

= τ1τ2-βInt(F+(Y − σ1σ2-sInt(K)))

= τ1τ2-βInt(X − F−(σ1σ2-sInt(K)))

= X − τ1τ2-βCl(F−(σ1σ2-sInt(K))).

Therefore, we obtain τ1τ2-βCl(F−(σ1σ2-sInt(K))) ⊆ F−(K).

(4)⇒ (3): The proof is obvious.

(3)⇒ (1): Let x ∈ X and V be a σ1σ2-open set containing F (x). Then, we have

x ∈ τ1τ2-βInt(F+(σ1σ2-sCl(V ))). Therefore, by Theorem 3.2.4, F is upper almost

β(τ1, τ2)-continuous at x.

Theorem 3.2.7. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following

properties are equivalent:

(1) F is lower almost β(τ1, τ2)-continuous;

(2) for each x ∈ X and each σ1σ2-open set V containing F (x), there exists a

τ1τ2-β-open set U containing x such that F (z) ∩ σ1σ2-sCl(V ) for each z ∈ U ;

(3) F−(V ) ⊆ τ1τ2-βInt(F−(σ1σ2-sCl(V ))) for every σ1σ2-open set V ;

(4) τ1τ2-βCl(F+(σ1σ2-sInt(K))) ⊆ F+(K) for every σ1σ2-closed set K.

Proof. By utilizing Theorem 3.2.5, this can be similar to Theorem 3.2.6.

Theorem 3.2.8. If a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is lower almost

β(τ1, τ2)-continuous, then βClF~ : (X, τ1, τ2) → (Y, σ1, σ2) is lower almost β(τ1, τ2)-

continuous.

Proof. Suppose that F is lower almost β(τ1, τ2)-continuous. Let x ∈ X and V be

a σ1σ2-open set of Y such that βClF~(x) ∩ V 6= ∅. By Lemma 3.1.17, we have
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x ∈ βClF−~ (V ) = F−(V ). Since F is lower almost β(τ1, τ2)-continuous, there exists

a τ1τ2-β-open set U containing x such that

F (z) ∩ σ1-Int(σ2-Cl(V ) 6= ∅ for each z ∈ U.

Therefore, σ1σ2-βCl(F (z)) ∩ σ1-Int(σ2-Cl(V ) 6= ∅ for each z ∈ U , and hence

βClF~(z) ∩ σ1-Int(σ2-Cl(V ) 6= ∅ for each z ∈ U.

This shows that βClF~ is lower almost β(τ1, τ2)-continuous.

Definition 3.2.9. Let (X, τ1, τ2) be a bitopological space. The β-frontier of a subset

A of X , denoted by τ1τ2-βFr(A), is defined by

τ1τ2-βFr(A) = τ1τ2-βCl(A) ∩ τ1τ2-βCl(X − A)

= τ1τ2-βCl(A)− τ1τ2-βInt(A).

Theorem 3.2.10. The set of all points x of X at which a multifunction

F : (X, τ1, τ2) → (Y, σ1, σ2) is not upper β(τ1, τ2)-continuous is identical with the

union of the τ1τ2-β-frontier of the upper inverse images of σ1σ2-open sets containing

F (x).

Proof. Let x ∈ X at which F is not upper β(τ1, τ2)-continuous. There exists a σ1σ2-

open set V containing F (x) such that U ∩ (X − F+(V )) 6= ∅ for every τ1τ2-β-open

set U containing x. Then, we have

x ∈ τ1τ2-βCl(X − F+(V )) = X − τ1τ2-βInt(F+(V ))

and x ∈ F+(V ). Hence, we obtain x ∈ τ1τ2-βFr(F+(V )).

Conversely, we suppose that V is a σ1σ2-open set containing F (x) such that x ∈

τ1τ2-βFr(F+(V )). If F is upper β(τ1, τ2)-continuous at x, there exists a τ1τ2-β-open

set U containing x such that U ⊆ F+(V ). This implies that x ∈ τ1τ2-βInt(F+(V )).

This is a contradiction; hence, F is not upper β(τ1, τ2)-continuous.

Theorem 3.2.11. The set of all points x of X at which a multifunction

F : (X, τ1, τ2) → (Y, σ1, σ2) is not lower β(τ1, τ2)-continuous is identical with the
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union of the τ1τ2-β-frontier of the lower inverse images of σ1σ2-open sets meeting

F (x).

Proof. The proof is similar to that of Theorem 3.2.10.



 

 

 

CHAPTER 4

WEAKLY β(τ1, τ2)-CONTINUOUS MULTIFUNCTIONS

4.1 Weakly β(τ1, τ2)-continuous multifunctions

In this section, we introduce and investigate the notions of upper and lower

weakly β(τ1, τ2)-continuous multifunctions. Furthermore, the relationships weak

β(τ1, τ2)-continuity and the other types of continuity are investigated.

Definition 4.1.1. A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be:

(1) upper weakly β(τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open set V

of Y containing F (x), there exists a τ1τ2-β-open set U containing x such that

F (U) ⊆ σ1σ2-Cl(V );

(2) lower weakly β(τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open set

V of Y such that F (x) ∩ V 6= ∅, there exists a τ1τ2-β-open set U containing x

such that F (z) ∩ σ1σ2-Cl(V ) 6= ∅ for every z ∈ U ;

(3) upper weakly (resp. lower weakly) β(τ1, τ2)-continuous if F has this property at

each point of X .

Theorem 4.1.2. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is upper weakly

β(τ1, τ2)-continuous at x ∈ X if and only if x ∈ τ1τ2-βInt(F+(σ1σ2Cl(V ))) for

every σ1σ2-open set V of Y containing F (x).

Proof. Let V be a σ1σ2-open set containing F (x). Therefore, there exists a τ1τ2-

β-open set U containing x such that F (U) ⊆ σ1σ2-Cl(V ). Therefore, x ∈ U ⊆

F+(σ1σ2-Cl(V )). Since U is τ1τ2-β-open, we have x ∈ τ1τ2-βInt(F+(σ1σ2-Cl(V ))).

Conversely, let V be a σ1σ2-open set of Y containing F (x), and we have x ∈

τ1τ2-βInt(F+(σ1σ2-Cl(V ))). There exists a τ1τ2-β-open set G of X containing x such

that G ⊆ F+(σ1σ2-Cl(V )); hence, F (G) ⊆ σ1σ2-Cl(V ). This shows that F is upper

weakly β(τ1, τ2)-continuous at x.
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Theorem 4.1.3. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is lower weakly

β(τ1, τ2)-continuous at x ∈ X if and only if x ∈ τ1τ2-βInt(F−(σ1σ2Cl(V ))) for

every σ1σ2-open set V of Y such that F (x) ∩ V 6= ∅.

Proof. The proof is similar to that of Theorem 4.1.2.

Remark. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following implication

hold:

upper (τ1, τ2)-β-continuity

⇓

upper almost (τ1, τ2)-β-continuity

⇓

upper weak (τ1, τ2)-β-continuity.

The converse of the implications are not true in general. We give an example for the

implication as follows.

Example 4.1.4. Let X = {1, 2, 3} with topologies τ1 = {∅, {1}, {2}, {1, 2}, X} and

τ2 = {∅, {2, 3}, X}. Let Y = {a, b, c} with topologies

σ1 = {∅, {a}, {c}, {a, c}, Y } and σ2 = {∅, {a}, {b}, {c}, {a, c}, {a, b}, {b, c}, Y }.

A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is defined as follow: F (1) = {b},

F (2) = {c}, F (3) = {a, b}. Then, F is upper(lower) weakly β(τ1, τ2)-continuous, but

F is not upper almost β(τ1, τ2)-continuous and upper β(τ1, τ2)-continuous.

The following theorems give some characterizations of upper and lower weakly

β(τ1, τ2)-continuous multifunctions.

Theorem 4.1.5. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following

properties are equivalent:

(1) F is upper weakly β(τ1, τ2)-continuous;

(2) F+(V ) ⊆ τ1τ2-βInt(F+(σ1σ2Cl(V ))) for every σ1σ2-open set V of Y ;

(3) τ1τ2-βCl(F−(σ1σ2-Int(K))))) ⊆ F−(K) for every σ1σ2-closed set K of Y ;
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(4) τ1τ2-βCl(F−(σ1σ2-Int(σ1σ2-Cl(B)))))) ⊆ F−(σ1σ2-Cl(B)) for every subset B

of Y ;

(5) F+(σ1σ2-Int(B)) ⊆ τ1τ2-βInt(F+(σ1σ2-Cl(σ1σ2- Int(B)))) for every subset B

of Y ;

(6) F+(V ) ⊆ τ1τ2-βInt(F+(σ1σ2-Cl(V ))) for every σ1σ2-open set V of Y ;

(7) τ1τ2-βCl(F−(V )) ⊆ F−(σ1σ2-Cl(V )) for every σ1σ2-open set V of Y .

Proof. (1)⇒ (2): Let V be a σ1σ2-open set of Y and x ∈ F+(V ). Then, F (x) ⊆ V

and by Theorem 4.1.2, x ∈ τ1τ2-βInt(F+(σ1σ2Cl(V ))). Therefore, we obtain F+(V ) ⊆

τ1τ2-βInt(F+(σ1σ2Cl(V ))).

(2)⇒ (3): Let K be a σ1σ2-closed set of Y . Therefore, Y −K is a σ1σ2-opened

set. By (2),

X − F−(K) = F+(Y −K)

⊆ τ1τ2-βInt(F+(σ1σ2Cl(Y −K)))

= X − τ1τ2-βCl(F−(σ1σ2Int(K))).

Consequently, we obtain τ1τ2-βCl(F−(σ1σ2Int(K))) ⊆ F−(K).

(3)⇒ (4): Let B be a subset of Y . Then, σ1σ2-Cl(B) is σ1σ2-closed in Y . Thus,

we obtain τ1τ2-βCl(F−(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ F−(σ1σ2-Cl(B)).

(4)⇒ (5): Let B be a subset of Y . By (4), we obtain

F+(σ1σ2-Int(B)) = X − F−(σ1σ2-Cl(Y −B))

⊆ X − τ1τ2-βCl(F−(σ1σ2-Int(σ1σ2-Cl(Y −B))))

= τ1τ2-βInt(F+(σ1σ2-Cl(σ1σ2-Int(B)))).

(5)⇒ (6): The proof is obvious.

(6)⇒ (7): Let V be a σ1σ2-open set of Y . By (6), we have

τ1τ2-βCl(F−(V )) ⊆ τ1τ2-βCl(F−(σ1σ2-Int(σ1σ2-Cl(V ))))

= τ1τ2-βCl(X − F+(Y − σ1σ2-Int(σ1σ2-Cl(V ))))
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= X − τ1τ2-βInt(F+(Y − σ1σ2-Int(σ1σ2-Cl(V ))))

= X − τ1τ2-βInt(F+(σ1σ2-Cl(Y − σ1σ2-Cl(V ))))

⊆ X − F+(Y − σ1σ2-Cl(V ))

= F−(σ1σ2-Cl(V )).

Consequently, we obtain τ1τ2-βCl(F−(V )) ⊆ F−(σ1σ2-Cl(V )).

(7) ⇒ (1): Let x ∈ X and V be a σ1σ2-open set containing F (x). By (7), we

have

x ∈ F+(V ) ⊆ F+(σ1σ2-Int(σ1σ2-Cl(V )))

= X − F−(σ1σ2-Cl(Y − σ1σ2-Cl(V )))

⊆ X − τ1τ2-βCl(F−(Y − σ1σ2-Cl(V )))

= τ1τ2-βInt(F+(σ1σ2-Cl(V ))).

Therefore, x ∈ τ1τ2-βInt(F+(σ1σ2-Cl(V ))), and hence F is upper weakly β(τ1, τ2)-

continuous by Theorem 4.1.2.

Theorem 4.1.6. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following

properties are equivalent:

(1) F is lower weakly β(τ1, τ2)-continuous;

(2) F−(V ) ⊆ τ1τ2-βInt(F−(σ1σ2Cl(V ))) for every σ1σ2-open set V of Y ;

(3) τ1τ2-βCl(F+(σ1σ2-Int(K))))) ⊆ F+(K) for every σ1σ2-closed set K of Y ;

(4) τ1τ2-βCl(F+(σ1σ2-Int(σ1σ2-Cl(B)))))) ⊆ F+(σ1σ2-Cl(B)) for every subset B

of Y ;

(5) F−(σ1σ2-Int(B)) ⊆ τ1τ2-βCl(F−(σ1σ2-Cl(σ1σ2- Int(B)))) for every subset B of

Y ;

(6) F−(V ) ⊆ τ1τ2-βInt(F−(σ1σ2-Cl(V ))) for every σ1σ2-open set V of Y ;

(7) τ1τ2-βCl(F+(V )) ⊆ F+(σ1σ2-Cl(V )) for every σ1σ2-open set V of Y .

Proof. The proof is similar to that of Theorem 4.1.5.
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Definition 4.1.7. Let A be a subset of a bitopological space (X, τ1, τ2). A point x ∈ X

is called τ1τ2-θ-cluster point of A if τ1τ2-Cl(U) ∩ A 6= ∅ for every τ1τ2-open set U

containing x. The set of all τ1τ2-θ-cluster point of A is called τ1τ2-θ-closure of A and

is denoted by τ1τ2-Clθ(A).

A subset A of X is said to be τ1τ2-θ-closed if A = τ1τ2-Clθ(A). The complement

of a τ1τ2-θ-closed set is said to be τ1τ2-θ-open. The union of all τ1τ2-θ-open sets

contained in A is called τ1τ2-θ-interior of A and is denoted by τ1τ2-Intθ(A).

Lemma 4.1.8. For a subset A of a bitopological space (X, τ1, τ2), the following

properties hold:

(1) If A is τ2τ2-open in X , then τ1τ2-Cl(A) = τ1τ2- Clθ(A).

(2) τ1τ2-Clθ(A) is τ1τ2-closed in X .

Proof. (1) In general, this holds that τ1τ2-Cl(A) ⊆ τ1τ2-Clθ(A). Suppose that

x 6∈ τ1τ2-Cl(A). Then, there exists a τ1τ2-open set U containing x such that U∩A = ∅;

hence τ1τ2-Cl(U) ∩ A = ∅. This shows that x 6∈ τ1τ2-Clθ(A). Therefore, we obtain

τ1τ2-Clθ(A) ⊆ τ1τ2-Cl(A). Consequently, τ1τ2-Cl(A) = τ1τ2-Clθ(A).

(2) Let x ∈ X − τ1τ2-Clθ(A). Then, x 6∈ τ1τ2-Clθ(A). There exists a τ1τ2-open set

Ux containing x such that τ1τ2-Cl(Ux) ∩ A = ∅. Then, we have τ1τ2-Clθ(A) ∩ Ux =

∅ and so x ∈ Ux ⊆ X − τ1τ2-Clθ(A). Therefore, we obtain X − τ1τ2-Clθ(A) =

∪x∈X−τ1τ2-Clθ(A)Ux. This shows that τ1τ2-Clθ(A) is τ1τ2-closed.

Definition 4.1.9. A subset A of a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)r-

closed (resp. (τ1, τ2)s-open, (τ1, τ2)p-open, (τ1, τ2)β-open) if A = τ1τ2-Cl(τ1τ2-Int(A))

(resp. A ⊆ τ1τ2-Cl(τ1τ2-Int(A)), A ⊆ τ1τ2-Int(τ1τ2-Cl(A)),

A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A))))

Theorem 4.1.10. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following

properties are equivalent:

(1) F is upper weakly β(τ1, τ2)-continuous;

(2) τ1τ2-βCl(F−(σ1σ2-Int(σ1σ2-Clθ(B)))) ⊆ F−(σ1σ2-Clθ(B)) for every subset B

of Y ;



 

 

 
32

(3) τ1τ2-βCl(F−(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ F−(σ1σ2-Clθ(B)) for every subset B of

Y ;

(4) τ1τ2-βCl(F−(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F−(σ1σ2-Cl(V )) for every σ1σ2-open

set V of Y ;

(5) τ1τ2-βCl(F−(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F−(σ1σ2-Cl(V )) for every (σ1, σ2)p-

open set V of Y ;

(6) τ1τ2-βCl(F−(σ1σ2-Int(K))) ⊆ F−(K) for every (σ1, σ2)r-closed set K of Y ;

(7) τ1τ2-βCl(F−(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F−(σ1σ2-Cl(V )) for every (σ1, σ2)β-

open set V of Y ;

(8) τ1τ2-βCl(F−(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F−(σ1σ2-Cl(V )) for every (σ1, σ2)s-

open set V of Y .

Proof. (1)⇒ (2): Let B be any subset of Y . Then, σ1σ2-Clθ(B) is σ1σ2-closed in Y .

Therefore, by Theorem 4.1.5(3) we obtain

τ1τ2-βCl(F−(σ1σ2-Int(σ1σ2-Clθ(B)))) ⊆ F−(σ1σ2-Clθ(B)).

(2) ⇒ (3): This is obvious since σ1σ2-Cl(B) ⊆ σ1σ2-Clθ(B) for every subset B

of Y .

(3) ⇒ (4): This is obvious since σ1σ2-Cl(V ) = σ1σ2-Clθ(V ) for every σ1σ2-open

set V of Y .

(4)⇒ (5): Let V be a (σ1, σ2)p-open set of Y . Then, we have

V ⊆ σ1σ2-Int(σ1σ2-Cl(V )), and hence

σ1σ2-Cl(V ) = σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(V ))).

Now, put G = σ1σ2-Int(σ1σ2-Cl(V )), then G is σ1σ2-open in Y and

σ1σ2-Cl(G) = σ1σ2-Cl(V ). Therefore, by (4) we have

τ1τ2-βCl(F−(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F−(σ1σ2-Cl(V )).
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(5)⇒ (6): Let K be any (σ1, σ2)r-closed set of Y . Then, we have σ1σ2-Int(K) is

(σ1, σ2)p-open in Y and by (5), we obtain

τ1τ2-βCl(F−(σ1σ2-Int(K))) = τ1τ2-βCl(F−(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(K)))))

⊆ F−(σ1σ2-Cl(σ1σ2-Int(K))) = F−(K).

(6)⇒ (7): Let V be any (σ1, σ2)β-open set of Y . Then, we have

V ⊆ σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(V ))).

Since σ1σ2-Cl(V ) is (σ1, σ2)r-closed in Y , by (6)

τ1τ2-βCl(F−(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F−(σ1σ2-Cl(V )).

(7)⇒ (8): This is obvious since every (σ1, σ2)s-open set is (σ1, σ2)β-open.

(8)⇒ (1): Let V be any σ1σ2-open set of Y . Since V is (σ1, σ2)s-open set in Y ,

by (8) we have

τ1τ2-βCl(F−(V )) ⊆ τ1τ2-βCl(F−(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F−(σ1σ2-Cl(V )).

By Theorem 4.1.5, we obtain F is upper weakly (τ1, τ2)-β-continuous.

Theorem 4.1.11. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following

properties are equivalent:

(1) F is lower weakly β(τ1, τ2)-continuous;

(2) τ1τ2-βCl(F+(σ1σ2-Int(σ1σ2-Clθ(B)))) ⊆ F+(σ1σ2-Clθ(B)) for every subset B

of Y ;

(3) τ1τ2-βCl(F+(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ F+(σ1σ2-Clθ(B)) for every subset B of

Y ;

(4) τ1τ2-βCl(F+(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F+(σ1σ2-Cl(V )) for every σ1σ2-open

set V of Y ;

(5) τ1τ2-βCl(F+(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F+(σ1σ2-Cl(V )) for every (σ1, σ2)p-

open set V of Y ;
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(6) τ1τ2-βCl(F+(σ1σ2-Int(K))) ⊆ F+(K) for every (σ1, σ2)r-closed set K of Y ;

(7) τ1τ2-βCl(F+(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F+(σ1σ2-Cl(V )) for every (σ1, σ2)β-

open set V of Y ;

(8) τ1τ2-βCl(F+(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F+(σ1σ2-Cl(V )) for every (σ1, σ2)s-

open set V of Y .

Proof. The proof is similar to that of Theorem 4.1.10.



 

 

 

CHAPTER 5

CONCLUSIONS

5.1 Conclusions

The purposes of this thesis are to introduce the notions of β(τ1, τ2)-continuous

multifunctions, almost β(τ1, τ2)-continuous multifunctions, and weakly β(τ1, τ2)-

continuous multifunctions; moreover, some characterizations of these multifunctions

are obtained. The results are as follows:

1. A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be:

(1) upper β(τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open

set V of Y containing F (x), there exists a τ1τ2-β-open set U containing x such that

F (U) ⊆ V ;

(2)lower β(τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open set

V of Y such that F (x) ∩ V 6= ∅, there exists a τ1τ2-β-open set U containing x such

that F (z) ∩ V 6= ∅ for every z ∈ U ;

(3) upper (resp. lower) β(τ1, τ2)-continuous if F has this property at each

point of X .

From the above definition, the following theorems are derived:

1.1 A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is upper β(τ1, τ2)-

continuous at x ∈ X if and only if x ∈ τ1τ2-βInt(F+(V )) for every

σ1σ2-open set V of Y containing F (x).

1.2 A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is lower

β(τ1, τ2)-continuous at x ∈ X if and only if x ∈ τ1τ2-βInt(F−(V )) for every σ1σ2-

open set V of Y such that F (x) ∩ V 6= ∅.

1.3 For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following

properties are equivalent:

(1) F is upper β(τ1, τ2)-continuous;

(2) F+(V ) is τ1τ2-β-open in X for every σ1σ2-open set V of Y ;

(3) F−(K) is τ1τ2-β-closed in X for every σ1σ2-closed set K of Y ;

(4) τ1τ2-βCl(F−(B)) ⊆ F−(σ1σ2-Cl(B)) for every subset B of Y ;
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(5) τ1-Int(τ2-Cl(τ1-Int(F−(B)))) ⊆ F−(σ1σ2-Cl(B)) for every subset B.

1.4 For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following

properties are equivalent:

(1) F is lower β(τ1, τ2)-continuous;

(2) F−(V ) is τ1τ2-β-open in X for every σ1σ2-open set V of Y ;

(3) F+(K) is τ1τ2-β-closed in X for every σ1σ2-closed set K of Y ;

(4) τ1τ2-βCl(F+(B)) ⊆ F+(σ1σ2-Cl(B)) for every subset B of Y ;

(5) τ1-Int(τ2-Cl(τ1-Int(F+(B)))) ⊆ F+(σ1σ2-Cl(B)) for every subset B.

2. A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be:

(1) upper almost β(τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-

open set V of Y containing F (x), there exists a τ1τ2-β-open set U containing x such

that F (U) ⊆ σ1-Int(σ2-Cl(V ));

(2) lower almost β(τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-

open set V of Y such that F (x) ∩ V 6= ∅, there exists a τ1τ2-β-open set U containing

x such that F (z) ∩ σ1-Int(σ2-Cl(V )) 6= ∅ for every z ∈ U ;

(3) upper almost (resp. lower almost) β(τ1, τ2)-continuous if F has this

property at each point of X .

From the above definition, the following theorems are derived:

2.1 A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is upper almost β(τ1, τ2)-

continuous at x ∈ X if and only if x ∈ τ1τ2-βInt(F+(σ1σ2-sCl(V ))) for every

σ1σ2-open set V of Y containing F (x).

2.2 A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is lower almost β(τ1, τ2)-

continuous at x ∈ X if and only if x ∈ τ1τ2-βInt(F−(σ1σ2-sCl(V ))) for every

σ1σ2-open set V of Y such that F (x) ∩ V 6= ∅.

2.3 For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following

properties are equivalent:

(1) F is upper almost β(τ1, τ2)-continuous;

(2) for each x ∈ X and each σ1σ2-open set V of Y containing F (x),

there exists a τ1τ2-β-open set U of X containing x such that F (U) ⊆ σ1σ2-sCl(V );

(3) F+(V ) ⊆ τ1τ2-βInt(F+(σ1σ2-sCl(V ))) for every σ1σ2-open set V

of Y ;
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(4) τ1τ2-βCl(F−(σ1σ2-sInt(K))) ⊆ F−(K) for every σ1σ2-closed set K.

2.4 For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following

properties are equivalent:

(1) F is lower almost β(τ1, τ2)-continuous;

(2) for each x ∈ X and each σ1σ2-open set V containing F (x), there

exists a τ1τ2-β-open set U containing x such that F (z)∩ σ1σ2-sCl(V ) for each z ∈ U ;

(3) F−(V ) ⊆ τ1τ2-βInt(F−(σ1σ2-sCl(V ))) for every σ1σ2-open set V ;

(4) τ1τ2-βCl(F+(σ1σ2-sInt(K))) ⊆ F+(K) for every σ1σ2-closed set K.

2.5 If a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is lower almost β(τ1, τ2)-

continuous, then βClF~ : (X, τ1, τ2)→ (Y, σ1, σ2) is lower almost β(τ1, τ2)-continuous.

3. A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be:

(1) upper weakly β(τ1, τ2)-continuous at a point x ∈ X if for each

σ1σ2-open set V of Y containing F (x), there exists a τ1τ2-beta-open set U containing

x such that F (U) ⊆ σ1σ2-Cl(V );

(2) lower weakly β(τ1, τ2)-continuous at a point x ∈ X if for each

σ1σ2-open set V of Y such that F (x) ∩ V 6= ∅, there exists a τ1τ2-β-open set U

containing x such that F (z) ∩ σ1σ2-Cl(V ) 6= ∅ for every z ∈ U ;

(3) upper weakly (resp. lower weakly) β(τ1, τ2)-continuous if F has

this property at each point of X .

3.1 A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is upper weakly β(τ1, τ2)-

continuous at x ∈ X if and only if x ∈ τ1τ2-βInt(F+(σ1σ2Cl(V ))) for every σ1σ2-open

set V containing F (x).

3.2 A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is lower weakly β(τ1, τ2)-

continuous at x ∈ X if and only if x ∈ τ1τ2-βInt(F−(σ1σ2Cl(V ))) for every σ1σ2-open

set V such that F (x) ∩ V 6= ∅.

3.3 For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following

properties are equivalent:

(1) F is upper weakly β(τ1, τ2)-continuous;

(2) F+(V ) ⊆ τ1τ2-βInt(F+(σ1σ2Cl(V ))) for every σ1σ2-open set V ;

(3) τ1τ2-βCl(F−(σ1σ2-Int(K))))) ⊆ F−(K) for every σ1σ2-closed set

K;
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(4) τ1τ2-βCl(F−(σ1σ2-Int(σ1σ2-Cl(B)))))) ⊆ F−(σ1σ2-Cl(B)) for every

subset B of Y ;

(5) F+(σ1σ2-Int(B)) ⊆ τ1τ2-βInt(F+(σ1σ2-Cl(σ1σ2- Int(B)))) for every

subset B of Y ;

(6) F+(V ) ⊆ τ1τ2-βInt(F+(σ1σ2-Cl(V ))) for every σ1σ2-open set V of

Y ;

(7) τ1τ2-βCl(F−(V )) ⊆ F−(σ1σ2-Cl(V )) for every σ1σ2-open set V of

Y .

3.4 For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following

properties are equivalent:

(1) F is lower weakly β(τ1, τ2)-continuous;

(2) F−(V ) ⊆ τ1τ2-βInt(F−(σ1σ2Cl(V ))) for every σ1σ2-open set V of

Y ;

(3) τ1τ2-βCl(F+(σ1σ2-Int(K))))) ⊆ F+(K) for every σ1σ2-closed set

K;

(4) τ1τ2-βCl(F+(σ1σ2-Int(σ1σ2-Cl(B)))))) ⊆ F+(σ1σ2-Cl(B)) for every

subset B of Y ;

(5) F−(σ1σ2-Int(B)) ⊆ τ1τ2-βCl(F−(σ1σ2-Cl(σ1σ2- Int(B)))) for every

subset B;

(6) F−(V ) ⊆ τ1τ2-βInt(F−(σ1σ2-Cl(V ))) for every σ1σ2-open set V ;

(7) τ1τ2-βCl(F+(V )) ⊆ F+(σ1σ2-Cl(V )) for every σ1σ2-open set V .

3.5 For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following

implication hold:

upper (τ1, τ2)-β-continuity

⇓

upper almost (τ1, τ2)-β-continuity

⇓

upper weak (τ1, τ2)-β-continuity.

The converse of the implications are not true in general.
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5.2 Recommendations

To this end, even though we have found several characterizations presented in

this thesis, there is another type of continuity that interests us to investigate. The

multifunction is defined as:

A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be:

(1) upper (τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open set V of Y

containing F (x), there exists a τ1τ2-open set U containing x such that F (U) ⊆ V ;

(2) lower (τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open set V of Y

such that F (x) ∩ V 6= ∅, there exists a τ1τ2-open set U containing x such that

F (z) ∩ V 6= ∅ for every z ∈ U ;

(3) upper (resp. lower) (τ1, τ2)-continuous if F has this property at each point of

X .

Therefore, there are many interesting questions involving several characterizations

of this multifunction yet to be answered. Moreover, the relationships between (τ1, τ2)-

continuity and β(τ1, τ2)-continuity are noticeable to study in the future. Besides, The

condition, which make the converse of the relationships true in general, is a further

interesting study.
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