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CHAPTER 1

INTRODUCTION

1.1 Background

In 1933, Kuratowski [9] and Vaidynathaswamy [14] introduced the concept of an

ideal topological space. They also studied concept of localization theory. An ideal is

a nonempty collection of subsets which closed under heredity and finite union.

In 2002, Császár [3] introduced the concept of generalized topological space (briefly

GTS), that consisting of X and structure µ on X (briefly GT) such that µ is closed

under arbitrary unions. Then (X,µ) is called a generalized topological space. He also

introduced closure (cµ) and interior (iµ) in generalized topological spaces.

In 2008, Ekici and Noiri [5] introduced the concepts of connectedness in ideal

topological spaces. He also studied the notions of separation axiom, connectedness

and compactness.

In 2016, Modak [12] introduced the concepts of ideal generalized topological

spaces. He also introduced the notions of the generalized closed sets in ideal

generalized topological spaces. He obtained some properties of generalized closed sets

in topological space, generalized topological space and ideal generalized topological

space.

In 2018, Ekici [6] introduced the concept of a new type of open sets in ideal

topological spaces called ξ-I-open sets by used the concepts of pre-I-open sets, semi-

I-open sets and C∗I -sets in ideal topological spaces.

For our purposes, we introduce the notion of connectedness in ideal generalized

topological space. Moreover, we study some properties of connected sets, separated

axioms, ξ-I-µ-open sets, ξ-I-µ-closed sets in ideal generalized topological spaces. We

devide our work into 5 chapters, as follows:

In the first chapter, the introduction was presented.

In chapter 2, we present some basic concept and result of ideal generalized

topological spaces without proof which are needed in the subsequent chapters.

In chapter 3, we introduce the concept of connectedness in ideal generalized
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topological space. We also study the basic properties of separated axioms and

components in ideal generalized topological spaces.

In chapter 4, we introduced the concepts of ξ-I-µ-open sets and ξ-I-µ-closed

sets in ideal generalized topological spaces. We also study the basic properties of

strongly β-I-µ-open sets and semi∗-I-µ-open sets.

In the last chapter, we summarize result of our study.



 

 

 

CHAPTER 2

PRELIMINARIES

In this chapter, we will give some definitions, notations, dealing with some preliminaries

and some useful results that will be duplicated in later chapter.

2.1 Ideal in topological spaces

This section discusses some properties of ideal in topological spaces.

Definition 2.1.1. [1] Let X be a nonempty set. A topology τ on X is a collection of

subsets of X , each called an open set, such that

(1) ∅ and X are open sets.

(2) τ is closed under arbitrary unions, i.e. if Ui ∈ τ for i ∈ I then
⋃
i∈I
Ui ∈ τ .

(3) τ is closed under finite intersection, i.e. if U1, U2 ∈ τ then U1 ∩ U2 ∈ τ .

The set X together with a topology τ on X is called a topological space and

denoted by (X, τ).

Definition 2.1.2. [7] A nonempty collection I of subsets of a set X is said to be an

ideal on X , if it satisfies the following two conditions:

(1) A ∈ I and B ⊆ A implies B ∈ I (heredity).

(2) A ∈ I and B ∈ I implies A ∪B ∈ I (finite additivity).

For the ideal I of X , the triple (X, τ, I) is called an ideal topological space.

Definition 2.1.3. [7] Let (X, τ, I) be an ideal topological space and P (X) is the set

of all subsets of X , a set operator (·)∗ : P (X)→ P (X), called a local function with

respect to τ and I , is defined as follows : for A ⊆ X

A∗(I, τ) = {x ∈ X : U ∩ A /∈ I,∀U ∈ τ(x)}

where τ(x) = {U ∈ τ : x ∈ U}. We will simply write A∗ for A∗(τ, I).

Theorem 2.1.4. [7] Let (X, τ, I) be an ideal topological spaces. If A and B are

subsets of X and I, J are ideals on X . Then

3
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(1) A ⊆ B implies A∗ ⊆ B∗.

(2) J ⊆ I implies A∗(τ, I) ⊆ A∗(τ, J).

(3) A∗ = cl(A∗) ⊆ cl(A) (A∗ is closed subset of cl(A)).

(4) (A∗)∗ ⊆ A∗.

(5) (A ∪B)∗ = A∗ ∪B∗.

(6) A∗ \B∗ = (A \B)∗ \B∗ ⊆ (A \B)∗.

(7) U ∈ τ implies U ∩ A∗ = U ∩ (U ∩ A)∗ ⊆ (U ∩ A)∗.

(8) J ∈ I implies (A ∪ J)∗ = A∗ = (A \ J)∗

Definition 2.1.5. [5] Let (X, τ, I) be an ideal topological space. A Kuratowski closure

operator Cl∗ is defined by Cl∗(A) = A ∪ A∗, for A ⊆ X . We will denote by τ ∗(τ, I)

the topology generated by Cl∗, that is τ ∗(τ, I) = {U ⊆ X : Cl∗(X \ U) = X \ U}.

τ ∗(τ, I) is called ∗-topology structure which is finer than τ . We will simply write τ ∗

for τ ∗(τ, I).

The elements of τ ∗(τ, I) are called ∗-open and the complement of ∗-open sets are

called ∗-closed.

Definition 2.1.6. [1] If (X, τ) is a topological space, then a subfamily B ⊆ τ of the

open sets is called a base (for the open sets) of the topology if

x ∈ U ⊆ X , U is open implies that there exists B ∈ B with x ∈ B ⊆ U .

Theorem 2.1.7. [7] Let (X, τ, I) be an ideal topological space. The collection {V \J :

V ∈ τ, J ∈ I} is a basis for τ ∗.

Theorem 2.1.8. [5] If (X, τ, I) is an ideal topological space and A is a subset of X ,

then (A, τA, IA) is an ideal topological space, where τA is the relative topology on A

and IA = {A ∩ J : J ∈ I}.

Lemma 2.1.9. [5] Let (X, τ, I) be an ideal topological space and B ⊆ A ⊆ X . Then

B∗(τA, IA) = B∗(τ, I) ∩ A.

Lemma 2.1.10. [5] Let (X, τ, I) be an ideal topological space and B ⊆ A ⊆ X . Then

Cl∗A(B) = Cl∗(B) ∩ A.

Definition 2.1.11. [5] A subset A of an ideal topological space (X, τ, I) is said to be

∗-dense if Cl∗(A) = X .
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2.2 Connectedness in ideal topological spaces

This section discusses some properties of connectedness in ideal topological spaces.

Definition 2.2.1. [5] A topological space (X, τ) is said to be connected if X cannot

be written as the disjoint union of two nonempty open sets.

Definition 2.2.2. [5] A topological space (X, τ) is said to be hyperconnected if every

pair of nonempty open sets of X has nonempty intersection.

Definition 2.2.3. [5] An ideal topological space (X, τ, I) is call ∗-connected if X

cannot be written as the disjoint union of a nonempty open set and a nonempty ∗-open

set.

Definition 2.2.4. [5] An ideal topological space (X, τ, I) is called ∗-hyperconnected if

A is ∗-dense for every nonempty subset A of X .

Lemma 2.2.5. [5] Let (X, τ, I) be an ideal topological space. For each U ∈

τ ∗, (τ ∗)U = (τU)∗.

Definition 2.2.6. [5] Let (X, τ, I) be an ideal topological space. A,B ⊆ X are called

∗-separatedif Cl∗(A) ∩B = A ∩ Cl(B) = ∅.

Definition 2.2.7. [10] Let (X, τ, I) be an ideal topological space. A,B ⊆ X are called

∗-separated if A∗ ∩ Cl(B) = Cl(A) ∩B∗ = A ∩B = ∅.

Theorem 2.2.8. [5] Let (X, τ, I) be an ideal topological space. If A and B are ∗-

separated sets of X and A∪B ∈ τ , then A and B are open and ∗-open, respectively.

Definition 2.2.9. [5] A subset A of an ideal topological space (X, τ, I) is called

∗s-connected if A is not the union of two ∗-separated sets in (X, τ, I).

Theorem 2.2.10. [5] Let (X, τ, I) be an ideal topological space. If A is a ∗s-connected

set of X and H,G are ∗-separated sets of X with A ⊆ H ∪G, then either A ⊆ H or

A ⊆ G.

Theorem 2.2.11. [5] If A is a ∗s-connected set of an ideal topological space (X, τ, I)

and A ⊆ B ⊆ Cl∗(A), then B is ∗s-connected.
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Corollary 2.2.12. [5] If A is a ∗s-connected set of an ideal topological space (X, τ, I),

then Cl∗(A) is ∗s-connected.

Definition 2.2.13. [5] Let (X, τ, I) be an ideal topological space and x ∈ X . The

union of all ∗s-connected subsets of X containing x is called the ∗-component of X

containing x.

2.3 Ideal in generalized topological spaces

This section discusses some properties of ideal in generalized topological spaces.

Definition 2.3.1. [2] Let X be a nonempty set and µ ⊆ P (X). Then µ is called a

generalized topology (in short, GT) on X if

(1) ∅ ∈ µ.

(2) Gα ∈ µ for α ∈M 6= ∅ implies G =
⋃
α∈M

Gα ∈ µ.

The pair (X,µ) is called a generalized topological space (in short, GTS) on X .

The member of µ is called a µ-open set and the complement of a µ-open set is called

a µ-closed set.

Definition 2.3.2. [3] Let (X,µ) be a generalized topological space and A ⊆ X . cµ(A)

is the intersection of all µ-closed sets containing A, and iµ(A) is the union of all

µ-open sets contained in A.

Definition 2.3.3. [12] Let (X,µ) be a generalized topological space. A mapping

()∗µ : P (X)→ P (X) is defined as follows :

A∗µ(µ, I) = {x ∈ X : U ∩ A /∈ I,∀U ∈ µ(x)}

where µ(x) = {U ∈ µ : x ∈ U}.

The mapping is called the local function associated with the ideal I and generalized

topology µ.

We will simply write A∗µ for A∗µ(µ, I).

If I is an ideal on X , then (X,µ, I) is called an ideal generalized topological space.
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Remark 2.3.4. [12] Let (X,µ, I) be an ideal generalized topological space and A ⊆ X .

Then

(1) A∗µ(µ, {∅}) = cµ(A).

(2) A∗µ(µ, P (X)) = ∅.

(3) If A ∈ I , then A∗µ = ∅.

(4) Neither A ⊆ A∗µ nor A∗µ ⊆ A.

Theorem 2.3.5. [12] Let (X,µ, I) be an ideal generalized topological space. A,B are

subsets of X and H, J are ideals on X . Then

(1) (∅)∗µ = ∅.

(2) If A,B ⊆ X and A ⊆ B, A∗µ ⊆ B∗µ.

(3)A∗µ ⊆ cµ(A).

(4) (A∗µ)∗µ ⊆ cµ(A).

(5) A∗µ is a µ-closed set.

(6) (A∗µ)∗µ ⊆ A∗µ.

(7) J ⊆ H implies A∗µ(H) ⊆ A∗µ(J).

(8) U ∩ (U ∩ A)∗µ ⊆ U ∩ A∗µ, for all U ∈ µ.

(9) For J ∈ I, (A \ J)∗µ ⊆ A∗µ = (A ∪ J)∗µ.

Theorem 2.3.6. [4] Let (X,µ, I) be an ideal generalized topological space and A be

a subset of X . Then

(1) If A ∈ I , then A∗µ = X \Mµ where Mµ is the union of all µ-open sets in

generalized topological space (X,µ).

(2) If A is µ∗-closed, then A∗µ ⊆ A.

Definition 2.3.7. [12] Let (X,µ, I) be an ideal generalized topological space. The set

operator c∗µ is called a generalized ∗-closure and is defined as c∗µ(A) = A ∪ A∗µ,

for A ⊆ X . We will denoted by µ∗(µ, I) the generalized structure, generated by c∗µ

that is µ∗(µ, I) = {U ⊆ X : c∗µ(X \ U) = X \ U}. µ∗(µ, I) is called ∗-generalized

structure which is finer than µ. We will simply write µ∗ for µ∗(µ, I).

The element of µ∗(µ, I) are called µ∗-open and the complement of µ∗-open is called

µ∗-closed.

Theorem 2.3.8. [12] The operator c∗µ satisfies following conditions:



 

 

 
8

(1) A ⊆ c∗µ(A) for A ⊆ X .

(2) c∗µ(∅) = ∅ and c∗µ(X) = X .

(3) c∗µ(A) ⊆ c∗µ(B) if A ⊆ B ⊆ X .

(4) c∗µ(A) ∪ c∗µ(B) ⊆ c∗µ(A ∪B).

Remark. [12] If I = {∅}, then c∗µ(A) = cµ(A) for A ⊆ X .

Definition 2.3.9. [12] A subset A of an ideal generalized topological space (X,µ, I)

is said to be µ∗-dense in itself if A ⊆ A∗µ.

Definition 2.3.10. [2] Let (X,µ) be a generalized topological space. Then X is

µ-connected if X cannot be written as the disjoint union of two nonempty µ-open

sets.

Example 2.3.11. Let X = {a, b, c} and µ = {∅, {a}, {b}, {a, b}}.

Take A = {a} and B = {b}.

Then A ∩B = ∅ and A ∪B 6= X .

Thus the space (X,µ) is µ-connected

Lemma 2.3.12. [6] For A ⊆ X and A is a subset in ideal generalized topological

spaces. Then

(1) i∗µ(A) = X \ c∗µ(X \ A).

(2) c∗µ(A) = X \ i∗µ(X \ A).

Definition 2.3.13. [6] Let S be a subset of a topological space (X,ϑ) with an ideal

L. S is said to be

(1) strongly β-I-open if S ⊆ ĉ∗(̂i(ĉ∗(S))).

(2) semi-I-open if S ⊆ ĉ∗(̂i(S)).

(3) pre-I-open if S ⊆ î(ĉ∗(S)).

(4) pre-I-closed if X \ S is pre-I-open.

Definition 2.3.14. [8] A subset S of an ideal topological space (X, τ, I) is said to

be β-I-open if S ⊆ Cl(Int(Cl∗(S)). The complement of a β-I-open set is called

β-I-closed.

Definition 2.3.15. [6] Let S be a subset of a topological space (X,ϑ) with an ideal

L. S is said to be
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(1) semi∗-I-open if S ⊆ ĉ(̂i∗(S)).

(2) semi∗-I-closed if X \ S is semi∗-I-open.

Definition 2.3.16. [8] A function f : (X, τ, I) → (Y, σ) is said to be strongly β-I-

continuous if for each x ∈ X and each open set V of Y containing f(x), there exists

U ∈ βIO(X, x) such that f(βICl(U) ⊆ Cl(V ).



 

 

 

CHAPTER 3

CONNECTEDNESS IN IDEAL GENERALIZED
TOPOLOGICAL SPACES

In this section, we study some properties of connectedness in ideal generalized

topological spaces.

3.1 Connectedness in ideal generalized topological spaces

In this section, we get results of connected in ideal generalized topological

spaces.

Throughout this thesis µ will represent a generalized topological spaces such that

∅, X ∈ µ and the union of elements of µ belong to µ.

Theorem 3.1.1. Let (X,µ, I) be an ideal generalized topological space. Then the

collection set {M \H : M ∈ µ,H ∈ I} is a basis for µ∗(µ, I).

Proof. Let (X,µ, I) be an ideal generalized topological space and x ∈ G ∈ µ∗.

By Definition 2.3.6, we have (X \G)∗ ⊆ X \G.

Since x ∈ G, we have x /∈ X \G, this implies that x /∈ (X \G)∗.

So, there exists O ∈ µ(x) such that (X \G) ∩O ∈ I .

x ∈ O \ ((X \G) ∩O) = O ∩G ⊆ G.

It follows that O \ ((X \ G) ∩ O) ∈ {M \ H : M ∈ µ and H ∈ I}, and x ∈

O \ ((X \G) ∩O) ⊆ G.

We get that {M \H : M ∈ µ and H ∈ I} is a basis for µ∗(µ, I).

Example 3.1.2. Let X = {a, b, c, d} and µ = {∅, X, {a, b}, {a, c}, {a, b, c}}, I =

{∅, {a}, {d}, {a, d}}.

Then {∅, X, {b}, {c}, {b, c}, {a, b}, {a, c}, {a, b, c}, {b, c, d}} is a basis for µ∗(µ, I).

Theorem 3.1.3. Let (X,µ, I) be an ideal generalized topological space and M is a

subset of X , then (M,µM , IM), where µM is the relative generalized topology on M

and IM = {M ∩H : H ∈ I} is an ideal space.
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Proof. Let M ⊆ X and µM be a relative generalized topology on M .

Since ∅ ∈ I , then ∅ ∩M ∈ IM . So ∅ ∈ IM .

Let K ∈ IM and N ⊆ K, then K = M ∩H for some H ∈ I .

Since N ⊆ K, then N ⊆M ∩H and N = N ∩ (M ∩H) = M ∩ (N ∩H).

Since N ∩H ⊆ H and H ∈ I , we get that N ∩H ∈ I .

This implies that N ∈ IM .

Since K ∈ IM and N ∈ IM , then K = M∩H1 and N = M∩H2 for some H1, H2 ∈ I .

So K ∪N = (M ∩H1) ∪ (M ∩H2)

= M ∩ (H1 ∪H2) ∈ IM .

Since H1 ∪H2 ∈ I , we have K ∪N ∈ IM .

Therefore IM is an ideal.

Hence (M,µM , IM) is an ideal generalized topological space.

Lemma 3.1.4. Let (X,µ, I) be an ideal generalized topological space and N ⊆ M ⊆

X . Then N∗µ(µM , IM) = N∗µ(µ, I) ∩M .

Proof. (⇒) Let x ∈ N∗µ(µM , IM).

Suppose x /∈ N∗µ(µ, I) ∩M . This implies that x /∈ N∗µ(µ, I) or x /∈M

Since x /∈ N∗µ(µ, I), then there exists µ-open set U containing x such that U ∩N ∈ I .

As U is µ-open and M ⊆ X , then U ∩M ∈ µM , and (U ∩M) ∩N = (U ∩N) ∩M .

This implies that (U ∩N) ∩M ∈ IM .

So (U ∩M) ∩N ∈ IM .

Hence x /∈ N∗µ(µM , IM). This is a contradiction.

Therefore N∗µ(µM , IM) ⊆ N∗µ(µ, I)

(⇐) Let x ∈ N∗µ(µ, I) ∩M .

Assume that x /∈ N∗µ(µM , IM).

Then there exists K ∈ µM(x) such that K ∩N ∈ IM .

And we have that there exists G ∈ I and M ⊆ X .

So G ∩M ∈ IM .

Since G ∩M ⊆ G and IM ⊆ I , we get that K ∩N ∈ I .

Therefore x /∈ N∗µ(µ, I). This is a contradiction.

Hence N∗µ(µ, I) ∩M ⊆ N∗µ(µM , IM).
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Lemma 3.1.5. Let (X,µ, I) be an ideal generalized topological space and B ⊆ A ⊆ X .

Then C∗µA (B) = C∗µ(B) ∩ A.

Proof. (⇒) Let x ∈ C∗µA (B).

Since C∗µA (B) = B∗µ(µA, IA) ∪ B, then x ∈ B∗µ(µA, IA) ∪ B i.e. x ∈ B∗µ(µA, IA) or

x ∈ B.

Since x ∈ B∗µ(µA, IA), then by Lemma 3.1.3, we get that B∗µ(µA, IA) = B∗µ(µ, I)∩A.

So x ∈ B∗µ(µ, I) ∩ A.

Thus B∗µ(µA, IA) ∪B = (B∗µ(µ, I) ∩ A) ∪B

= (B∗µ(µ, I) ∪B) ∩ (A ∪B)

= C∗µ(B) ∩ A

Hence x ∈ c∗µ(B) ∩ A

(⇐) Let y ∈ c∗µ(B) ∩ A i.e, y ∈ c∗µ(B) and y ∈ A.

Since y ∈ c∗µ(B) and c∗µ(B) = B∗µ(µ, I) ∪B, we have that y ∈ B∗µ(µ, I) or y ∈ B

Suppose that y /∈ B∗µ(µ, I).

Then there exists a µ-open set U containing y such that U ∩B ∈ I .

Since y ∈ A, then (U ∩B) ∩ A ∈ IA.

So (U ∩B) ∩ A = (U ∩ A) ∩B ∈ IA, for some U ∩ A ∈ µA(y).

Thus y /∈ B∗µ(µA, IA). This is a contradiction.

Therefore y ∈ B∗µ(µA, IA) or y ∈ B.

Hence y ∈ B∗µ(µA, IA) ∪B i.e. y ∈ c∗µA (B).

Definition 3.1.6. Let (X,µ) be a generalized topological space. Then X is µ-

hyperconnected if every pair of nonempty µ-open sets of X has nonempty intersection.

Example 3.1.7. Let X = {a, b, c, d} and µ = {∅, {a, b}, {a, c}, {a, b, c}}, I =

{∅, {a}, {d}, {a, d}}.

A = {a, b} and B = {a, c}. Then A ∩B = {a} 6= ∅.

A = {a, b} and B = {a, b, c}. Then A ∩B = {a, b} 6= ∅.

A = {a, c} and B = {a, b, c}. Then A ∩B = {a, c} 6= ∅.

Therefore X is µ-hyperconnected.
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Definition 3.1.8. An ideal generalized topological space (X,µ, I) is called µ∗-

connected if X cannot be written as the disjoint union of a nonempty µ-open set

and a nonempty µ∗-open set.

Definition 3.1.9. An ideal generalized topological space (X,µ, I) is said to be µ∗-

hyperconnected if A is µ∗-dense for every nonempty µ-open set A of X .

Example 3.1.10. Let X = {a, b, c, d} and µ = {∅, X, {a, b}, {b, c}, {a, b, c}},

I = {∅, {b}}. µ∗ = {∅, X, {a}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, {a, c, d}}.

Take A = {a, c} and B = {a, b}.

Then A ∪B = {a, b, c} 6= X . Therefore (X,µ, I) is µ∗-connected.

Example 3.1.11. Let X = {a, b, c, d} and µ = {∅, X, {a, b}, {a, c}, {a, b, c}}, I =

{∅, {a}, {d}, {a, d}}.

Take A = {a, b} and B = {a, c}.

Then A ∩B = {a} 6= ∅.

Therefore (X,µ) is µ-hyperconnected.

Remark 3.1.12. The following implications hold for an ideal space (X,µ, I).

(X,µ, I) is µ∗ − hyperconnected =⇒ (X,µ) is µ− hyperconnected

⇓ ⇓

(X,µ, I) is µ∗ − connected =⇒ (X,µ) is µ− connected

Above implications are not reversible as can be seen from the following example.

Example 3.1.13. Let X = {a, b, c} and µ = {∅, {a}, {b}, {a, b}}.

Take A = {a} and B = {b}, then A ∩B = ∅ and A ∪B 6= X .

Thus the space (X,µ) is µ-connected but (X,µ) is not µ-hyperconnected.

Example 3.1.14. Let X = {a, b, c, d} and µ = {∅, X, {a}, {c}, {a, b}, {a, c}, {a, b, c}, {a, c, d}},

I = {∅, {b}}.

Take A = {c} and B = {a, b} such that A ∩B = ∅, then A ∪B = {a, b, c} 6= X .

But since A = {c} and A∗µ = {c, d}, then c∗µ(A) = {c, d} 6= X .

Then the space (X,µ, I) is µ∗-connected but (X,µ, I) is not µ∗-hyperconnected.
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Example 3.1.15. Let X = {a, b, c, d} and µ = {∅, {a, b}, {a, c}, {a, b, c}}, I =

{∅, {a}, {d}, {a, d}}.

Take A = {a, c} and B = {a, b, c}, then A ∩B = {a, c}.

But if A = {a, b}, then A∗µ = {b}. We get that c∗µ(A) = {a, b} 6= X .

B = {a, c}, then B∗µ = {c}. We get that c∗µ(B) = {a, c} 6= X .

C = {a, b, c}, then C∗µ = {a, b, c}. We get that c∗µ(C) = {a, b, c} 6= X .

Then the space (X,µ) is µ-hyperconnected but (X,µ, I) is not µ∗-hyperconnected.

Example 3.1.16. Let X = {a, b, c, d} and µ = {∅, {c}, {a, b}, {b, c}, {a, b, c}}, I =

{∅, {b}}.

Take A = {a, b} and B = {c} such that A ∩B = ∅, then A ∪B 6= X .

But since G = {a, b, c} and H = {d} such that G ∩H = ∅, then G ∪H = X

Then the space (X,µ) is µ-connected but (X,µ, I) is not µ∗-connected.

Lemma 3.1.17. Let (X,µ, I) be an ideal generalized topological space. For each

M ∈ µ∗, (µ∗)M ⊆ (µM)∗.

Proof. Let P ∈ (µ∗)M and M ∈ µ∗.

Then there exists K ∈ µ∗ such that K ∩M = P .

Since M ∈ µ∗, we have c∗µ(X \M) = X \M i.e, (X \M)∗ ⊆ X \M and

M ⊆ X \ (X \M)∗.

And K ∈ µ∗, we have c∗µ(X\K) = X\K i.e, (X\K)∗ ⊆ X\K and K ⊆ X\(X\K)∗.

So, P = K ∩M ⊆ (X \ (X \K)∗) ∩ (X \ (X \M)∗)

= X \ ((X \K)∗ ∪ (X \M)∗)

⊆ X \ ((X \K) ∪ (X \M))∗

= X \ (X \ (K ∩M))∗

= X \ (X \ P )∗.

Thus (X \ P )∗ ⊆ X \ P .

This implies that P ∈ µ∗.

Hence (X \ P )∗ ∩M ⊆ (X \ P ) ∩M

= M \ P .

As P ⊆M \ ((X \ P )∗ ∩M) = M \ (X \ P )∗.

Therefore (M \ P )∗ ⊆ (X \ P )∗ ⊆M \ P .

So, we get that c∗µ(M \ P ) = M \ P i.e, P ∈ (µM)∗.
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Definition 3.1.18. Let (X,µ, I) be an ideal generalized topological space. M and K

are called µ∗-separated if c∗µ(M) ∩K = M ∩ cµ(K) = ∅.

Definition 3.1.19. Let (X,µ) be a generalized topological space and (Y, µY ) be a

subspace of X , M ⊆ Y ⊆ X . Then cµY (K) is the intersection of all µY -closed sets

containing A.

Definition 3.1.20. Let (X,µ, I) be an ideal generalized topological space and (Y, µY , IY )

be a subspace of X . Nonempty subsets M,K of an ideal generalized topological space

(Y, µY , IY ) are called µ∗-separated in Y if c∗µY (M) ∩K = M ∩ cµY (K) = ∅.

Theorem 3.1.21. Let (X,µ, I) be an ideal generalized topological space. If M and K

are µ∗-separated sets of X and M ∪K ∈ µ, then M and K are µ-open and µ∗-open,

respectively.

Proof. Let M and K are µ∗-separated in X and M ∪K ∈ µ.

Then c∗µ(M) ∩K = M ∩ cµ(K) = ∅.

If c∗µ(M) ∩K = ∅, then K ⊆ X \ c∗µ(M).

Hence (M ∪K) ∩K ⊆ (M ∪K) ∩ (X \ c∗µ(M)).

Since (M ∪K) ∩ (X \ c∗µ(M)) = (M ∪K) ∩ (X \ (M ∪M∗µ)).

= (M ∪K) ∩ ((X \M) ∩ (X \M∗µ)).

= ((M ∪K) ∩ (X \M)) ∩ (X \M∗µ)

= ((M ∪K) ∩M c) ∩ (X \M∗µ)

= ((M ∩M c) ∪ (K ∩M c)) ∩ (X \M∗µ)

= (∅ ∪ (K ∩M c)) ∩ (X \M∗µ)

= (K ∩M c) ∩ (M∗µ)c

= K ∩ (M c ∩ (M∗µ)c)

= K ∩ (M ∪M∗µ)c

= K ∩ (X \ c∗µ(M))

and K ⊆ X \c∗µ(M), it follows that (M∪K)∩(X \c∗µ(M)) = K∩(X \c∗µ(M)) = K

.

As M ∪K ∈ µ such that M ∪K is µ-open and µ ⊆ µ∗, we have M ∪K ∈ µ∗.

And M and K are µ∗-separated in X .

So ∅ = c∗µ(M) ∩K = (M ∪M∗µ) ∩K = (M ∩K) ∪ (M∗µ ∩K).
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We get that M ∩K = ∅ or M∗µ ∩K = ∅.

If M ∩K = ∅ implies that M ⊆ X \K, then c∗µ(M) ⊆ c∗µ(X \K) and c∗µ(X \K) =

X \K i.e. K is µ∗-open.

As M ∩ cµ(K) = ∅, we get that M ⊆ X \ cµ(K).

Thus cµ(K) is µ-closed by definition, X \ cµ(K) is µ-open set.

Hence M is µ-open set. We get that K is µ∗-open likewise.

Theorem 3.1.22. Let (X,µ, I) be an ideal generalized topological space and M,K ⊆

Y ⊆ X . Then M,K are µ∗-separated in Y if and only if M,K are µ∗-separated in X .

Proof. (⇒) Suppose that M,K are µ∗-separated in Y .

By Lemma 3.1.4, we get that c∗µY (M)∩K = (c∗µ(M)∩ Y )∩K = c∗µ(M)∩ (Y ∩K).

since K ⊆ Y , then c∗µ(M) ∩ (Y ∩K) = c∗µ(M) ∩K.

Thus c∗µ(M)∩K = c∗µY (M)∩K = ∅ = M ∩ cµY (K) = M ∩ (cµ(K)∩Y ) = (M ∩Y )∩

cµ(K) = M ∩ cµ(K).

Therefore M,K are µ∗-separated in X .

(⇐) Suppose that subsets M,K are µ∗-separated in X .

Since M,K ⊆ Y and by Definition 3.1.12, we get that c∗µ(M)∩K = M ∩ cµ(K) = ∅.

So c∗µY (M) ∩K = (c∗µ(M) ∩ Y ) ∩K

= c∗µ(M) ∩ (Y ∩K)

= c∗µ(M) ∩K

= ∅

= M ∩ cµ(K)

= (M ∩ Y ) ∩ cµ(K)

= M ∩ (Y ∩ cµ(K))

= M ∩ cµY (K)

Thus c∗µY (M) ∩K = ∅ = M ∩ cµY (K).

Therefore M,K are µ∗-separated in Y .

Definition 3.1.23. A subset M of an ideal generalized topological spaces (X,µ, I) is

called µ∗s-connected if M is not the union of two µ∗-separated sets in (X,µ, I).

Example 3.1.24. Let X = {a, b, c, d}, µ = {∅, X, {a}, {c}, {a, b}, {a, c}, {a, b, c}, {a, c, d}}.

And I = {∅, {b}}.
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µ-closed set = {∅, X, {b}, {d}, {b, d}, {c, d}, {a, b, d}, {b, c, d}}. Let M = {b} and

M∗µ = {b}, then c∗µ(M) = {b}.

And K = {c, d}, then cµ(K) = {c, d}.

So c∗µ(M) ∩K = ∅ = M ∩ cµ(K).

Thus M and K are µ∗-separated.

Therefore M ∪K = {b, c, d} is not µ∗s-connected set.

Theorem 3.1.25. Let (X,µ, I) be an ideal generalized topological space. If M is a

µ∗s-connected set in X and H,K are µ∗-separated sets in X with M ⊆ H ∪K, then

either M ⊆ H or M ⊆ K.

Proof. Let M be a µ∗s-connected in X and H,K are µ∗-separated sets in X with

M ⊆ H ∪K.

Then M = M ∩ (H ∪K) = (M ∩H) ∪ (M ∩K).

Since H,K are µ∗-separated, we have c∗µ(H) ∩K = H ∩ cµ(K) = ∅.

Thus (M ∩K) ∩ c∗µ(M ∩H) ⊆ K ∩ c∗µ(H) = ∅.

Likewise, we have (M ∩H) ∩ cµ(M ∩K) = ∅.

If M ∩H 6= ∅ and M ∩K 6= ∅, then M ∩H and M ∩K are µ∗-separated sets in X .

So, M = (M ∩H) ∪ (M ∩K).

Thus M is not µ∗s-connected.

This is a contradiction.

Hence either M ∩H or M ∩K are empty.

Assume that M ∩H = ∅.

Then M = M ∩K implies that M ⊆ K.

In a similar way, we get that M ⊆ H .

Theorem 3.1.26. If M is a µ∗s-connected set of an ideal generalized topological space

(X,µ, I) and M ⊆ N ⊆ c∗µ(M), then N is µ∗s-connected.

Proof. Assume that N is not µ∗s-connected.

Then there exists µ∗-separated sets A and B such that N = A ∪ B i.e, A,B are

nonempty and c∗µ(A) ∩B = A ∩ cµ(B) = ∅.

By Theorem 3.1.18, either N ⊆ A or N ⊆ B.

Assume that N ⊆ A.
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Then c∗µ(N) ⊆ c∗µ(A) and B = B ∩ c∗µ(N) ⊆ B ∩ c∗µ(A) = ∅.

Thus B is empty set. This is a contradiction.

Suppose N ⊆ B.

Then cµ(N) ⊆ cµ(B).

So A = A ∩ cµ(N) ⊆ A ∩ cµ(B) = ∅.

Thus A is empty set. This is a contradiction.

Therefore N is µ∗s-connected.

Corollary 3.1.27. If M is a µ∗s-connected set of an ideal generalized topological space

(X,µ, I), then c∗µ(M) is µ∗s-connected.

Theorem 3.1.28. Let (X,µ, I) be an ideal generalized topological space. If {Mn :

N ∈ Λ} is a nonempty family of µ∗s-connected sets with
⋂
n∈ΛMn 6= ∅, then

⋃
n∈ΛMn

is a µ∗s-connected set.

Proof. Suppose that
⋃
n∈ΛMn is not µ∗s-connected.

Then we have that
⋃
n∈ΛMn = A ∪B where A and B are µ∗-separated sets.

Since
⋂
n∈Λ Mn 6= ∅, we have a point x ∈

⋂
n∈ΛMn.

Thus x ∈Mn and Mn ⊆ A ∪B for all n ∈ Λ.

It follows from A ∩B = ∅, that either x ∈ A or x ∈ B.

In case x ∈ A ; For any n ∈ Λ, Mn ∩ A 6= ∅.

By Theorem 3.1.18, Mn ⊆ A or Mn ⊆ B.

So Mn ⊆ A for all n ∈ Λ, and then
⋃
n∈ΛMn ⊆ A.

This implies that B = ∅.

This is a contradiction.

In case x ∈ B ; in the same way, we have A = ∅. This is a contradiction.

Hence
⋃
n∈ΛMn is µ∗s-connected.

Definition 3.1.29. Let (X,µ, I) be an ideal generalized topological space and x ∈ X .

The union of all µ∗s-connected subsets of X containing x is called the µ∗-component

of X containing x.

Theorem 3.1.30. Every µ∗-component of an ideal generalized topological space

(X,µ, I) is a maximal µ∗s-connected set.
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Proof. Let x ∈ X .

Suppose that Cx is µ∗-component of X such that x ∈ Cx.

So Cx =
⋃
j∈J{Mj ⊆ X : Mjis a µ∗s- connected set containing x}.

Since Mj is a µ∗-connected for all j ∈ J , by Theorem 3.1.21, we get that
⋂
j∈J{Mj ⊆

X : x ∈Mj} 6= ∅.

Hence Cx is µ∗s-connected.

Next, let A ⊆ X and A is µ∗s-connected such that Cx ⊆ A.

Then x ∈ A, by definition of Cx we have A ⊆ Cx.

Thus Cx = A.

Therefore Cx is a maximal µ∗s-connected set of X .

Theorem 3.1.31. The set of all distinct µ∗-component of an ideal generalized

topological space (X,µ, I) forms a partition of X .

Proof. Let M and K be two distinct µ∗-components of X .

Suppose that M ∩K 6= ∅.

By Theorem 3.1.20, M ∪K is µ∗s-connected in X .

Since M ⊆M ∪K, then M is not maximal.

Thus M and K are disjoint.

Since M and K are distinct µ∗-components of X .

By Theorem 3.1.23, we get that M and K are maximal µ∗s-connected sets of X .

So, M = X \K.

Thus M ∪K = (X \K) ∪K = X .

Theorem 3.1.32. Each µ∗-component of an ideal generalized topological space

(X,µ, I) is µ∗-closed.

Proof. Let A be µ∗-component of X .

By Theorem 3.1.23, and Corollary 3.1.20, A is maximal µ∗s-connected and c∗µ(A) is

µ∗s-connected.

Thus A = c∗µ(A).

This implies that A is µ∗-closed.



 

 

 

CHAPTER 4

A NEW COLLECTION WHICH CONTAIN THE
GENERALIZED TOPOLOGICAL SPACES

4.1 ξ-I-µ-open sets

This section discusses basic properties of ξ-I-µ-open sets and basic concepts

type of generalized open sets with ideal.

Definition 4.1.1. Let G be a subset of an ideal generalized topological space (X,µ, I).

Then G is said to be

(1) strongly β-I-µ-open if G ⊆ c∗µ(iµ(c∗µ(G))).

(2) semi-I-µ-open if G ⊆ c∗µ(iµ(G)).

(3) pre-I-µ-open if G ⊆ iµ(c∗µ(G)).

(4) pre-I-µ-closed if X \G is pre-I-µ-open.

Definition 4.1.2. Let G be a subset of an ideal generalized topological space (X,µ, I).

Then G is said to be β-I-µ-open if G ⊆ cµ(iµ(c∗µ(G))).

The complement of a β-I-µ-open set is called β-I-µ-closed. The family of all β-I-

µ-open (resp. β-I-µ-closed) sets of (X,µ, I) are denoted by βIµO(X) (resp.βIµC(X).

The family of all β-I-µ-open (resp. β-I-µ-closed) sets of (X,µ, I) containing a point

x ∈ X are denoted by βIµO(X, x) (resp. βIµC(X, x)). The intersection of all β-

I-µ-closed sets containing G are called the β-I-µ-closure of G and are denoted by

ClβIµ(G). The β-I-µ-interior of G is defined by the union of all β-I-µ-open sets

contained in G and is denoted by IntβIµ(G).

Definition 4.1.3. Let G be a subset of an ideal generalized topological space (X,µ, I).

Then G is said to be

(1) semi∗-I-µ-open if G ⊆ cµ(i∗µ(G)).

(2) semi∗-I-µ-closed if X \G is semi∗-I-µ-open.

Definition 4.1.4. Let G be a subset of an ideal generalized topological space (X,µ, I).

Then G is called ξ-I-µ-open set if G = ∅ or there exists a nonempty pre-I-µ-open

subset K such that K \ c∗µ(G) ∈ I .
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The complement of a ξ-I-µ-open set is called ξ-I-µ-closed. The family of all

ξ-I-µ-open (resp. ξ-I-µ-closed) sets of (X,µ, I) is denoted by Oξ(X) (resp. Cξ(X)).

The family of all ξ-I-µ-open (resp. ξ-I-µ-closed) sets of (X,µ, I) containing a point

x ∈ X is denoted by Oξ(X, x) (resp. Cξ(X, x)).

Theorem 4.1.5. Let G be a subset of an ideal generalized topological space (X,µ, I).

For ξ-I-µ-open subset Gα in X for each α ∈ Λ,
⋃
{Gα;α ∈ Λ} is a ξ-I-µ-open subset

of X .

Proof. Let G be a subset of an ideal generalized topological space (X,µ, I) and Gα

is a ξ-I-µ-open subset of X , for each α ∈ Λ.

If
⋃
{Gα;α ∈ Λ} = ∅, then

⋃
{Gα;α ∈ Λ} is a ξ-I-µ-open subset of X .

In case
⋃
{Gα;α ∈ Λ} 6= ∅, then there exists an αi ∈ Λ such that Gαi

6= ∅.

Since Gαi
is ξ-I-µ-open, then there exists a nonempty pre-I-µ-open subset K of X

such that K \ c∗µ(Gαi
) ∈ I .

Since Gαi
⊆

⋃
{Gα;α ∈ Λ}, then c∗µ(Gαi

) ⊆ c∗µ(
⋃
{Gα;α ∈ Λ}).

So K \ c∗µ(
⋃
{Gα;α ∈ Λ}) ⊆ K \ c∗µ(Gαi

).

Since K \ c∗µ(Gαi
) ∈ I , then K \ c∗µ(

⋃
{Gα;α ∈ Λ}) ∈ I .

Thus
⋃
{Gα;α ∈ I} is a ξ-I-µ-open subset of X .

Lemma 4.1.6. Every µ-open is pre-I-µ-open.

Proof. Since H is µ-open i.e, H = iµ(H), we have H ⊆ iµ(H ∪H∗) = iµ(c∗µ(H)).

So H is pre-I-µ-open subset.

Definition 4.1.7. Let G be a subset of an ideal generalized topological space (X,µ, I).

The intersection of all ξ-I-µ-closed sets containing G is called the ξ-I-µ-closure of G

and is denoted by Clξ(G).

The ξ-I-µ-interior of G is defined by the union of all ξ-I-µ-open sets contained in G

and is denoted by Intξ(G).

Lemma 4.1.8. Let G be a subset of an ideal generalized topological space (X,µ, I).

Then Clξ(G) = G if and only if G is ξ-I-µ-closed .
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Proof. Since Clξ(G) =
⋂
Fα where Fα is ξ-I-µ-closed and G ⊆ Fα.

So, X \ Fα is ξ-I-µ-open and X \ F ⊆ X \G.

It follows that from Theorem 4.1.5, that
⋃
α∈Λ

(X \ Fα) is ξ-I-µ-open.

Therefore
⋃
α∈Λ

(X \ Fα) = X \
⋂
α∈Λ

(Fα).

Hence
⋂
α∈Λ

(Fα) is ξ-I-µ-closed.

Conversely, it is obvious.

Lemma 4.1.9. Let (X,µ, I) be an ideal generalized topological space, then c∗µ(iµ(X)) =

X .

Proof. It is obvious that c∗µ(iµ(X)) ⊆ X .

Consider X ∈ µ, we get that X = iµ(X) ⊆ iµ(X) ∪ (iµ(X))∗ = c∗µ(iµ(X)).

Assume that there exists y ∈ X such that y /∈ c∗µ(iµ(X)).

Then we have y /∈ iµ(X) and y /∈ (iµ(X))∗.

Since y /∈ (iµ(X))∗, there exists G ∈ µ(y) such that G ∩ (iµ(X)) ∈ I .

Thus y ∈ G ⊆
⋃
{G : G ∈ µ,G ⊆ X} = iµ(X). This is a contradiction.

Therefore, c∗µ(iµ(X)) = X .

Theorem 4.1.10. Let G be a subset of an ideal generalized topological space (X,µ, I).

If G is a strongly β-I-µ-open subset of X , then G is a ξ-I-µ-open subset of X .

Proof. Let G be a subset of an ideal generalized topological space (X,µ, I) and G be

a strongly β-I-µ-open subset of X .

Case 1 : For G = ∅, it is clearly that ∅ is ξ-I-µ-open.

Case 2 : For G is a nonempty subset in X . Then we get that G ⊆ c∗µ(iµ(c∗µ(G))).

Assume that K = iµ(c∗µ(G)). Then K ⊆ c∗µ(G).

Since iµ(c∗µ(G)) is µ-open, it follows that K is µ-open.

By Lemma 4.1.6, we have K is pre-I-µ-open.

Next, we will to show that K = iµ(c∗µ(G)) is a nonempty subset.

Suppose that K = iµ(c∗µ(G)) = ∅.

As G ⊆ c∗µ(iµ(c∗µ(G))) = c∗µ(∅) = ∅. This is a contradiction.

Thus K is a nonempty subset.

And since K ⊆ c∗µ(G) and ∅ ∈ I , it follows that K \ c∗µ(G) = ∅ ∈ I .

Therefore G is a ξ-I-µ-open subset of X .
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Example 4.1.11. Let X = {a, b, c, d}. µ = {∅, X, {a}, {a, b}, {c, d}, {a, c, d}} and

I = {∅, {a}, {d}, {a, d}}.

Take G = {d} ⊆ X . We get that G∗µ = ∅ and c∗µ(G) = G ∪G∗µ = {d}.

Thus iµ(c∗µ(G) = ∅ and c∗µ(iµ(c∗µ(G)) = ∅

So G 6⊆ c∗µ(iµ(c∗µ(G))

Since {a} is pre-I-µ-open, it follows that {a} \ {d} = {a} ∈ I .

Hence G = {d} is ξ-I-µ-open.

Therefore G is a ξ-I-µ-open subset of X and G is not a strongly β-I-µ-open subset

of X .

Theorem 4.1.12. Let (X,µ, I) be an ideal generalized topological space. Each µ∗-

dense subset of X is ξ-I-µ-open.

Proof. Assume that G be a µ∗-dense, then c∗µ(G) = X .

And we get that G ⊆ c∗µ(G) = X = c∗µ(iµ(X)) = c∗µ(iµ(c∗µ(G))).

So G is a strongly β-I-µ-open set in X .

By Theorem 4.1.10, we get that G is ξ-I-µ-open.

Definition 4.1.13. Let G be a subset of an ideal generalized topological space (X,µ, I).

Then G is called µ∗-nowhere dense if iµ(c∗µ(G)) = ∅.

Theorem 4.1.14. Let G be a nonempty subset of ideal generalized topological space

(X,µ, I). If G is not a µ∗-nowhere dense set, then G is a ξ-I-µ-open.

Proof. Let G be a nonempty subset of ideal generalized topological space (X,µ, I).

Suppose that G is not a µ∗-nowhere dense set. Then iµ(c∗µ(G)) 6= ∅.

Let K = iµ(c∗µ(G)), we have K ⊆ c∗µ(G) and iµ(K) = iµ(iµ(c∗µ(G))) = iµ(c∗µ(G)) =

K.

So, K = iµ(K) ⊆ iµ(K ∪K∗) = iµ(c∗µ(K)). Thus K is pre-I-µ-open.

Since K ⊆ c∗µ(G), then K \ c∗µ(G) = ∅ ∈ I .

Therefore G is a ξ-I-µ-open set.

Remark 4.1.15. The following example shows that we have a nonempty, ξ-I-µ-open

and µ∗-nowhere dense set.
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Example 4.1.16. Let X = {a, b, c, d}. µ = {∅, X, {a}, {a, b}, {c, d}, {a, c, d}} and

I = {∅, {a}, {d}, {a, d}}.

Take G = {d} ⊆ X . We get that G∗µ = ∅ and c∗µ(G) = G ∪G∗µ = {d}.

Thus iµ(c∗µ(G) = ∅. So G is µ∗-nowhere dense.

Since {a} is pre-I-µ-open, it follows that {a} \ {d} = {a} ∈ I .

Hence G = {d} is ξ-I-µ-open.

Therefore G is a ξ-I-µ-open subset of X and µ∗-nowhere dense subset of X .

Definition 4.1.17. A function f : (X,µ, I) → (Y, ν) is said to be strongly β-I-µ-

continuous if for each x ∈ X and each ν-open set K of Y containing f(x), there

exists M ∈ βIµO(X, x) such that f(ClβIµ(M)) ⊆ cν(K).

Definition 4.1.18. A function f : (X,µ, I)→ (Y, ν) is said to be ξ-I-µ-continuous at a

point x ∈ X if for each ν-open set K of Y containing f(x), there exists M ∈ Oξ(X, x)

such that f(Clξ(M)) ⊆ cν(K).

Theorem 4.1.19. Every strongly β-I-µ-continuous is ξ-I-µ-continuous.

Proof. Let f : (X,µ, I)→ (Y, ν) be a strongly β-I-µ-continuous function on X .

Then for each x ∈ X and K is a ν-open set of Y containing f(x), there exists

M ∈ βIµO(X, x) such that f(ClβIµ(M)) ⊆ cν(K).

Since K is ν-open, we have K is strongly-β-I-µ-open.

By Theorem 4.1.10, then K is ξ-I-µ-open.

Since M ⊆ Clξ(M) and Clξ(M) ⊆ ClβIµ(M).

It follows that f(Clξ(M)) ⊆ f(ClβIµ(M)) ⊆ cν(K).

Hence f(Clξ(M)) ⊆ cν(K).

Therefore f is ξ-I-µ-continuous.

Theorem 4.1.20. For a function f : (X,µ, I) → (Y, ν), the following properties are

equivalent :

1. f is ξ-I-µ-continuous.

2. f−1(K) is ξ-I-µ-open in X for each ν-open set K of Y .

3. f−1(F ) is ξ-I-µ-closed in X for each ν-closed set F of Y .

4. f(Clξ(A)) ⊆ cν(f(A)) for each subset A of X .

5. Clξ(f−1(B)) ⊆ f−1(cν(B)) for each subset B of Y .
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Proof. (1)→ (2): Let K be any ν-open subset of Y and x ∈ f−1(K).

Then there exists Mx ∈ Oξ(X, x) such that f(Mx) ⊆ f(Clξ(Mx) ⊆ K.

We get that f−1(f(Mx)) ⊆ f−1(K). So Mx ⊆ f−1(K).

Thus x ∈Mx ⊆ f−1(K) and f−1(K) =
⋃

x∈f−1(K)

Mx.

Since any union of ξ-I-µ-open sets is ξ-I-µ-open, we get that f−1(K) is ξ-I-µ-open

in X .

(2)→ (3): Let F be ν-closed in Y , we get that Y \ F is ν-open in Y .

By (2), f−1(Y \ F ) is ξ-I-µ-open in X . But f−1(Y \ F ) = X \ f−1(F ).

Therefore f−1(F ) is ξ-I-µ-closed in X .

(3)→ (4): Let A be any subset of X .

Assume cν(f(A)) is ν-closed in Y and by (3), f−1(cν(f(A))) is ξ-I-µ-closed.

Thus Clξ(A) ⊆ Clξ(f
−1(f(A))) ⊆ Clξ(f

−1(cν(f(A)))) = f−1(cν(f(A))).

Hence f(Clξ(A)) ⊆ f(f−1(cν(f(A)))) ⊆ cν(f(A)).

Therefore f(Clξ(A)) ⊆ cν(f(A)).

(4)→ (5): Let B be any subset of Y .

By (4), f(Clξ(f
−1(B))) ⊆ cν(f(f−1(B))) ⊆ cν(B).

Thus Clξ(f−1(B)) ⊆ f−1(f(Clξ(f
−1(B)))) ⊆ f−1(cν(B)).

Hence Clξ(f−1(B)) ⊆ f−1(cν(B)).

(5)→ (1): Let x ∈ X and K be any ν-open set of Y containing f(x).

Thus Y \K is ν-closed in Y ,

Clξ(f
−1(Y \K)) ⊆ f−1(cν(Y \K))

= f−1(Y \ iν(K))

= f−1(Y \K)

⊆ Clξ(f
−1(Y \K))

It follow from Lemma 4.18 that f−1(Y \ K) is ξ-I-µ-closed in X and f−1(K) is a

ξ-I-µ-open set of X containing x.

So, there exists M ∈ Oξ(X, x) such that Clξ(M) ⊆ f−1(K).

Therefore f(M) ⊆ f(Clξ(M)) ⊆ f(f−1(K)) ⊆ K ⊆ cν(K).

This implies that f is ξ-I-µ-continuous.

Theorem 4.1.21. Let G be a subset of an ideal generalized topological space (X,µ, I).

Then G is a ξ-I-µ-open set in X if and only if G = ∅ or there exist a set H in I and
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a nonempty pre-I-µ-open set K such that K \H ⊆ c∗µ(G).

Proof. Let (X,µ, I) be an ideal generalized topological space and G ⊆ X .

(⇒) Assume that G is a ξ-I-µ-open set in X .

If G 6= ∅, then there exists a nonempty pre-I-µ-open set K such that K \ c∗µ(G) ∈ I .

Assume that H = K \ c∗µ(G).

Then K \H = K \ (K \ c∗µ(G))

= K ∩ (K ∩ c∗µ(G)c)c

= K ∩ (Kc ∪ c∗µ(G))

= (K ∩Kc) ∪ (K ∩ c∗µ(G))

= K ∩ c∗µ(G)

⊆ c∗µ(G).

Thus K \H ⊆ c∗µ(G).

(⇐) Assume that G = ∅ or there exist a set H ∈ I and a nonempty pre-I-µ-open set

K such that K \H ⊆ c∗µ(G).

If G = ∅, then G is a ξ-I-µ-open set in X .

If G 6= ∅, then there exists a set H ∈ I and nonempty pre-I-µ-open set K such that

K \H ⊆ c∗µ(G).

Then K \ c∗µ(G) ⊆ K \ (K \H) = K ∩H ⊆ H .

Since H ∈ I , then K \ c∗µ(G) ∈ I .

Therefore G is a ξ-I-µ-open set in X .

Theorem 4.1.22. Let G be a subset of an ideal generalized topological space (X,µ, I).

Then G is ξ-I-µ-open in X if and only if

G ∈ {M 6= ∅ : there exists a nonempty pre-I-µ-open subset K and a set H ∈ I such that K ⊆

c∗µ(M) ∪H} ∪ {∅} ⊆ P (X).

Proof. Let (X,µ, I) be an ideal generalized topological space and G ⊆ X .

(⇒) Assume that G is a ξ-I-µ-open subset of X . Then G = ∅ or G 6= ∅.

Suppose that G 6= ∅.

By Theorem 4.1.21, there exists a set H ∈ I and a nonempty pre-I-µ-open subset K

such that K \H ⊆ c∗µ(G).

And (K \H) ∪H = (K ∩Hc) ∪H = (K ∪H) ∩ (Hc ∪H) = K ∪H .
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Then K ⊆ K ∪H = (K \H) ∪H ⊆ c∗µ(G) ∪H .

(⇐) Assume that there exists an element H ∈ I and nonempty pre-I-µ-open subset

K such that K ⊆ c∗µ(G) ∪H .

Then K \ c∗µ(G) ⊆ (c∗µ(G) ∪H) \ c∗µ(G) = (c∗µ(G) ∩ (c∗µ(G))c) ∪ (H ∩ c∗µ(G)) =

H ∩ c∗µ(G) ⊆ H .

Since H ∈ I , then K \ c∗µ(G) ∈ I .

Therefore G is a ξ-I-µ-open set in X .

4.2 ξ-I-µ-closed sets and other properties

This section discusses about the collection of ξ-I-µ-closed sets in ideal

generalized topological spaces. Properties for the collection of ξ-I-µ-closed sets

and other properties for the collection of ξ-I-µ-closed sets are studied.

Definition 4.2.1. Let G be a subset of an ideal generalized topological space (X,µ, I).

Then G is called ξ-I-µ-closed set if X \G is a ξ-I-µ-open subset of X .

Theorem 4.2.2. Let G be a subset of an ideal generalized topological space (X,µ, I).

Then G is called ξ-I-µ-closed if and only if there exists H ∈ I and a pre-I-µ-closed

subset L 6= X such that i∗µ(G) \H ⊆ L or G = X .

Proof. Let G be a subset of an ideal generalized topological spaces (X,µ, I).

(⇒) Assume that G be a ξ-I-µ-closed set.

Then X \G is a ξ-I-µ-open set.

By Theorem 4.1.22, we have X \G = ∅ or there exists a set H in I and a nonempty

pre-I-µ-open subset K such that K ⊆ c∗µ(X \G) ∪H .

In case, X \G = ∅, we have X = G.

If X \G 6= ∅, there exists a set H in I and a nonempty pre-I-µ-open set K such that

K ⊆ c∗µ(X \G) ∪H .

This implies that i∗µ(G) \H = i∗µ(G) ∩Hc

= (X \ c∗µ(X \G) ∩ (X \H)

= X \ (c∗µ(X \G) ∪H)

⊂ X \K.

Let L = X \K.
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Since K is a nonempty pre-I-µ-open subset, we have X \K is a nonempty pre-I-µ-

closed subset and X \K 6= X So L 6= X .

Thus i∗µ(G) \H ⊆ L.

(⇐) Let G be a subset of X .

If X = G, then X \G = ∅. So X \G is ξ-I-µ-open.

Thus G is ξ-I-µ-closed.

If X 6= G, there exist H ∈ I and a pre-I-µ-closed subset K 6= X such that i∗µ(G)\H ⊆

K.

So X \K ⊆ X \ (i∗µ(G) \H) = X \ (i∗µ(G) ∩ (X \H))

= (X \ i∗µ(G)) ∪ (X \ (X \H))

= c∗µ(X \G) ∪H

Thus X \K ⊆ c∗µ(X \G) ∪H .

By Theorem 4.1.22, we get that X \G is ξ-I-µ-open.

Hence G is a ξ-I-µ-closed subset.

Theorem 4.2.3. Let G be a subset of an ideal generalized topological space (X,µ, I).

Then G is ξ-I-µ-closed if and only if there exists a pre-I-µ-closed subset K 6= X such

that i∗µ(G) \K ∈ I or G = X .

Proof. Let G be a subset of an ideal generalized topological space (X,µ, I).

(⇒) Suppose that G is a ξ-I-µ-closed set.

By Theorem 4.2.2, there exists H ∈ I and a pre-I-µ-closed subset K and K 6= X

such that i∗µ(G) \H ⊆ K or G = X .

In case i∗µ(G) \H ⊆ K, we get that

i∗µ(G) \K ⊆ i∗µ(G) \ (i∗µ(G) \H) = i∗µ(G) ∩H ⊆ H .

So i∗µ(G) \K ⊆ H .

Since H ∈ I , this implies that i∗µ(G) \K ∈ I .

(⇐) Assume that there exists K 6= X is a pre-I-µ-closed subset with i∗µ(G) \K ∈ I

or G = X .

We have i∗µ(G) \K = i∗µ(G) \K, and also

i∗µ(G) \ (i∗µ(G) \K) ⊆ i∗µ(G) \ (i∗µ(G) \K) = K.
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By Theorem 4.2.2, G is a ξ-I-µ-closed subset of X .

Lemma 4.2.4. Let (X,µ, I) be an ideal generalized topological space.

(1) If M ∈ µ and M ∩ A ∈ I implies that M ∩ A∗ = ∅.

(2) (A ∪ A∗)∗ ⊆ A∗, for A ⊆ X .

(3) c∗µ(c∗µ(A)) = c∗µ(A), for A ⊆ X .

Proof. (1). Assume x ∈M ∩ A∗ i.e, x ∈M and x ∈ A∗.

It follows that M ∩ A /∈ I , for all M ∈ µ(x).

This is a contradiction.

Hence M ∩ A∗ = ∅.

(2) Assume that x /∈ A∗.

There exists M ∈ µ(x) such that M ∩ A ∈ I .

By (1), we have that M ∩ A∗ = ∅.

Thus M ∩ (A ∪ A∗) = (M ∩ A) ∪ (M ∩ A∗) = (M ∩ A) ∪ ∅ = M ∩ A ∈ I .

Therefore x /∈ (A ∪ A∗)∗.

(3) It is obvious that c∗µ(A) ⊆ c∗µ(c∗µ(A)).

By (2), we have c∗µ(c∗µ(A)) = c∗µ(A) ∪ (c∗µ(A))∗ = (A ∪ A∗) ∪ (A ∪ A∗)∗ ⊆

(A ∪ A∗) ∪ A∗ = c∗µ(A).

Hence c∗µ(c∗µ(A)) ⊆ c∗µ(A).

Theorem 4.2.5. Let G be a subset of an ideal generalized topological space (X,µ, I).

Assume that every µ∗-open subset of X is pre-I-µ-closed. Then each subset of X is

ξ-I-µ-open.

Proof. Let G be a subset of an ideal generalized topological space (X,µ, I).

Assume that every µ∗-open subset of X is pre-I-closed.

If G = ∅, then G is ξ-I-µ-open.

Let G be a nonempty subset of X .

We will show that X \ c∗µ(G) is µ∗-open. We have c∗µ(X \ (X \ c∗µ(G)) =

c∗µ(c∗µ(G)) = c∗µ(G) = X \ (X \ c∗µ(G)).

Therefore X \ c∗µ(G) is µ∗-open. i.e, c∗µ(G) is µ∗-closed.

By the assumption c∗µ(G) is pre-I-µ-open.
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Thus c∗µ(G) \ c∗µ(G) = ∅ ∈ I .

Consequently, G is ξ-I-µ-open.

Remark 4.2.6. The following example shows that the intersection of two sets need

not be ξ-I-µ-open set for any ideal generalized topological space (X,µ, I).

Example 4.2.7. Let X = {a, b, c, d}, µ = {∅, X, {a}, {c}, {a, b}, {a, b, c}, {a, c, d}}

And I = {∅, {b}}.

Since A = {a, d} and B = {c, d} are ξ-I-µ-open set.

Then A ∩B = {d} but {d} /∈ ξ-I-µ-open set.

Theorem 4.2.8. Let (X,µ, I) be an ideal generalized topological space. If there exists

a ∈ X such that {a} is a pre-I-µ-open and {a} ∈ I . Then each subset of X is

ξ-I-µ-open.

Proof. Let (X,µ, I) be an ideal generalized topological space and G be a nonempty

subset of X .

Let {a} be pre-I-µ-open and {a} ∈ I .

Then {a} \ c∗µ(G) = {a} or {a} \ c∗µ(G) = ∅.

This implies that {a} \ c∗µ(G) = {a} ∈ I or {a} \ c∗µ(G) = ∅ ∈ I .

And {a} is a pre-I-µ-open subset of X . Therefore G is ξ-I-µ-open.

Example 4.2.9. Let X = {a, b, c, d} and µ = {∅, X, {a, b}, {a, c}, {a, b, c}}, I =

{∅, {a}, {d}, {a, d}}.

Suppose A = {a}, then A∗µ = ∅ and c∗µ(A) = {a}.

Thus iµ(c∗µ(A)) = ∅ and A 6⊆ iµ(c∗µ(A)).

So A is not a pre-I-µ-open subset.

Let G = {b, c}. Then G∗µ = {a, b, c, d} and c∗µ(G) = {a, b, c, d}.

Thus A \ c∗µ(G) = ∅.

Therefore G is ξ-I-µ-open.

Theorem 4.2.10. Let (X,µ, I) be an ideal generalized topological space and ∅ 6= G ⊆

F ⊆ X and G be ξ-I-µ-open. Then F is ξ-I-µ-open.

Proof. Let (X,µ, I) be an ideal generalized topological space and ∅ 6= G ⊆ F ⊆ X

and G be ξ-I-µ-open.
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Then there exists a nonempty pre-I-µ-open subset K such that K \ c∗µ(G) ∈ I .

Since G ⊆ F and c∗µ(G) ⊆ c∗µ(F ), then K \ c∗µ(F ) ⊆ K \ c∗µ(G).

Since K \ c∗µ(G) ∈ I , we get that K \ c∗µ(F ) ∈ I .

Hence F is a ξ-I-µ-open set.

Theorem 4.2.11. Let (X,µ, I) be an ideal generalized topological space. Then {a} is

semi∗-I-µ-closed or {a} is a ξ-I-µ-open subset of X for each a ∈ X .

Proof. We show that {a} is a ξ-I-µ-open subset.

Assume that {a} is not a semi∗-I-µ-closed set in X .

Then X \ {a} 6⊆ cµ(i∗µ(X \ {a})).

Since cµ(i∗µ(X \{a})) = cµ(X \ c∗µ({a})) = X \ (iµ(c∗µ({a})), we get that X \{a} 6⊆

X \ (iµ(c∗µ({a})).

There exists y ∈ X \ {a} but y /∈ X \ (iµ(c∗µ({a})).

This implies that y ∈ (iµ(c∗µ({a})). Thus iµ(c∗µ({a}) 6= ∅ and iµ(c∗µ({a}) =

iµ(iµ(c∗µ({a})) ⊆ iµ(c∗µ(iµ(c∗µ({a})).

Hence, iµ(c∗µ({a})) is nonempty pre-I-µ-open and iµ(c∗µ({a}) \ c∗µ({a}) = ∅ ∈ I .

So {a} is a ξ-I-µ-open.



 

 

 

CHAPTER 5

CONCLUSIONS

The aim of this thesis is to introduce the results of connected in ideal generalized

topological space. And we study characterization of ideal generalized topological space.

The results are as follows:

1) An ideal generalized topological space (X,µ, I) is called µ∗-connected if X cannot

be written as the disjoint union of a nonempty µ-open set and a nonempty µ∗-open

set.

2) Nonempty subsets M,K of an ideal generalized topological space (X,µ, I) are

called µ∗-separated if c∗µ(M) ∩K = M ∩ cµ(K) = ∅.

From the above definitions, I have the following theorems are derived

2.1) Let (X,µ, I) be an ideal generalized topological space. If M and K are µ∗-

separated sets of X and M ∪K ∈ µ, then M and K are µ-open and µ∗-open,

respectively.

3) A subset M of an ideal generalized topological space (X,µ, I) is called µ∗s-

connected if M is not the union of two µ∗-separated sets in (X,µ, I).

From the above definitions, I have the following theorems are derived

3.1) If M is a µ∗s-connected in X and H,K are µ∗-separated sets in X with

M ⊆ H ∪K, then either M ⊆ H or M ⊆ K.

3.2) If M is a µ∗s-connected set of an ideal generalized topological space (X,µ, I)

and M ⊆ N ⊆ c∗µ(M), then N is µ∗s-connected.

3.3) If M is a µ∗s-connected set of an ideal generalized topological space (X,µ, I),

then c∗µ(M) is µ∗s-connected.

3.4) If {Mn : N ∈ Λ} is a nonempty family of µ∗s-connected sets with
⋂
n∈ΛMn 6=

∅, then
⋃
n∈Λ Mn is a µ∗s-connected sets.
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4) Let (X,µ, I) be an ideal generalized topological space and x ∈ X . The union

of all µ∗s-connected subsets of X containing x is called the µ∗-component of X

containing x.

From the above definitions, I have the following theorems are derived

4.1) Each µ∗-component of an ideal generalized topological space (X,µ, I) is a

maximal µ∗s-connected.

4.2) The set of all distinct µ∗-component of an ideal generalized topological space

(X,µ, I) forms a partition of X .

4.3) Each µ∗-component of an ideal generalized topological space (X,µ, I) is µ∗-

closed.

5) Let G be a subset of an ideal generalized topological space (X,µ, I). Then G is

called ξ-I-µ-open if G = ∅ or there exists a nonempty pre-I-µ-open subset K such

that K \ c∗µ(G) ∈ I .

The complement of a ξ-I-µ-open set is called ξ-I-µ-closed. The family of all ξ-I-

µ-open (resp. ξ-I-µ-closed) sets of (X,µ, I) is denoted by Oξ(X) (resp. Cξ(X)).

The family of all ξ-I-µ-open (resp. ξ-I-µ-closed) sets of (X,µ, I) containing a

point x ∈ X is denoted by Oξ(X, x) (resp. Cξ(X, x)).

6) If Gα is ξ-I-µ-open in X , for all α ∈ Λ, then
⋃
α∈Λ

Gα is ξ-I-µ-open.

7) Let G be a subset of an ideal generalized topological space (X,µ, I). The

intersection of all ξ-I-µ-closed sets containing G is called the ξ-I-µ-closure of

G and is denoted by Clξ(G).

The ξ-I-µ-interior of G is defined by the union of all ξ-I-µ-open sets contained in

G and is denoted by Intξ(G).

From the above definitions, I have the following theorems are derived

7.1) Clξ(G) = G if and only if G is ξ-I-µ-closed .

7.2) Let X is a subset of ideal generalized topological spaces, then c∗µ(iµ(X)) = X .
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8) Let G be a subset of an ideal generalized topological space (X,µ, I). Then G is

called µ∗-nowhere dense if iµ(c∗µ(G)) = ∅.

9) A function f : (X,µ, I) → (Y, σ) is said to be ξ-I-µ-continuous at a point x ∈ X

if for each σ-open set K of Y containing f(x), there exists M ⊆ Oξ(X, x) such

that f(Clξ(M)) ⊆ K.

10) Every strongly β-I-µ-continuous is ξ-I-µ-continuous.

11) For a function f : (X,µ, I)→ (Y, σ), the following properties are equivalent :

1. f is ξ-I-µ-continuous.

2. f−1(K) is ξ-I-µ-open in X for each σ-open set K of Y .

3. f−1(F ) is ξ-I-µ-closed in X for each σ-closed set F of Y .

4. f(Clξ(A)) ⊆ cσ(f(A)) for each subset A of X .

5. Clξ(f−1(B)) ⊆ f−1(cσ(B)) for each subset B of Y .

12) Let (X,µ, I) be an ideal generalized topological space and G ⊆ X . Then G is a

ξ-I-µ-open in X if and only if G = ∅ or there exist a set H in I and a nonempty

pre-I-µ-open set K such that K \H ⊆ c∗µ(G).

13) Let G be a subset of an ideal generalized topological space (X,µ, I). Then G is

called ξ-I-µ-closed set if X \G is a ξ-I-µ-open subset of X .

14) Let G be a subset of an ideal generalized topological space (X,µ, I). Then G is

called ξ-I-µ-closed if and only if there exists H ∈ I and a pre-I-µ-closed subset

L 6= X such that i∗µ(G) \H ⊆ L or G = X .

15) Let (X,µ, I) be an ideal generalized topological space. Then {a} is semi∗-I-µ-

closed or {a} is a ξ-I-µ-open subset of X for each a ∈ X .
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[4] Császár Á. Modification of generalized topological via hereditary classes. Acta

Math. Hungar. 2007; 115(1-2): 29-36.

[5] Ekici E. and Noiri T. Connectedness in ideal topological spaces. Novi Sad J.

Math. 2008; 38: 65-70.

[6] Ekici E. A new collection which contains the topology via ideals. Sciencedirect.

2018; 172: 372-377

[7] Jankovic D. and Hamlett T.R. New topologies from old via ideals. Amer. Math.

1990; 97: 295-310.

[8] Jeyaraman B. and Neelamegarajan R. A strong from β-I-continuous functions.

Math. Commun. 2009; 14(1): 13-18.

[9] Kuratowski. Topology. New York. Academic Press. 1996; 1.

[10] Modak S. and Noiri T. Connectedness of ideal topological spces. Filomat. 2015;

29(4): 661-665.

[11] Modak S. Generalized open sets in generalized topological. Acta Math. Hungar.

2005; 106(1-2): 53-66.

[12] Modak S. Ideal on generalized topological spaces. Scientia Magna. 2016; 11:

14-20.

36



 

 

 
37

[13] Neelamegarajan G., Aynur K. and Neelamegarajan R. Properties of strongly

θ-β-I-continuous function. Acta Universitatis Apulensis. 2011; 25 : 313-320.

[14] Vaigyanathaswamy R. The localization theory in set topology. Proc. Indian Acad.

Sci. 1945; 20: 51-61.

[15] Shen R-X. A note on generalized connectedness. Acta Math. Hungar. 2009;

122(3): 231-235.

[16] Y.Kim. and W. Min. On operation induced by hereditary classes on generalized

topological space. Acta Math. Hungar. 2012; 137(1-2): 130-138.



 

 

 

BIOGRAPHY



 

 

 

BIOGRAPHY

Name Natthaya Boonyam

Date of brith August 17, 1986

Place of birth Maha Sarakham Province

ADDRESS 4 Soi 7, Jutangkoon Rd. Talad sub-district,

Mueang Mahasarakham district, Maha Sarakham

province 44000, Thailand

EDUCATION 2005 Sarakhampittayakhom School,

Mahasarakham, Thailand

2008 Bachelor of Physics,

Faculty of Science, Mahidol University,

Thailand

2015 Bachelor of Mathematics,

Faculty of Science, Mahasarakham

University, Mahasarakham, Thailand

2019 Master of Mathematics, Faculty of Science,

Mahasarakham University, Mahasarakham,

Thailand

39


