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ABSTRACT 

  

This thesis focuses on two main types of research: classification and 

segmentation, addressing the challenge of aerial images using deep learning 

techniques. 

Chapter 1 provides a brief general introduction to deep learning for land 

use and land cover in aerial images, followed by the research questions. Additionally, 

the objectives of the dissertation and its contributions are described. 

In Chapter 2, a convolutional neural network (CNN) method is proposed 

to classify land use and land cover of five economic crops: rice, sugarcane, cassava, 

rubber, and longan, from the aerial images. Also, the ensemble learning method is 

proposed to enhance the performance of the land use classification. The work reported 

in this thesis used eight CNN architectures to create robust models and classify the 

aerial images for the classification tasks. Hence, three data augmentation techniques 

(rotation, height shift, and width shift) are combined when training the CNN models. 

Moreover, the ensemble CNN model is proposed to enhance the performance of the 

economic crop classification model. 

Chapter 3 propose the snapshot ensemble CNN to improve the 

performance of the land use classification from the aerial images. The work reported 

in this thesis experimented with the snapshot ensemble CNN method using various 

learning schedules. The new drop cyclic cosine learning rate schedule, called 

dropCyclic, is proposed and compared with two existing learning rate schedules. The 

proposed learning rate schedule is evaluated on three datasets: UCM, AID, and 

EcoCropsAID. The results showed that the proposed dripCyclic outperformed the 

existing learning rate schedules on the UCM dataset. As a result, the ensemble CNN 

obtains better performance than using only the single CNN. 

Chapter 4 proposes the instance segmentation technique to segment the 

water body from the aerial. The mask region-based CNN (mask R-CNN) is the 

instance segmentation technique to find the water resource areas for the segmentation 

task in this thesis. In the experiments, the mask R-CNN model could segment water 

bodies efficiently. Furthermore, the data augmentation techniques are included in the 

training process. The experimental results showed that the mask R-CNN method 

combined with data augmentation techniques when training obtained two times better 
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performance than without combining data augmentation techniques. 

Chapter 5 comprises two main sections: 1) Answers to the research 

questions 2) future work. This chapter briefly explains the proposed approaches and 

answers three main research questions in land use and land cover in aerial images 

using deep learning techniques. Two main approaches are planned to be the focused 

of future work, as follows. For the classification technique, I plan to replace the 

unweighted average method with the cost-sensitive probability method in the snapshot 

ensemble CNN method. For the segmentation technique, I will consider applying the 

new deep learning methods to enhance the performance of the water resource 

segmentation and other tasks. 

This research makes a significant contribution in classification and 

segmentation for land use and land cover through deep learning-based innovations 

and has great potential utility in a wide range of aerial images for geographic 

information systems and remote sensing. 

 

Keyword : Economic crops aerial image, Land use classification, Deep learning 

architecture, Ensemble convolutional neural network, Ensemble method, Data 

augmentation, Instance Segmentation, Water Body, Aerial Image, Mask R-CNN, 

Transfer Learning, Snapshot ensemble 
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Chapter 1 

Introduction 

 

In the last ten years, the land use and land cover have changed so much (Rujoiu-Mare 

& Mihai, 2016), so researchers are interested in researching this domain (Caldas, Goodin, 

Sherwood, Campos Krauer, & Wisely, 2015). Examples of the change of land use and land 

cover are shown in Figure 1. It shows the rice area changed to the Chang International Circuit, 

Buriram province. I captured the land use between 2012 to 2020 using the google earth 

program that changed from crop field to race track. Figure 1a), I captured the aerial image on 

April 20, 2012. It was a rice area. Figure 1b) captured on January 5, 2014. The construction of 

the race track. Figure 1c) captured on June 21, 2020. The land use changed to the race track. 

 

 

  a)                           b)                          c)  

Figure 1  Illustration of land use changes that were captured on (a) April 20, 2012, (b) January 

05, 2014, and (c) June 21, 2012. 

 

Suppose I have an accurate and up-to-date knowledge of land use and land cover. In 

that case, I will be able to apply the information of land use and land cover to many domains, 

such as urban planning, environmental monitoring and assessment, national policy formulation 

(Treitz & Rogan, 2004), biodiversity studies, climate change models, climate change, and the 

design and review of land-use policies (Almeida et al., 2016). 
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Numerous studies have investigated land use and land cover analysis to plan and 

manage the quality of life (Mishra, Rai, & Rai, 2020). For example, In Ho Chi Minh City, 

Vietnam, Due to environmental problems, such as rising urban temperatures, air pollution, and 

flooding, Schaefer & Thinh (2019) created systems for land use and land cover using 

geographic information systems (GIS) and remote sensing (RS) techniques (Schaefer & Thinh, 

2019). The GIS and RS are also proposed to address the problems of the changing environment 

in the Halda river caused by the rapid development of urbanization (Chowdhury, Hasan, & 

Abdullah-Al-Mamun, 2020), as well as, people in the Nile river, Egypt, lack basic security 

caused by unplanned urban expansion (Elagouz, Abou-Shleel, Belal, & El-Mohandes, 2020). 

Elagouz et al. (2020) analyzes the information on land use and land cover using GIS and RS 

techniques to monitor the people activity that may affect the land use and land cover, such as the 

agricultural use, expansion of urban areas, and land use in the overlapping areas (Elagouz et al., 

2020) (Rujoiu-Mare & Mihai, 2016). 

In recent years, the deep learning method has been more popular in land use and land 

cover classification, such as the classification of agricultural land cover (cultivation, water 

resources, grassland, and wood areas) on Landsat 5/7 images (Storie & Henry, 2018). (Kussul, 

Lavreniuk, Skakun, & Shelestov, 2017) used a convolutional neural network (CNN) including 

1-D and 2-D CNN architectures to classify land cover and crop types on the Landsat-8 and 

Sentinel-1A satellite images. (Deepan, 2019) proposed the ensemble CNNs architecture. The 

ensemble CNNs contained three CNN architectures; CNN, VGG-16, and Inception-ResNet. 

The output probabilities of each CNN were then sent to the unweighted average ensemble 

method to predict the output. (Al-Najjar et al., 2019) proposed the CNN architectures to classify 

land cover on the unmanned aerial image (UAV) and digital surface model (DSM) datasets. In 

their approach, the UAV and DSM images were divided into small patches. The small patches 

were sent to the CNN model to extract the features. Both features from UAV and DSM images 

were fused, called fused features. The CNN model also classified the patches into seven classes; 

waterbody, vegetable/tree, grassland, shadow, paved road, building, and bare land. 

The main objective of this thesis is to propose land use and land cover classification 

and segmentation systems using deep learning methods. This thesis will create results that 

improve GIS which can then be used for better monitoring the change of land use and cover, 

and water management in urban and agricultural areas. 
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1.1 Research Question 

In Thailand, land use and land cover are changing all the time. During the year 2011-

2013, the computation of the land change modeler (LCM) found that the number of human, 

aquatic breeding grounds, and forest areas were increased. On the other hand, agricultural areas 

and water resources were decreased (Suwanlertcharoen, Prukpitikul, Buakaew, & Kaewpoo, 

2013). Therefore, if I can analyse the change of land use and land cover quickly and accurately, 

I will plan to manage the land use and land cover more effectively. 

RQ1:  In Thailand, the cultivation of economic crops, including rice, sugarcane, 

cassava, rubber, and longan, throughout the country. It is not simple to analyze the area of the 

economic crops, because I need the expert in geographic information systems (GIS) and remote 

sensing (RS) areas to analyze the economic crops area. It requires information from other 

government sections to compute and evaluate. It requires more time to collect the relevant 

information from all sections and incident delays in data analysis by experts will occur. From 

this issue, how can I reduce the waiting time by collecting all information from government 

sections? Could convolutional neural networks (CNNs), a type of deep learning method, 

classify the areas of economic crops from the aerial images? If possible, applying the economic 

crops classification will help the planner, the policy-maker monitor the land use and land cover 

of the economic crops faster. In addition, can the ensemble learning method improve the land 

use and land cover classification performance? 

RQ2:  Many types of ensemble learning methods, such as bagging ensemble (Duin & 

Tax, 2005) , boosting ensemble (Choi et al., 2019), stacked ensemble (R. Sun, 2019), and 

snapshot ensemble (Bunrit, Kerdprasop, & Kerdprasop, 2019), are proposed to solve the image 

classification problem. Furthermore, the snapshot ensemble CNN method was designed to find 

the optimal CNN models. The cyclic cosine annealing method was proposed to decrease the 

learning rate value while training the CNN model. It made the learning loss of the CNN drop 

very fast compared to the other CNN methods. Consequently, the outputs of optimal models 

were then combined and given to the weighted ensemble learning method to predict the output. 

Then, can the snapshot ensemble CNN method improve the performance of the economic crops 

classification on the aerial images? I am also concerned with the learning algorithm that 

proposes to decrease the learning loss and also increase the performance of the snapshot 

ensemble CNN.   
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RQ3:  When using the LCM model to calculate land use, I found that the water 

resources were reduced each year (Suwanlertcharoen et al., 2013). It may affect agriculture 

because water resources are essential for cultivation. To find the water resources areas, the 

expert always uses geographic information systems (GIS) and remote sensing systems to 

analyze the areas from the high-resolution satellite image. It spent much computation time and 

more money as well. Importantly, is it possible to employ the deep learning method to find the 

water resources from the aerial images? If possible, it will reduce the cost of computation. Also, 

everyone can download aerial images from the general application, such as Google maps and 

analyze the water resources using the deep learning method. Furthermore, if it is accurate, I can 

also analyze the amount of water and plan to manage water usage. 

In order to answer all of these questions (RQ1 to RQ3), Chapter 2 to Chapter 4 

describe the research done in this thesis. Finally, Chapter 5 provides concrete answers to 

research questions. 

 

1.2 The Objective of This Dissertation 

This study will focus on three detailed objectives: 

1) I aim to classify land use and land cover of five economic crops, including rice, 

sugarcane, cassava, rubber, and longan, from the aerial images using convolutional neural 

network (CNN) methods. I also enhance the performance of the land use classification method 

using ensemble learning methods. 

2) I proposed to use the snapshot ensemble CNN technique to improve the 

performance of the land use classification from the aerial images. 

3) I propose the instance segmentation technique to segment the water body from 

the aerial images. 

 

1.3 Contributions 

The main contribution of this thesis is a novel method for the learning rate schedule, 

which is appropriate for land use classification on aerial images. The new learning method is 

designed to decrease the training loss while training the convolutional neural network (CNN) 

models. I also combined the new learning method with the snapshot ensemble CNN technique. 

I performed experiments on four aerial image datasets consisting of UCM ( Y.  Yang & 
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Newsam, 2010), AID (G. S. Xia et al., 2017), EcoCropsAID (Noppitak & Surinta, 2021), and 

AIWR (Noppitak, Gonwirat, & Surinta, 2020) datasets. I perform the ensemble convolutional 

network architectures for land use classification. In the ensemble method, the grid-search 

method is proposed to optimize the weighted parameters of the CNN models. 

I apply the mask R-CNN technique to segment the water body from aerial images in 

the segmentation task. The mask R-CNN technique includes two parts; CNN backbone 

architecture and network head. In this thesis, I use the ResNet-101 for extracting the feature 

from the whole image. In the training process, I also use the data augmentation technique to 

increase the amount of training data while training, including affine image transformations and 

color modification. 

Additionally, I present two new aerial image datasets, including EcoCropsAID and 

AIWR datasets, for classification and segmentation tasks, respectively. The EcoCropsAID 

dataset describes data collected of the economic crops area of Thailand, which includes five 

categories; rice, sugarcane, cassava, rubber, and longan. The AIWR dataset represents the area 

of the water body. It comprises two types of data; natural and artificial water bodies. The 

contributions of the thesis are as follows. 

Chapter 2 proposed an ensemble convolutional neural networks method for land use 

classification, namely the ensemble CNN method. In addition, a new aerial image dataset, 

namely the EcoCropsAID dataset, is presented for the classification problem. This dataset 

contains 5,400 aerial images of five categories; rice, sugarcane, cassava, rubber, and longan. I 

collect the aerial images between the years 2014 and 2018 using the Google Earth program. In 

the experiments, first, I discovered the robust CNN models from 8 state-of-the-art architectures, 

including InceptionResNetV2, MobileNetV2, DenseNet201, Xception, ResNet152V2, 

NASNetLarge, VGG19, and VGG16. Second, I chose only three CNN architectures 

(NASNetLarge, VGG19, and VGG16) that provided better performance. Third, three data 

augmentation techniques were applied while training the CNN models, including rotation, 

width shift, and height shift. I found that training the CNN models with the data augmentation 

techniques yielded high accuracy performance. Fourth, I created the ensemble CNN models 

that combined three CNN models with the data augmentation techniques. Finally, the results 

from each CNN model were computed using three ensemble learning methods; unweighted 

majority vote, unweighted average, and weighted average. The experimental results showed 
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that when using the weighted average learning method, the ensemble CNN outperformed other 

ensemble learning methods. This chapter is based on the following publication: 

Noppitak, S., and Surinta, O. (2021). Ensemble convolutional neural network 

architectures for land use classification in economic crops aerial images. ICIC Express Letters, 

15(6), 531–543. doi: 10.24507/icicel.15.06.531 

In chapter 3, a new learning rate schedule method is proposed to find the optimal 

range of learning rates in the snapshot ensemble convolutional neural network (CNN) method, 

called the dropCyclic learning rate schedule. The dropCyclic allows training the CNN model 

from the new starting point of the learning rate in each cycle. That means the starting point of 

the learning rate value in each cycle is decreased depending on the drop parameter. The benefit 

of dropCyclic is that it has fewer control parameters. Moreover, it does not need to adjust the 

upper and lower boundary of the learning rate. I perform the dropCyclic learning rate schedule 

on three aerial image datasets, including UCM, AID, and EcoCropsAID. I also compare the 

proposed dorpCyclic learning rate schedule with two state-of-the-art learning rate schedules; 

cyclic cosine annealing and max-min cosine cyclic learning rate scheduler. The experimental 

results showed that the proposed learning rate schedule outperformed two state-of-the-art 

learning rate schedules on the UCM dataset. 

 In chapter 4, I proposed to use the mask region-based CNN technique, namely mask 

R-CNN, to segment the water body from aerial images. The mask R-CNN contained two 

architectures consisting of CNN backbone and head architectures. In my experiment, I attached 

the ResNet-101 architecture as for the CNN backbone architecture. The backbone architecture 

was used to extract the robust feature from the aerial images. In the head network, the fully 

connected layers were attached to the ResNet-101. The head architecture was designed to 

predict the region of interest (ROI) of the water body. Subsequently, I performed two data 

augmentation techniques: affine image transformations and color modification while training 

the mask R-CNN. The performance of the mask R-CNN combined with data augmentation 

techniques increased almost two times compared to the mask R-CNN without using data 

augmentation techniques. This chapter is based on the following publication: 

Noppitak, S., Gonwirat, S., & Surinta, O. (2020). Instance segmentation of water 

body from aerial image using mask region-based convolutional neural network. Proceedings of 

the 3rd International Conference on Information Science and System (ICISS), 61–66. doi: 

10.1145/3388176.3388184. 



 

 

 

Chapter 2 

Ensemble Convolutional Neural Network 

 

The analysis of land use and land cover is a task of remote sensing and geographic 

information systems. Nowadays, deep learning techniques can analyze land use and land cover 

with high performance. In this paper, I focus on the classification of land use for Thailand's 

economic crops based on the convolutional neural network (CNN) technique. I evaluated the 

ensemble CNN framework on Thailand's economic crops aerial image dataset called the 

EcoCropsAID dataset. Five economic crop categories, were rice, sugarcane, cassava, rubber, 

and longan, and images were collected using the Google Earth program. Economic crops aerial 

images obtained between 2014 and 2018 were considered. There were 5,400 images with 

approximately 1,000 images per class. Due to the ensemble CNN framework, I first proposed to 

use eight pre-trained CNN models consisting of InceptionResNetV2, MobileNetV2, 

DenseNet201, Xception, ResNet152V2, NasNetLarge, VGG16, and VGG19 to discover the 

best baseline CNN model. Second, three simplistic data augmentation techniques (rotation, 

width shift, and height shift) are applied to increase the accuracy of the CNN models. Finally, I 

created an ensemble CNN framework that consisted of 3 CNNs based on the best CNN models. 

I also compared three ensemble methods, that were weighted average, unweighted average, and 

unweighted majority vote.  

 

2.1 Introduction 

Thailand is a country that mainly exports agricultural products that are economic 

crops, including rice, corn, cassava, sugar, rubber, palm oil, tapioca, and longan (Office of 

Agricultural Economics, 2019b). Hence, the government sector has to analyze the information 

and forecast the world economy, especially in agriculture, which requires the consideration of 

many factors outside the country, such as the world agricultural economy, crude oil price, etc. 

The domestic factors include the amount of water in reservoirs, rainfall, land use, etc. (Office of 

Agricultural Economics, 2019a). Without appropriate planning of land use, negative 

consequences might ensue, such as selection of the wrong plant products and quantities 

inconsistent with export to international markets. 
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Land use and land cover can be interrogated by remote sensing and geographic 

information system (GIS) tasks that can be used to analyze, plan, and manage the quality of 

human life in respect of many issues. For example, the rapidly growing population causes 

environmental problems, air pollution, and temperature rise in urban areas (Mishra et al., 2020). 

Since the flooding in Ho Chi Minh City, Vietnam, Schaefer and Thinh (Schaefer & Thinh, 

2019) proposed using GIS and RS methodologies to evaluate the changes of land cover and 

agricultural protection sites. In the future, planners can use the proposed methods in decision 

support for managing land use. To address the problems caused by the rapid urbanization of 

human activities in the Halda river located in the south-eastern region of Bangladesh, 

Chowdhury et al. (Chowdhury et al., 2020) used remote sensing and GIS to assess land use and 

land cover changes in the Halda watershed. Populations in the Nile Delta, Egypt, require basic 

security because of the unplanned urban growth (Elagouz et al., 2020) and proposed a remote 

sensing technique to estimate the land use change according to the unplanned urban growth by 

monitoring the human activities that change in agricultural and urban areas. Consequently, 

remote sensing and GIS are used to classify land use in problematic regions due to the 

landscape (i.e., hills and lowlands) (Rujoiu-Mare & Mihai, 2016). 

Nowadays, deep learning is a well-known technique proposed to address land use and 

land cover classification. The techniques are widely used in land use classification, for example 

of buildings, paved roads, vegetation density, grassland, and water bodies (Al-Najjar et al., 

2019). Also, urban planning and management use deep learning models to classify land use in 

urban areas using high-resolution satellite imagery (VHR) (P. Zhang et al., 2018). Al-Najjar et 

al. (Al-Najjar et al., 2019) presented a land cover classification method to analyze an image 

from an unmanned aerial vehicle (UAV). C. Zhang et al. (C. Zhang et al., 2019) proposed a joint 

deep learning model that compounded multilayer perceptron (MLP) and convolutional neural 

networks (CNNs) to classify land cover and land use. 

In this chapter, I propose an ensemble convolutional neural network framework, 

called ensemble CNN, for classification of land use in economic crop aerial images. The 

contributions of this paper can be summarized as follows:  

1) I propose ensemble methods with deep convolutional neural networks, called the 

ensemble CNN method for land use classification. Using the ensemble method, I present the 

weighted average approach to find the optimal weight by applying weights to the output 

probabilities of each baseline CNN model. Based on the CNN architecture, I discover further 
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efficient models by employing pre-trained CNN models from eight CNN architectures, 

including InceptionResNetV2, MobileNetV2, DenseNet201, Xception, ResNet152V2, 

NasNetLarge, VGG16, and VGG19. My experimental results indicate that the three best CNN 

models on the economic crops aerial image dataset are VGG16, VGG19, and NASNET, 

respectively. I also realize that the simplistic data augmentation techniques, such as rotation and 

height shift techniques, could improve the performance of the CNN method. I have 

demonstrated that the data augmentation technique significantly increases the performance of 

the CNN model. Note that the learning process can be computationally expensive.  

2) This thesis aims to enable the use of Thailand's economic crops aerial image 

dataset, namely the EcoCropsAID dataset, for land use classification. In this thesis, I collect the 

aerial image data between 2014 and 2018 by using the Google Earth program. The image 

quality is different depending on the different remote sensor types used by the Google Earth 

program; importantly, the aerial image quality is different. The EcoCropsAID dataset consists of 

5,400 images that contain five categories; rice, sugarcane, cassava, rubber, and longan. Also, 

each category comprises approximately 1,000 images. 

 

2.2 Related Work  

This research focuses on the land use classification on aerial images using deep 

learning algorithms. Many studies in remote sensing and geoinformatics have mainly 

experimented on satellite images. In this paper, however, we experiment with aerial images 

collected in RGB color space. I survey aerial image datasets that have been used for land use 

and land cover classification tasks. The datasets, such as UC Merced land use (Y. Yang & 

Newsam, 2010), RESISC45 (Cheng, Han, & Lu, 2017) , and AID (G. S. Xia et al., 2017) 

datasets, were created from the Google Earth program, except the EuroSAT dataset (Helber, 

Bischke, Dengel, & Borth, 2019) that was collected from the Sentinel-2 satellite. I collected the 

aerial image data from the Google Earth program that considers only five economic crops 

consisting of rice, sugarcane, cassava, rubber, and longan. The information on I proposed aerial 

image dataset is presented in Section 2.4 The details of the aerial image datasets are described in 

Table 1. 
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Table 1  The brief detail of the aerial image datasets that used for land use and land cover 

classification. 

Datasets Classes No. of Images 
Image 

Size 
Resolution and Source Year 

UC Merced Land Use 

 (Y. Yang & Newsam, 

2010) 

21 
2,100 

(100 per class) 
256x256 

0.3 m. 

Google Earth 
2010 

RESISC45 

(Cheng et al., 2017) 
45 

31,500 

(700 per class) 
256x256 

30 to 0.2 m. 

Google Earth 
2017 

AID 

 (G. S. Xia et al., 

2017) 

30 

10,000 

(220 to 420     per 

class) 

600x600 
8 to about 0.5 m. 

Google Earth 
2017 

EuroSAT 

(Helber et al., 2019) 
10 

27,000 

(2,000 to 3,000 per 

class) 

224×224 

10 m. 

Sentinel-2 (spectral data with 

13 bands) 

2019 

Proposed dataset 5 
5,400 

(~1,000 per class) 
600x600 

30 to 0.2 m. 

Google Earth 
2020 

 

Many deep learning techniques, such as auto-encoders, stacked auto-encoders, 

restricted Boltzmann machine, deep belief network, and CNN architectures, are proposed to 

address the land use and land cover classification of the satellite images. For land use and land 

cover classification, however, CNN architectures comprise AlexNet, CaffeNet, GoogleNet, 

VGGNet, PlacesNet, Inception, and ResNet become the state-of-the-art architectures 

(Vaishnnave, Devi, & Srinivasan, 2019). 

The CNN architectures are proposed to extract the deep features from the aerial image 

. Xia et al. (G. S. Xia et al., 2017) proposed a benchmark aerial image dataset, namely AID, for 

aerial scene classification. The AID dataset contains 10,000 images and 30 categories. They 

then applied CaffeNet, VGG-VD-16, and GoogLeNet to extract the deep features and classify 

them using the Liblinear supervised classification. These methods achieved around 86% 

accuracy on the AID dataset. Pilipovic and Risojevic [16] evaluated three CNN architectures; 

GoogLeNet, ResNet, and SqueezeNet, on the high-resolution remote sensing dataset. The deep 

features were extracted using fine-tuned CNN models and presented to the support vector 

machine (SVM) method as a classifier. The results showed that the GoogLeNet fine-tuned 

features combined with the SVM outperformed the other methods on the UCM dataset. 
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Additionally, the ResNet fine-tuned features showed the best result on the AID dataset 

(Pilipovic & Risojevic, 2017). 

Han et al. proposed a framework that combines the deep feature and discriminative 

evaluation methods for scene classification and annotation, called the semi-supervised 

generative framework (SSGF). To evaluate the performance, when considering only the deep 

feature method, the ResNet model combined with supervised learning outperforms all CNN 

models on the AID, UCM, NWPU-RESISC45, and WHU-RS19 datasets. The SSGF method 

that combined ResNet, VGG-S, and VGG-16 still achieved the best accuracy result on all 

datasets. 

For aerial scene classification, In the work of (Zheng, Yuan, & Lu, 2019) propose a 

deep scene representation approach. In this approach, deep features are extracted by the multi-

scale max-pooling method and then given to the Fisher vector method to encode the multi-scale 

features into a global representation. Various pre-trained CNN models were evaluated, 

including AlexNet, CaffeNet, GoogLeNet, and VGGNet, on different aerial scene datasets. This 

approach achieved an accuracy above 93% on UCM, WHU-RS19, RSSCN7, and AID 

datasets.  

It can be seen that convolutional neural networks can be employed to address the land 

use classification. 

 

2.3 Proposed Ensemble Convolutional Neural Network 

Architecture  

The ensemble method aims to enhance the accuracy results of the classification tasks. 

This method combines various classifiers instead of applying only an individual classifier and 

provides more robust results (Yazdizadeh, Patterson, & Farooq, 2019). Figure 2 illustrates the 

ensemble convolutional neural network architecture. The proposed architectures consist of two 

schemes.  

In the first scheme, I first discover the best baseline CNN model from several state-of-

the-art CNN architectures, including VGGNet, Xception, ResNet, InceptionResNet, 

MobileNet, DenseNet, and NASNet. Second, the data augmentation techniques are employed 

to improve the performance of the CNN models. Finally, according to my experiments, I 

combine the three best CNN models. Then, the probability distribution, which is computed by 
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the softmax function, is assigned to classify using the ensemble methods. The detail of the first 

scheme is explained in Sections 2.3.1 and 2.3.2. 

The second scheme aimed to compare three ensemble methods; weighted average, 

unweighted average, and unweight majority vote, regularly applied for neural networks. The 

ensemble methods are described in Section 2.3.3. 

 

 

 

Figure 2  The framework of ensemble convolutional neural networks for land use classification 

in economic crop aerial images. 

 

2.3.1   Convolutional Neural Network Architectures  

   In this study, I propose convolutional neural network (CNN) architectures to 

address the land use classification problem on Thailand's economic crops aerial image dataset 

(EcoCropsAID dataset). To find the three most beneficial baseline CNN models, I compare the 

performance of eight CNN architectures, including Xception (Chollet, 2017), VGG16 

(Simonyan & Zisserman, 2014), VGG19 (Simonyan & Zisserman, 2014), ResNet152V2 (He, 

Zhang, Ren, & Sun, 2016), InceptionResNetV2 (Szegedy, Ioffe, Vanhoucke, & Alemi, 2017), 

MobileNetV2 (Sandler, Howard, Zhu, Zhmoginov, & Chen, 2018), DenseNet201, and 

NASNet (Zoph, Vasudevan, Shlens, & Le, 2018). I observe that the VGG16, VGG19, and 

NASNet architectures achieved high performance on the EcoCropsAID dataset based on my 

experiments. Data augmentation techniques are also applied. I further describe the baseline 

CNN architectures and the data augmentation techniques as follows. 
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   VGGNet: In 2015, Simonyan and Zisserman invented VGG Networks, 

namely VGGNets. The VGGNets are designed according to the depth of the weight layers with 

16-19 layers. These networks are divided into five convolutional blocks and the max-pooling 

layer follows each block. In each block, to create the feature maps, the small convolution filters 

with the size of 3x3 are computed. Then, in each block, the feature maps are reduced by half 

size of the previous block. In contrast, the feature maps are increased by double layers of the last 

block. Moreover, the FC layer is employed as the classifier. Additionally, the two fully 

connected (FC) layers with 4,096 and the one final FC layer are the outputs of the network. 

According to the EcoCropsAID dataset, in my framework, the final FC layer is designed as 

five. The architecture of the VGGNets is shown in Figure 3. 

 

 

Figure 3  Network architectures of VGG16 and VGG19 (Bold). 

 

   NASNet: Zoph and Le proposed a neural architecture search (NAS) that 

generates the CNN architecture using the recurrent neural network (RNN) with reinforcement 

learning. In 2018, (Zoph et al., 2018) developed the learned transferable architecture by 

extending the NASNet architecture. In this architecture, the RNN method is employed as the 

search method to explore the best CNN architecture. Note that the NASNet architecture 

includes the normal and reduction cells searched by the RNN method (see Figure 4). For the 

transfer architecture, the best CNN architecture is created based on learning from the small 

dataset (i.e., the CIFAR-10 dataset). Consequently, the CNN architecture is transferred to learn 

with a large dataset (i.e., imageNet). 

 



 

 

 

 14 

 

a) 

 

b) 

Figure 4  Illustration of a) the normal cell and b) the reduction cell, which is generated by the 

RNN method (Zoph et al., 2018). 
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2.3.2  Data Augmentation for Aerial Images 

   The concept of data augmentation is to solve the problem of having an 

insufficient amount of data by increasing the number of training data (Pawara, Okafor, 

Schomaker, & Wiering, 2017). Therefore, the new image is a synthesis from the original 

images using different augmentation methods, and new diversity images are also generated. 

Image data augmentation techniques are classified into two main groups; basic image 

manipulations (i.e., flip, color space, crop, rotation, translation, etc.) and deep learning 

approaches (i.e., adversarial training, neural style transfer, and meta-learning) (Perez & Wang, 

2017); (Shorten & Khoshgoftaar, 2019)).  

   Due to the aerial image data augmentation, two categories are introduced, 

including instance-based augmentation (such as geometric, color, deformation, enhancement, 

brightness, etc.) and fusion-based augmentation (i.e., the RGB channels from the satellite 

images are combined) (Ghaffar, McKinstry, Maul, & Vu, 2019).  

   I experiments perform three data augmentation techniques; rotation, width 

shift, and height shift. The example images of the basic manipulation techniques are shown in 

Figure 5. 

 

 

Figure 5  Example of data augmentation techniques. a) Original image, b) rotation, c) width 

shift, d) height shift, and e) combination between rotation and width shift. 
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2.3.3  Ensemble Methods  

   Due to an increment in the classification performance, the output 

probabilities of the CNN models are combined and classified using the ensemble methods. A 

brief explanation of the ensemble methods follows. 

   Unweighted Average Method: In this method, the CNN output 

probabilities of each model, which are computed by the softmax function, are averaged (Ju, 

Bibaut, & van der Laan, 2018). The highest probability is decided as a result. The output (ŷi) is 

computed by Equation (1): 

 

where yj is the output probabilities of the CNN model and n is the number of the CNN model . 

   Weighted Average Method: Due to the classification performance of the 

CNN model, the different weights are applied to the output probabilities. Hence, the higher 

weight is assigned to the CNN model that achieved a higher classification rate (Frazão & 

Alexandre, 2014). The weighted average method is given by: 

 

 

where α is a weight that multiplies with the output probabilities yj of the CNN models. 

 

   Unweighted Majority Vote Method: The Argmax function is applied to 

the output probabilities of each CNN model and determined as the predicted labels. For each 

class, the number of votes is counted. Then, the most maximum votes are decided as the final 

decision (Surinta, Schomaker, & Wiering, 2013). 

 

 

where argmax is a weight that multiplies with the output probabilities yj of the CNN models. 

 

(1) 

(2) 

(3) 
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2.4 Thailand’s Economic Crops Aerial Image Dataset  

I introduce the novel economic crops aerial image dataset, namely the EcoCropsAID 

dataset. This dataset was collected in Thailand from five economic crops that were cultivated in 

different provinces and regions between 2014 and 2018. The aerial images of economic crops 

were gathered based on Agri-Map Online provided by the Ministry of Agriculture and 

Cooperatives and the National Electronics and Computer Technology Center (NECTEC). The 

Agri-Map Online is an agriculture map that all departments under the Ministry of Agriculture 

and Cooperatives use as an agriculture management tool. Subsequent agricultural information is 

accurate and up-to-date (Office of the Permanent Secretary for Ministry of Agriculture and 

Cooperatives, 2019). Then, the Google Earth application was employed to capture aerial images 

after I selected the economic crops areas in which images were to be collected. It is quite a 

complex dataset because the Google Earth program used several remote imaging sensors (G. S. 

Xia et al., 2017) to record the aerial images.  

 

 

Figure 6  Example of economic crops aerial images. a) Cassava, b) Longan, c) Rice, d) Rubber, 

and e) Sugarcane. 
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The EcoCropsAID dataset includes five categories (rice, sugarcane, cassava, rubber, 

and longan) and contains 5,400 images. Each class has around 1,000 images. To prepare the 

aerial images of the economic crops, I recorded the image with 600x600 pixels and stored it in 

the RGB color format. Sample aerial images of this dataset are shown in Figure 6. As seen in 

Figure 6a, the first row is the cassava field, that is at commencement of planting. However, the 

third row was a change in land use from rice field to cassava field because strange lines have 

appeared. Also, Figure 6e (first and second rows) shows a change in land use from rice field to 

sugarcane field. The pattern of the longan area is similar to the rubber area, as shown in Figure 

6d in the first and second rows. As seen in Figure 6c, the first row presents a wet area. The 

second row of Figure 6c illustrates the not yet planting area, while the third row is the beginning 

of planting. 

The challenges of classification on the EcoCropsAID dataset are: 1) many different 

image resolutions and colors are contained in the EcoCropsAID dataset due to the various 

remote imaging sensors, 2) the similarity of patterns amongst each class, for example, longan 

and rubber, 3) the difference of pattern inside the same class, for example, cassava and rice. 

 

2.5 Experimental Results  

In this section, I present experiments on my economic crops aerial image dataset. All 

experiments are tested in the same environment. I used the TensorFlow as the deep learning 

framework that run on Intel(R) Core-i9-9900K CPU @ 3.60GHz x16, 32GB RAM, and GPU 

NVIDIA GeForce GTX 1080Ti. The experiment results are explained as follows. 

2.5.1   Experiments with Convolutional Neural Network Architectures 

and Data Augmentation Techniques  

   For the CNN experiments, I will present the best setting parameters of the 

CNN models on the EcoCropsAID dataset. However, to find the best setting parameters of the 

CNN models, I randomly select 25% (1,350 images) for the training data and test data. Eight 

CNN models are selected; Xception, VGG16, VGG19, ResNetV2, InceptionResNetV2, 

MobileNetV2, DenseNet, and NASNet. I use the transfer learning technique to train eight pre-

trained CNN models. I focus on performing two optimization algorithms, including stochastic 

gradient descent (SGD) and Adam optimizers. The batch size experiments used sizes of 4, 8, 

16, 32, and 64. The learning rate and the number of training epochs are determined as 0.001 and 

100.    



 

 

 

 19 

Table 2  The best performances of the convolutional neural network architectures on the 

EcoCropsAID dataset. 

 

Models Optimizers 
Batch 

Size 
Accuracy 

Training 

Time 

Number of 

Parameters 

InceptionResNetV2 SGD 16 48.00 29min 21s 54,828,261 

MobileNetV2 SGD 32 48.40 5min 16s 2,571,589 

DenseNet201 SGD 64 50.75 14min 31s 18,792,389 

Xception Adam 16 52.99 21min 8s 21,885,485 

ResNet152V2 SGD 64 59.87 19min 25s 58,833,413 

NASNetLarge Adam 8 62.29 1h 21min 87,356,183 

VGG19 SGD 64 85.92 12min 21s 20,149,829 

VGG16 SGD 16 87.57 11min 38s 14,840,133 

 

   Table 2 shows the best convolutional neural network parameters and 

classification performances achieved from eight CNN models. The experiment results show 

that the VGGNet performs much better than other CNN models. The VGG16 significantly 

outperforms the VGG19. Also, VGGNet requires less computation time (it took around 12 

minutes). However, based on my experiments, the worst performance with approximately 48% 

accuracy is the InceptionResNetV2 and MobileNetV2 models. Subsequently, the NASNet 

model requires more computation time and spends around 1 hour and 20 minutes. When 

comparing the accuracy between different optimizers and different batch sizes, I found that 

SGD obtained better results than Adam, except for Xception and NASNetLarge. The Adam 

optimizer performed better when using a small batch size, while the SGD optimizer gave better 

experiments when using a large batch size. Considering the results, as shown in Table 3, I 

selected and performed other experiments based on three CNN models; VGG16, VGG19, and 

NASNet.  
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a)             b) 

 

c) 

Figure 7  The of confusion matrix of a) VGG16, b) VGG19, and c) NASNet models. 

 

   Figure 7 shows the confusion matrix of VGG16, VGG19, and NASNet 

models. The confusion matrix shows that the cassava class was misclassified as belonging to 

the sugarcane class. The VGG16, VGG19, and NASNet misclassified 29, 35, and 92 images, 

respectively and this is because the pattern of the cassava and sugarcane classes are quite 

similar. 

   For data augmentation experiments, the EcoCropsAID dataset is divided 

into a training set 80% (4,320 images) and a test set 20% (1,080 images). As seen from the 

results in Table 3, I experimented with three CNN models, VGG16, VGG19, and NASNet, as 

pre-trained models. I also considered three data augmentation techniques; rotation, width shift, 

and height shift to increase the performance of the CNN models. These data augmentation 

techniques do not destroy the aerial image spectral information (X. Yu, Wu, Luo, & Ren, 2017). 
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I explore the optimal values by configuring the parameters of the data augmentation techniques 

as follows. The rotation technique parameter is 10, 20, and 30 degrees; width and height shift 

parameters are 0.1, 0.2, and 0.3 ratios. As a result, the optimal parameter of the rotation is 10-

degree, width shift (Wshift) is 0.3 ratio, and height shift (Hshift) is 0.6 ratio. It should be noted 

that I examine data augmentation techniques by combining two more data augmentation 

techniques (Pawara, Okafor, Schomaker, & Wiering, 2017); rotation+Wshift, rotation+Hshift, 

Wshift+ Hshift, and Wshift+Hshift. 

 

 

Figure 8  Visualization of three different feature maps, taken from the VGG16 (block1_conv2, 

block3_conv3, block5_conv3). Blue pixels activate a unit, red pixels decrease the activation. 

 

   I also visualize different feature maps of VGG16, which is the best model 

on the EcoCropsAID dataset, as shown in Figure 8. Three feature map layers are illustrated, 

including block1_conv2, block3_conv3, and block5_conv3 and the size of the feature maps is 

14x14, 14x14, and 512x512 pixels, respectively.   
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Table 3  Test accuracy (%) of the CNN architectures and data augmentation techniques on the 

EcoCropsAID dataset. 

Models 
(Data Augmentation) 

Optimizers 
Batch 

Size 
Accuracy 

Training 

Time 

Number of 

Parameters 

NASNet 

(Hshift) 
Adam 8 59.40 

1d 1h 12min 

14s 
87,356,183 

NASNet     

(Rotation+Hshift) 
Adam 8 79.60 

1d 1h 29min 

53s 
87,356,183 

VGG19     

(Rotation+Hshift) 
SGD 64 86.50 6h 23min 47s 20,149,829 

VGG19 

(Hshift) 
SGD 64 88.30 6h 20min 10s 20,149,829 

VGG16     

(Rotation+Hshift) 
SGD 16 91.50 6h 39min 52s 14,840,133 

VGG16  

(Hshift) 
SGD 16 91.50 6h 39min 43s 14,840,133 

 

   Table 3 shows the experimental results of the CNN models and data 

augmentation techniques. The experiments show that the VGG16 (Rotation+Hshift) and 

VGG19 (Hshift) are the best models with an accuracy of 91.50%. These VGGNets spend 

around 6 hours and 30 minutes when training. However, The NASNet (Rotation+Hshift) 

obtains 79.60% accuracy, which is 11.90% lower than the VGGNet models. When training the 

model, the NASNet requires more than 24 hours. The results also showed that the VGG16 

model performed better than VGG19 and NASNet models. It is concluded that the deep layers 

and number of parameters did not affect the land use classification accuracy. 

2.5.2   Experiments with Ensemble Methods  

In these experiments, I have evaluated the ensemble methods consisting of average, 

unweight majority vote (UMV), and weight methods. For the weight method, we optimize the 

weight parameters using the grid-search method. I perform four ensemble CNN methods as 

follows. 1) NASNet (Rotation+Hshift) + VGG19 (Hshift) + VGG16 (Hshift), called E1 model. 

2) VGG16 (Rotation+Hshift) + VGG16 (Rotation+Wshift) + VGG16 (Rotation+Wshift+ 
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Hshift), called E2 model. 3) VGG16 (Rotation+Wshift) + VGG16 (Rotation+Wshift+Hshift) + 

VGG16 (Wshift+Hshift), called E3 model. and 4) VGG16 (Rotation+Hshift) + VGG16 

(Rotation+Wshift) + VGG16 (Wshift+Hshift), called E4 model. 

 

Table 4  Performances of the ensemble CNN methods on the EcoCropsAID dataset. 

Models 

Ensemble Method 

Unweighted Average Weighted Average Unweighted Majority Vote 

E1 92.60 92.60 92.00 

E2 92.40 92.70 91.90 

E3 92.30 92.70 92.30 

E4 92.60 92.80 92.50 

 

   Table 4 provides the accuracy results of three ensemble methods on the 

EcoCropsAID dataset. I observed that the weighted average ensemble method insignificantly 

outperforms the average ensemble method on model E2-E4, but with model E1 it was equally 

accurate.  

   In the grid search experiments, I defined the range of the weighted 

parameters of 0-0.995. I explored the weighted parameters on the training set. The total amount 

of the weighted parameters is equal to one. It took about 18 minutes to search. The best-

weighted parameters for each ensemble CNN model (E1-E4) were as follows; E1 = [0.08, 0.27, 

0.65], E2 = [0.07, 0.86, 0.07], E3 = [0.86, 0.09, 0.05, E4 = [0.07, 0.86, 0.07].  
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a) 

 

b) 

Figure 9  Illustration the confusion matrix of (a) the VGG16 architecture when using 

the data augmentation technique with the height shift technique and (b) the ensemble CNN with 

the weight average method on the EcoCropsAID dataset. 
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Figure 10  The results indicate that (a) several samples of (~29) cassava class are misclassified 

as sugarcane class and (b) (~13) rice class are misclassified as cassava class. 

 

   Additionally, as can be seen from Figure 9, the confusion matrix explains 

that the misclassified from cassava class to sugarcane class is reduced from 29 to 22 images and 

misclassified from sugarcane class to cassava class is reduced from 9 to 2 images. 

Consequently, it can be seen that the ensemble CNN method achieves higher efficiency than 

training with only the individual CNN architecture.  

   The confusion matrix of the VGG architecture is illustrated in Figure 9a. 

The results show that 29 cassava images are misclassified as belonging to the sugarcane class. 

Also, 8 cassava images are misclassified as rice class. Subsequently, 13 rice and 9 sugarcane 

images are misclassified as cassava. When capturing the aerial images at the beginning of the 

cultivation period, the cassava and sugarcane pattern always appear to be similar and it is 

challenging to distinguish between these two classes. The misclassification between the cassava 

and rice classes is shown in Figure 10. Furthermore, the confusion matrix of the ensemble CNN 

method is shown in Figure 9b.  The incidence cassava images being misclassified as the 

sugarcane class is decreased from 29 to 22 images. Also, the misclassification of sugarcane as 

cassava is reduced from 9 to 2 images.  

 

2.6 Conclusions  

In this paper, I have compared several convolutional neural network (CNN) 

architectures to discover the baseline CNN models for land use classification. For land use 

classification, I propose a novel dataset of Thailand's economic crops aerial image called the 

EcoCropsAID. This dataset includes five classes (rice, sugarcane, cassava, rubber, and longan) 
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and contains 5,400 economic crops aerial images collected from the Google Earth program. I 

chose eight CNN models comprising InceptionResNetV2, MobileNetV2, DenseNet201, 

Xception, ResNet152V2, NasNetLarge, VGG16, and VGG19, in order to discover the best 

CNN model. From the experimental results, I conclude that the performance of the VGG16 and 

VGG19 models is unequivocally better than other CNN models. The experiments show that the 

VGG architecture significantly outperforms NASNet with an accuracy of approximately 20% 

and InceptionResNetV2 with 37% accuracy. I have also demonstrated the impact of the data 

augmentation technique. Surprisingly, even the uncomplicated data augmentation techniques, 

such as rotation and height shift, improve the performance of the CNN architectures. The 

accuracy increased by 17.31% when training the NASNet architecture using data augmentation 

techniques. 

I propose the ensemble CNN framework to achieve higher performance of land use 

classification. According to the ensemble method, three ensemble methods are then compared, 

including majority vote, averaging, and weighted average. The experiments showed that the 

three baseline CNN architectures combined with the weighted average ensemble method 

outperform when combined with the other ensemble methods. In order to evaluate the proposed 

framework, my ensemble CNN method achieved the recognition accuracy of 92.80% on the 

EcoCropsAID dataset. Although the ensemble method is an outstanding way to enhance the 

recognition performance, it does not improve the accuracy results if there is a high variance in 

the accuracy between each model. 

In future work, to enhance the performance of land use classification, I will 

experiment on various ensemble methods, such as the snapshot ensemble (Wolpert, 1992); (G. 

Huang et al., 2017) and stacked ensemble (Pari, Sandhya, & Sankar, 2020). I will also consider 

self-supervised feature learning to extract the spatial features (Zheng et al., 2019) from the 

economic crops aerial image and classify the feature vector with other deep learning such as 

long short-term memory (LSTM) network (Z. Sun, Di, & Fang, 2019). I interested in using 

generative adversarial networks (GANs) (Cap, Uga, Kagiwada, & Iyatomi, 2020); (Q. Wu, 

Chen, & Meng, 2020) as the data augmentation technique. 



 

 

 

Chapter 3 

Snapshot Ensemble CNN and New Learning Rate Schedule 

 

The ensemble learning method is a necessary process that provides robustness and is 

more accurate than the single model. The snapshot ensemble convolutional neural network 

(CNN) has been successful and widely used in many domains, such as image classification, 

fault diagnosis, and plant image classification. The advantage of the snapshot ensemble CNN is 

that it combines the cyclic learning rate schedule in the algorithm to snap the best model in each 

cycle. In this research, I proposed the dropCyclic learning rate schedule, which is a step decay to 

decrease the learning rate value in every learning epoch. The dropCyclic can reduce the learning 

rate and find the new local minimum in the subsequent cycle. I evaluated the snapshot ensemble 

CNN method based on three learning rate schedules: cyclic cosine annealing, max-min cyclic 

cosine learning rate scheduler, and dropCyclic then using three backbone CNN architectures: 

MobileNetV2, VGG16, and VGG19. The snapshot ensemble CNN methods were tested on 

three aerial image datasets: UCM, AID, and EcoCropsAID. The proposed dropCyclic learning 

rate schedule outperformed the other learning rate schedules on the UCM dataset and obtained 

high accuracy on the AID and EcoCropsAID datasets. I also compared the proposed 

dropCyclic learning rate schedule with other existing methods. The results show that the 

dropCyclic method achieved higher classification accuracy compared with other existing 

methods. 

 

3.1 Introduction 

Most remote sensing applications have been proposed for scene understanding, 

including scene classification, scene retrieval, and scene-driven object detection (Li, Zhang, & 

Zhu, 2021), and computed based on 11 bands of satellite imagery. However, many published 

datasets have been collected from aerial images that include only three bands (red, green, and 

blue) and proposed for classification, segmentation, and retrieval tasks (Gu, Wang, & Li, 2019). 

In the last decade, traditional methods, including image processing and machine learning, have 

been studied extensively (Prakash, Manconi, & Loew, 2020; Zhang et al., 2020). 
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The appearance of deep learning algorithms has brought about an interest in by 

researchers neural networks. Deep learning algorithms have been applied to solve many 

problems, such as image and video classification, speech recognition, and natural language 

processing.  Additionally, the remote sensing community has shifted its attention to deep 

learning algorithms and succeeded in image analysis, land use and land cover evaluation, scene 

classification, segmentation, object detection, and many other tasks (Ma et al., 2019). The deep 

learning performance depends on the resolution level of remote sensing images. Although, 

many researchers have proposed methods to classify land use and land cover from the moderate 

resolution remote sensing images (Yu et al., 2018). 

The theory of the ensemble learning method is to combine outputs of various machine 

learning and even deep learning models and then decide from many strategies a final prediction 

resulting in better performance (Ganaie, Hu, Tanveer, & Suganthan, 2021). It uses many 

different decision strategies to find the final prediction, such as unweighted average, weighted 

average, majority voting, Bayesian optimal, and stacked generalization. Kulkarni and Kelkar 

used ensemble learning methods to classify multispectral satellite images. Three ensemble 

learning methods were compared (bagging, boosting, and AdaBoosting) and it was found that 

the ensemble learning method achieved better classification results than the single model. Cao 

et al. segmented the building areas from the remote sensing images using a stacking ensemble 

deep learning model. In their method, images were first segmented using three models: FCN-

9s, U-Net, and SegNet followed by, optimizing prediction results using a fully connected 

conditional random field (CRF). Finally, the multilayer features were extracted using a sparse 

autoencoder. Then, the final prediction results were computed using the Euclidean distance 

weighting method. 

Additionally, several researchers have proposed ensemble learning methods for 

classifying satellite images. Minetto et al. proposed an ensemble of convolutional neural 

networks (CNNs) for geospatial land classification. In their method the geospatial images were 

first sent to CNNs to predict the output. Hence, the predicted outputs from CNNs were 

determined as the final output using a majority voting method. Diengdoh et al. used weighted 

and unweighted ensemble learning for land cover classification from the predicted output of 

various machine learning methods. Huang et al.  proposed an ensemble learning method for 

urban land use mapping tasks based on satellite images, street-view images, building footprints, 
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points-of-interest, and social sensing data to explain the associations of land cover, 

socioeconomic activities, and land use categories. 

Furthermore, new kinds of ensemble learning require expensive computation with no 

additional training cost while training neural network models, called snapshot ensemble 

learning (G. Huang et al., 2017). The snapshot ensemble learning method aims to discover 

several local minimum values in one training. While training the model, we defined the number 

of cycles that we desired to snap the best model. For example, defining three cycles will return 

the three best models from each cycle, called snapshot. Further, the best model was snapped at 

the minimum loss value. Additionally, the learning rate schedule was used to quickly reduce the 

training loss value using the cyclic cosine annealing function. In addition, Wen et al. proposed a 

new max-min cosine cyclic learning rate scheduler invented to find the acceptable ranges of 

maximum and minimum learning rates used in training. 

Contribution. In this research, we focus on proposing the new cosine cyclic learning 

rate schedule by adding a step decay function to reduce the learning rate that directly decreases 

the training loss to converge local minimum in each cycle, called dropCyclic. For the 

dropCyclic learning rate schedule, the learning rate starts at the maximum learning rate. Further, 

the training loss decreases to converge on a local minimum while training in the first cycle. In 

the next cycle, the new maximum learning rate, which is a smaller value than the previous 

learning rate, is defined using the dropCyclic method. Consequently, the dropCyclic method 

narrows the learning rate range from the start until the last cycle. The snapshot ensemble CNN 

based on the dropCyclic learning rate schedule is proposed for aerial image classification. The 

proposed method is evaluated on three aerial image datasets: UCM, AID, and EcoCropsAID, 

and achieved good performance. 

Outline of the paper. This paper is organized into five sections, as follows. Surveys of 

the related works are presented in topic 3.2. Topic 3.3 presents the snapshot ensemble CNN for 

aerial image classification and the new learning rate schedule. In topic 3.4, three aerial image 

datasets are briefly described. Topic 3.5 presents the experimental results and discussions. The 

conclusion and future work are presented in Section 6. 
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3.2 Related Work 

In this section, I briefly explain the research related to the ensemble learning and 

snapshot ensemble CNNs, including ensemble learning, snapshot ensemble CNN, and learning 

rate schedules for snapshot ensemble CNN. 

3.2.1 Ensemble learning  

Ensemble learning methods have been a growing research area in recent years. 

In this study, I surveyed ensemble learning methods with only two strategies: decision and 

ensemble. 

1) The decision strategy  

The outputs of other classifiers are combined and classified to the final 

output with various strategies, such as unweighted average, weighted average, majority vote, 

Bayes optimal, and stacked generalization (Ganaie, Hu, Tanveer, & Suganthan, 2021). Kim and 

Lim proposed the ensemble CNNs method to learn on a large vehicle type dataset. The dataset 

contained more than 500,000 images and had 11 classes. The bagging method was used to 

randomly select the training data because the image distribution in each class was imbalanced. 

In the ensemble CNNs, the training images selected using the bagging method were transferred 

to the three CNNs. While training the CNN, the data augmentation techniques (flip, rotation, 

AR-fixed, AR-fixed rotation) were applied. The weighted average method was applied for the 

final prediction and achieved high performance. Minetto et al. used state-of-the-art CNNs 

(ResNet50 and DenseNet161) and a majority voting method for geospatial land classification 

on multispectral images. In the first step, 12 CNN models were created using various settings, 

such as data augmentation, image crop style, and class weighting. The output of this step was 

the probabilities obtained from 12 CNN models. In the second step, the output probabilities 

were classified using the majority voting method. However, the correct prediction was accepted 

when the outputs from the CNNs were correct in more than five models. Their proposed 

method achieved an accuracy of 94.51% on the FMOW dataset. 

Moreover, Diengdoh et al. classified land cover using the ensemble learning 

method based on satellite imagery. Their study classified the land cover images into six classes 

using the unweighted ensemble prediction method. First, four machine learning techniques: K-

nearest neighbor (KNN), naive Bayes (NB), random forest (RF), and support vector machine 

(SVM), were proposed to predict probability outputs. Second, the probability outputs were 
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classified using the unweighted ensemble learning method for the final output. Sefrin et al. used 

three voting methods: unison vote, absolute majority, and no majority, to detect a land cover 

change from time-sequence Sentinel-2 images. The main architecture was the combination 

between the fully convolutional neural network (FCN) and long short-term memory (LSTM), 

called FCN+LSTM architecture. The time-sequence images were first classified by the 

FCN+LSTM model and output as six classification maps and the final output classified using 

the voting method. The results showed that the final predicted class using unison or the absolute 

majority method achieved high accuracy.  

2) The ensemble strategy 

The ensemble strategy uses the weak learner to create a stronger learner and 

minimize errors while training. It also has various ensemble strategies. For instance, the bagging 

ensemble randomly selects subsets of the independent data of the same size. Then, the first, 

second, and 𝑁 subsets are trained using the first, second, and 𝑁 classifiers, respectively. Finally, 

fusing the output of the base classifiers with the majority voting method for predicting the final 

output (Ganaie, Hu, Tanveer, & Suganthan, 2021; Kim & Lim, 2017). The boosting strategy, 

the original data is given to classify using a weak classifier. The original data that was 

misclassified from the weak classifier is weighted, and called weighted data, due to a decrease 

in bias obtained while training the weak classifier. Further, the weighted data is sent to the 

second weak classifier and again weighted to the misclassified data. It could repeat training with 

a weak classifier many times until it obtained the best weak classifier (Kulkarni & Kelkar, 2014). 

The idea of a combination between ensemble strategy (bagging and 

boosting learning) and the CNN-based method was proposed to short-term load forecasting 

(Dong, Qian, & Huang, 2018). In Dong et al., the CNN model was firstly trained on the existing 

dataset to create the pre-trained CNN model. Then, the fine-tuned model was created by 

training the pre-trained CNN model from the first phase with the new dataset. Finally, the weak 

CNN models from phases one and two were constructed to create a robust model. 

Consequently, the average weighted method was used to compute the prediction result.  

Korzh et al. proposed the bagging ensemble and the stacking of CNN to 

classify remote sensing imagery. In their method, image processing techniques were first 

applied to the original images to reduce noise and increase sharpness. Then, the set of the 

original images was sent to CNN models (AlexNet, GoogLeNet, and VGG19) to extract the 
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first feature. Also, the set of processing images was sent to CNN models to extract the second 

feature. Hence, the first and second features of more than 16,000 features were concatenated 

before sending to the machine learning technique. In their experiments, many machine learning 

techniques were compared, including SVM with different kernels (linear, radial basis function, 

polynomial), random forest, logistic regression. As a result, the SVM with a linear kernel 

obtained the highest performance on the Brazilian coffee scenes dataset with an accuracy of 

96.11%. 

3.2.2 Snapshot ensemble CNN 

The snapshot ensemble method was first proposed by Huang et al. The main 

purpose of the snapshot ensembles was to train CNN one time and obtain more CNN models. 

Therefore, while training the original CNN model, the model converged the minimum training 

loss value at the end. Hence, only one CNN model was obtained from the original CNN model. 

On the other hand, cyclic cosine annealing was used to converge multiple training loss values. 

The best CNN model in each cycle was used, called snapshot. Consequently, the output 

probability of each CNN model was calculated using the softmax function. Additionally, the 

unweighted average method was used as the final prediction. The output probabilities were 

averaged and the maximum probability was selected. The snapshot ensemble method was 

evaluated on various image classification datasets and achieved the best performance compared 

with a single CNN model. 

In 2019, Wen et al. proposed a new snapshot ensemble CNN for fault 

diagnosis. The max-min cosine cyclic learning rate scheduler (MMCCLR) was proposed 

instead of cyclic cosine annealing. The log-linear learning rate testing (LogLR) method was 

invented to search the fitting range of the max-min learning rate when encountering new 

datasets. The MMCCLR method was evaluated on three datasets (bearing dataset of Case 

Western Reserve University, self-priming centrifugal pump dataset, and bearing dataset) and 

achieved very high accuracy on three datasets with 99.9%. 

Moreover, Babu and Annavarapu modified the snapshot ensemble method to 

classify COVID-19 from chest X-ray images. For training the CNN model, the pre-trained 

model ResNet50 was used and trained on the chest X-ray images. The data augmentation 

techniques (rotation, zoom, flip, and shift) were also applied while training. Subsequently, the 

weighted average method was used for ensemble learning instead of the unweighted average 

method. Hence, the weighted parameter was updated until it did not improve accuracy 
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performance. The modified snapshot ensemble method achieved 95.18% accuracy on the 

COVID-19 XCR dataset and outperformed existing methods. Puangsuwan and Surinta used the 

snapshot ensemble method to classify plant leaf diseases. Three CNN architectures (VGG16, 

MobileNetV2, InceptionResNetV2, and DenseNet201) were used as the backbone architecture 

of the snapshot ensemble method. The rotation method was used as the data augmentation 

technique while training the CNN models. In the snapshot ensemble method, training the 

DenseNet201 model using four cosine annealing cycles achieved the highest accuracy of 

69.51% on the PlantDoc dataset compared to other ensemble methods (unweighted ensemble 

and weighted ensemble). 

For the aerial images, Dede et al. studied various ensemble strategies (including 

homogeneous, heterogeneous, and snapshot ensemble) to classify aerial scene images. In their 

experiments, two pre-trained CNN models were used: Inception and DenseNet. The snapshot 

ensemble method with Inception as a backbone architecture achieved an accuracy of 96.01% on 

the RESISC45 dataset. However, the snapshot ensemble method did not attain the best 

accuracy on the AID dataset. The best algorithm on the AID dataset was the heterogeneous 

strategy combining Inception and DenseNet and classified using the multi-layer perceptron 

(MLP). It achieved an accuracy of 97.15% on the AID dataset. 

3.2.3 The cyclical learning rate for snapshot ensemble CNN 

The popular optimization algorithm used while training the CNN model is 

stochastic gradient descent (SGD). SGD is used to update parameters of the CNN model until it 

converges to the local minimum value. In the original snapshot ensemble method, the SGD 

optimizer and the cyclic cosine annealing were computed to quickly decrease the training loss to 

converge the local minimum (Huang et al., 2017). The training loss decreased very fast 

compared to the original CNN model. Wen et al. proposed a new snapshot ensemble method 

that used the MMCCLR method to find the range of learning rates. Petrovska et al. used an 

adaptive learning rate schedule with a triangular policy to train the snapshot ensemble method. 

Furthermore, Hung et al. proposed a two-stage cyclical learning rate method using triangular 

methods. The triangular and triangular2 methods were used in the first and second states to find 

the best stable model and required few iterations while training. 
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3.3 Proposed snapshot ensemble CNN for aerial image classification 

The snapshot ensemble CNN was first proposed by Huang et al. with the simple 

concept of finding many local minima values and then snapping the best CNN model at the 

local minimum in each cycle. Subsequently, the outputs of CNN models were combined and 

computed using the ensemble method. The essence of the snapshot ensemble CNN method is 

the cyclic learning rate schedule, which is the cyclic cosine annealing (CCA) schedule. The 

CCA schedule allowed the learning rate to decrease quickly, stimulating the CNN model to 

reach local minimum after a few epochs. The snapshot ensemble CNN produces lower errors 

than a single CNN model. This section briefly describes 1) The cosine cyclic learning rate 

schedule, including cyclic cosine annealing, max-min cosine cyclic, and the proposed 

dropCyclic. 2) The snapshot ensemble method. 

3.3.1 Cosine cyclic learning rate schedule  

1) Cyclic cosine annealing 

The cyclic cosine annealing (CCA) is the primary learning rate schedule of 

the snapshot ensemble CNN method used while training the CNN model. CCA allows the 

CNN to lower the learning rate faster than the traditional CNN model and converge to diverse 

local minimums (Huang et al., 2017). The CCA curve training with 100 epochs and using five 

cycles (M), when 𝑀1 , 𝑀2 , … , 𝑀5 denote the CNN model for each local minimum, as shown in 

Figure 11. The CCA is computed as Equation (1). 

 

𝜂 =  
𝜂𝑖𝑛𝑖𝑡

2
(𝑐𝑜𝑠  (

𝜋𝑚𝑜𝑑(𝑡−1,[𝑇/𝑀])

[𝑇/𝑀]
)  + 1)   (4) 

 

where 𝜂 stands for the learning rate of current iteration, 𝜂𝑖𝑛𝑖𝑡 is the initial learning rate, 𝑡 is for 

the current iteration number, 𝑇 is the total iterations, and 𝑀 is the number of cycles. 

In the CCA, only the initial learning rate (𝜂𝑖𝑛𝑖𝑡) is required to be adjusted. 

As a result, the wrong learning rate will cause the training process to not converge with the local 

minimum at the end of each cycle. 
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Figure 11  Illustration of the cyclic cosine annealing curve training with 100 epochs and using 

five cycles. 

 

2) Max-min cosine cyclic learning rate scheduler 

Wen et al. proposed the max-min cosine cyclic learning rate scheduler 

(MMCCLR). The upper and lower boundaries of the learning rate were proposed to adjust the 

boundary of the learning rate. However, in the MMCCLR, the log linear learning rate test 

(LogLR Test) method was proposed to find the learning rate range, which is the max and min 

learning rates. The LogLR Test method and the MMCCLR are calculated as Equation (5) and 

Equation (6). 

 

𝑙𝑜𝑔10𝜂 = 𝑙𝑜𝑔10𝜂𝑚𝑖𝑛
𝐿𝑅 + (𝑙𝑜𝑔10𝜂𝑚𝑎𝑥

𝐿𝑅 −  𝑙𝑜𝑔10𝜂𝑚𝑖𝑛
𝐿𝑅 ) ×

[𝑡,𝑏] 

[𝑇,𝑏]
   (5) 

 

𝜂 =  𝜂𝑚𝑖𝑛 +
(𝜂𝑚𝑎𝑥 −𝜂𝑚𝑖𝑛 )

2
× (1 + 𝑐𝑜𝑠 (

𝜋𝑚𝑜𝑑(𝑡−1,[𝑇/𝑀𝑏])

[𝑇/𝑀𝑏]
) ) (6) 

 

where 𝜂𝑚𝑖𝑛 is the minimum learning rate and 𝜂𝑚𝑎𝑥 is the maximum learning rate that is tested 

using Equation (5). 
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3) Proposed drop cyclic cosine learning rate schedule 

In this study, I proposed a drop cyclic cosine learning rate schedule, called 

dropCyclic. The dropCyclic is the systematic reduction of the learning rate over a specific time 

during training. This research aims to decrease the learning rate that cuts by a constant factor 

called the drop parameter, every constant number of epochs (see Figure 12), as same as the step 

decay schedule (Ge, Kakade, Kidambi, & Netrapalli, 2019). The dropCyclic is also efficient in 

discovering the diversity of local minimums in each cycle using the c parameter.  

Moreover, in dropCyclic, the maximum learning rate in each cycle is 

changed according to the drop parameter. While the learning rate range is limited, the CNN 

model can faster converge to the local minimum. The equation of the dropCyclic is computed 

as Equation (7). 

 

Figure 12  Illustration of the step decay schedule. 

 

𝜂 =  
𝜂𝑖𝑛𝑖𝑡

2
 × 𝑑𝑟𝑜𝑝

𝑓𝑙𝑜𝑜𝑟((1+𝑡)/𝑐) ×(1+𝑐𝑜𝑠(
𝜋 𝑚𝑜𝑑 ([𝑡,𝑏],[𝑇,/𝑀𝑏])

[𝑇/𝑀𝑏]
))

   (7) 

where 𝜂𝑖𝑛𝑖𝑡 is the initial learning rate, 𝑑𝑟𝑜𝑝 is the step decay parameter that drops the learning 

rate in every 𝑛 epoch, 𝑐 is a constant number that lets the model change to the new local 

minimum in the next cycle. 
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3.3.2 Snapshot ensemble methods 

  The ensemble method is the final step of the snapshot ensemble CNN to 

enhance accuracy based on diverse CNN models from single training. I trained the CNN model 

using the proposed dropCyclic method and snapped the best CNN model from each cycle in the 

previous step. The output probabilities of each CNN computed using the softmax function were 

combined and classified using the unweighted average ensemble method. Indeed, the last 𝑁 

models are significant to have the lowest error. I then normally ensemble the last 𝑁 models. The 

ensemble method is calculated as Equation (8). 

 

𝑦̂ =  
1

𝑀
∑ 𝑓𝑗

𝑀
𝑗=1       (8) 

 

where 𝑀 is the number of CNN models and 𝑓𝑗  is the output probabilities of CNN model 𝑗 that 

is computed using the softmax function. 

 

3.4 Aerial image datasets 

3.4.1 UC merced land use (UCM) dataset   

  Yang and Newsam first proposed the UCM dataset for land use classification 

tasks collected from the USGS national map urban area imagery. The aerial images were 

extracted from large images and divided into 21 classes, such as agricultural, forest, golf course, 

beach, harbor, buildings, medium residual, sparse residential, and dense residential. It is stored 

in the RGB color space image with 256x256x3 pixels. The UCM dataset contains 2,100 images 

and some examples of the UCM dataset are shown in Figure 13. However, the challenge of the 

UCM dataset is that classes of medium residual, sparse residential, and dense residential, are 

similar and difficult to classify, as shown in Figure 14. 
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  a)                        b)                        c)             d)                e) 

Figure 13  Examples of the UCM dataset: a) agricultural, b) beach, c) buildings, d) river, and  

e) tennis court. 

 

 

                       a)                        b)                                  c) 

Figure 14  Illustration of the (a) sparse residential, (b) medium residential, and (c) dense 

residential. 

 

3.4.2 Aerial image dataset (AID) 

  The AID (Xia et al., 2017) was proposed for aerial scene classification tasks. It 

has 10,000 images and contains 30 different aerial scene classes, for example, dense residential, 

medium residential, sparse residential, stadium, industrial, bridge, and baseball field. Each class 

has approximately 200 to 400 images of 600x600 pixels. The AID was collected from the 
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Google Earth application at resolution of 8 to about 0.5 meters. Examples of the AID are shown 

in Figure 15. 

 

 

              a)                         b)                       c)                          d)                e) 

Figure 15  Example aerial images of the AID dataset: a) airport, b) bridge, c) desert, d) pond, 

and e) storage tanks. 

3.4.3 EcocropsAID dataset 

  Thailand's economic crops aerial image dataset (EcoCropsAID) was proposed 

by Noppitak and Surinta for land use classification. The EcoCropsAID dataset was collected 

according to the information on the cultivation of economic crops in different regions between 

2014 and 2018 obtained from Agri-Map Online. The economic crops aerial images were 

collected from the Google Earth application at resolution of 30 to 0.2 meters. The images were 

stored in the RGB format with 600x600 pixels. It has 5,400 aerial images of five classes: rice, 

sugarcane, cassava, rubber, and longan. Example images of the EcoCropAID dataset are shown 

in Figure 16. The challenges of the EcoCropsAID dataset are that the pattern of each class is 

quite similar (see Figure 17), and various patterns occur in the same class (see Figure 18). 
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  a)                         b)                       c)                        d)                e) 

Figure 16  Examples of the EcoCropsAID dataset: a) cassava, b) sugarcane c) longan d) rubber, 

and e) rice. 

 

                                                 a)                    b) 

 

 

      c)                                d) 

Figure 17  Illustration of the similarity patterns between two classes: (a) longan and (b) rubber 

and (c) cassava and (d) rice, of the EcoCropsAID dataset. 
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a)                                b) 

Figure 18  Illustration of the diversity in the patterns of the EcoCropsAID dataset. Examples of 

(a) longan and (b) rubber images. 

 

  The details of the three aerial image datasets used in my experiments are 

summarized in Table 5. 

 

Table 5  The summary of three aerial image datasets: UCM, AID, ECOCropsAID. 

Aerial Image 

Datasets 
Classes 

Images 

per 

Class 

Total 

images 

Image size 

(pixels) 

Resolution 

(meters) 
Year 

Training 

images 

Test 

image 

UCM (Y. Yang & 

Newsam, 2010) 
21 100 2,100 256 x 256 0.3 2010 1,680 420 

AID (G.-S. Xia et 

al., 2017) 
30 

220 to 

420 
10,000 600 x 600 8 to 0.5 2017 5,000 5,000 

EcoCropsAID 

(Sangdaow Noppitak 

& Olarik Surinta, 
2021) 

5 ~1,000 5,400 600 x 600 30 to 0.2 2021 4,320 1,080 

 

3.5  Experimental results and discussion 

I demonstrated the effectiveness of the proposed cyclic learning rate (dropCyclic) and 

compared it with two existing cosine cyclic learning rate methods: cyclic cosine annealing 

(CCA) and the max-min cyclic cosine learning rate scheduler (MMCCLR) on three aerial 
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image datasets. For the backbone of the snapshot ensemble, I compared three CNN 

architectures: MobileNetV2, VGG16, and VGG19.  

All the experiments were trained and evaluated on a Linux operating system using 

Intel(R) Core-i9-9900K CPU @ 3.60GHz x 16, RAM 32GB, and GPU GeForce GTX 1080Ti 

with RAM 11GB GDDR5x. I implemented all snapshot ensemble methods based on the 

TensorFlow deep learning framework with the Keras library. 

3.5.1 Evaluation metrics 

  In this experiment, I used K-fold cross-validation (cv) with K=5 over the 

training set to prevent overfitting problems. Hence, the overall accuracy (%) and standard 

deviation evaluated the training set. Further, test accuracy was used to evaluate the classification 

performance, and the results were compared with existing snapshot ensemble methods. The 

accuracy performance was computed as shown in Equation (9). 

 

𝐴𝐶𝐶 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
 × 100    (9) 

 

where 𝑇𝑃 is a true positive (indicates the positive samples that are correctly classified), 𝑇𝑁 is a 

true negative (indicates the negative samples that are correctly classified), 𝐹𝑃 is a false positive 

(indicates the negative samples that are misclassified), and 𝐹𝑁 is a false negative (indicates the 

positive samples that are misclassified). 

 In order to prevent overfitting problems and compare different learning rate 

methods, I used the loss difference (LD) metric to evaluate snapshot ensemble methods when 

the difference learning rate policy was performed. The LD is the evaluation metric that indicates 

the robustness of the model against the overfitting problems (Wu et al., 2019). Overfitting 

problems appear when the low loss value is on the training set, but the high loss value is on the 

test set. Hence, it results in low accuracy. The smallest LD value shows the robustness of the 

model, which is computed as Equation (10). 

 

 𝐿𝐷 =  𝑣𝑎𝑙𝑖𝑑𝑙𝑜𝑠𝑠  −  𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑙𝑜𝑠𝑠   (10) 

 

where 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑙𝑜𝑠𝑠 and 𝑣𝑎𝑙𝑖𝑑𝑙𝑜𝑠𝑠 are the loss values obtained while training on the 

training set and validation set, respectively.  
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3.5.2 Training setting 

1) Data ratio and number of experiments  

I reported the data ratio and the number of experiments of each dataset. I 

divided the dataset into training, validation, and test sets. I split with the ratio of 4:1:5 for the 

AID dataset and 7:1:2 for the UCM and EcocropsAID datasets. Due to the randomness of the 

training and validation sets, I computed experiments three times and reported the mean 

accuracy and standard deviation on the validation set. Further, I trained the model again on the 

training and validation sets with the best setting and evaluated the test set. 

2) Backbone CNN architectures  

In my previous study (Noppitak & Surinta, 2021), several CNN 

architectures, including InceptionResNetV2, DenseNet201, Xception, ResNet152V2, 

NASNetLarge, MobileNetV2, VGG16, and VGG19 were experimented with. I found that the 

VGG16 and VGG19 achieved the highest accuracy. Subsequently, MobileNetV2 showed 

worse accuracy compared to VGG16 and VGG19. Hence, in this study, I mainly experimented 

with the snapshot ensemble CNN using three state-of-the-art architectures as a backbone CNN: 

VGG16, VGG19 (Simonyan & Zisserman, 2014), and MobileNetV2 (Sandler, Howard, Zhu, 

Zhmoginov, & Chen, 2018); to prove that the snapshot ensemble could manage both the best 

and the worst CNN architectures and also enhance the classification performance on the land 

use images. 

3) Snapshot ensemble methods 

I compared the proposed drop cyclic cosine learning rate schedule 

(dropCyclic) with two existing learning rate schedules: CCA and MMCCLR. I trained the 

snapshot ensemble with 100 epochs and the snapshot parameter with 𝑀 = 5 cycles.  

4) dropCyclic learning rate schedule method  

As shown in Figure 19, I illustrated the learning rate curve of the dropCyclic 

learning rate schedule. The learning rate  was computed using Equation 7.  
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a) 

 
b) 

 
c) 

Figure 19  Illustration of the dropCyclic learning rate curve when the parameters were set as; 

M=5 cycles (20 epochs per cycle),  drop=1.0,0.95,0.85,0.75,0.65,0.50 and , (a) c=5, (b) c=10, 

(c) c=15. 
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The small 𝑐 value made the model capable of escaping the local minimum 

to find a new local minimum, as shown in Figure 19(a). With the large 𝑐 value, the model could 

have the energy to discover a new local minimum, as shown in Figures 19(b) and 19(c). In the 

case of 𝑑𝑟𝑜𝑝 = 1.0, at the first cycle, the maximum learning rate was 0.001 and the learning 

rate decreased in each epoch until zero. In the second cycle, the learning rate started again at 

0.001. Further, in the case of 𝑑𝑟𝑜𝑝 = 0.95, the maximum learning rate in the next cycle was 

slightly dropped until the last cycle according to the 𝑑𝑟𝑜𝑝 parameter. In my dropCyclic 

experiments, the 𝑑𝑟𝑜𝑝 and 𝑐 values were 0.95 and 10, respectively. 

The details of the hyperparameter settings on CNN architectures and the 

learning rate schedule are summarized in Table 6. 

 

Table 6  Summarize the hyperparameter settings of the CNN model and snapshot ensemble 

methods. 

Parameter Settings 
Learning Rate Schedules 

CCA MMCCLR dropCyclic 

CNN 

Parameters 

Image normalization 0-1 0-1 0-1 

Mini batch size 16 16 16 

Data augmentation No No No 

Optimizer SGD SGD SGD 

Momentum 0.9 0.9 0.9 

Learning rate 0.001 
Min = 0 

Max = 0.001 
0.001 

Snapshot 

Ensemble 

Parameters 

Cycle (M) 5 5 5 

𝑑𝑟𝑜𝑝 - - 0.95 

𝑐 - - 10 
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3.5.3 Classification results on the UCM dataset 

  I first observed the optimal learning rate values to confirm that the proposed 

dropCyclic learning rate schedule performs well when using the optimal learning rate. In this 

experiment, I trained the snapshot ensemble learning using the MobileNetV2 as a backbone 

CNN and the proposed dropCyclic learning rate schedule on the UCM dataset. In this study, I 

illustrated the accuracies of various learning rates, including 0.1, 0.01, 0.001, and 0.0001. The 

validation accuracies are shown in Figure 20. 

 

 

Figure 20  The validation accuracy of the snapshot ensemble CNN using MobileNetV2 and the 

dropCyclic method as a learning rate schedule with different learning rate values (0~0.001) on 

the UCM dataset. 

  The scatter plot Figure 20, show that the validation accuracies closed to 

approximately 98% were achieved when the learning rate value reached zero. However, I 

observed that the validation dropped when the learning rate was high. In this study, the 

validation accuracy dropped from approximately 80% to 40% when the learning rates were in 

the range of 0.0008 to 0.0010. 
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a) 

 

 
b) 

 

c) 

Figure 21  Loss error (%) of snapshot ensemble CNN with different learning rate schedule 

methods: CCA (first column), MMCCLR (second column), dropCyclic (third column) and 

CNN architectures: (a) MobileNetV2 (b) VGG16, (c) VGG19, on the UCM dataset. Each 

snapshot ensemble CNN was trained with M=5 cycles. 

 

  Figure 21 presents the test error (%) of snapshot ensemble CNN with different 

learning rate schedule methods. I trained the snapshot ensemble CNN with five cycles, and then 

the test error of the ensemble method when combined one, two, three, four, and five models, 

respectively, were reported. As seen in Figure 21(a) in the third column, the snapshot ensemble 

CNN using MobileNetV2 with dropCyclic learning rate schedule obtained the lowest test error 



 

 

 

 48 

when ensemble with only three models. In comparison, CCA methods achieved the lowest test 

error when ensembled with five models (see Figure 21(a) in the first column). 

  Furthermore, when training the snapshot ensemble CNN using VGG19 with 

MMCCLR and dropCyclic learning rate schedule methods, as shown in Figure 21(c) in the 

second and third columns, the lowest error was achieved by using only one model. Therefore, 

the VGG19 discovered the optimal local minimum at the first cycle according to the number of 

aerial images in the UCM dataset with only 2,100 images. The results are presented in Table 7. 

Table 7  Classification performances (LD, mean validation accuracy, standard 

deviation and test accuracy) of the snapshot ensemble CNN using different learning rate 

schedules: CCA, MMCCLP, dropCyclic and training with different state-of-the-art 

CNNs: MobileNetV2, VGG16, VGG19, on the UCM dataset. 

CNNs LR methods LD Validation Test 

MobileNetV2 

CCA 0.0422 97.30±0.0085 97.14 

MMCCLR 0.0626 97.10±0.0081 96.43 

dropCyclic 0.0560 97.38±0.0050 97.38 

VGG16 

CCA 0.1650 95.47±0.0050 93.57 

MMCCLR 0.1371 95.83±0.0042 93.10 

dropCyclic 0.1965 96.51±0.0054 92.62 

VGG19 

CCA 0.2285 96.98±0.0097 93.10 

MMCCLR 0.1475 96.03±0.0056 93.57 

dropCyclic 0.0896 96.63±0.0020 94.76 

 

  I evaluated the snapshot ensemble CNN using three evaluation metrics: LD, 

validation (mean accuracy and standard deviation), and test accuracy. Note that the LD value 

presented the best method for preventing the overfitting problem. On examining Table 7, I 

discovered that all learning rate schedule methods: CCA, MMCCLR, and proposed dropCyclic, 

can address the problem with overfitting because all learning rate schedule methods achieved 

low LD values. Consequently, the accuracies of the validation and test did not show an 
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enormous difference value. As a result, the proposed dropCyclic learning rate schedule 

outperformed the existing learning rate schedules: CCA and MMCCLR when training the 

CNN model with MobileNetV2 and VGG19 in terms of test accuracy. The proposed 

dropCyclic method also outperformed when training with MobileNetV2 and VGG16 on the 

validation set. In conclusion, the snapshot ensemble CNN using the MobileNetV2 as a 

backbone CNN and the proposed dropCyclic learning rate schedule (𝑑𝑟𝑜𝑝 = 0.95 and 𝑐 =

10) achieved the highest test accuracy of 97.38% on the UCM dataset. 

  I illustrated the confusion matrix to show that the snapshot ensemble CNN 

method can be proposed to learn from many aerial image patterns and even similar patterns 

between two or more classes, such as classes of residentials, including spare, medium, and 

dense. The medium residential was misclassified as sparse residential (2 misclassified images) 

and dense residential (one misclassified image), as shown in Figure 22. 

 

 

Figure 22  The confusion matrix of residential classes: sparse, medium, dense that has a similar 

pattern.  
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Table 8  The performance comparison of the snapshot ensemble CNN using the 

proposed dropCyclic learning rate schedule with existing techniques on the UCM 

dataset. 

Methods Accuracy References 

GoogLeNet 94.31±0.89 G.-S. Xia et al. (2017)  

CaffeNet 95.02±0.81 G.-S. Xia et al. (2017) 

VGG-VD-16 95.21±1.20 G.-S. Xia et al. (2017) 

AlexNet-SPP-SS 96.67±0.94 X. Han, Zhong, Cao, & Zhang (2017)  

GC-DSDM 97.05 Yuan, Li, & Jiang (2017) 

IRELBP+SDSAE 97.61±0.36 Zhao, Mu, Yi, & Yang (2018) 

dropCyclic 97.38  Proposed 

 

  I compared the snapshot ensemble CNN using the proposed dropCyclic 

learning rate schedule with existing methods. The experimental results in Table 8 show that my 

method achieved 97.38% on the UCM dataset and outperformed other methods, except only 

the IRELBP+SDSAE method that slightly obtained better accuracy with 97.61%. 

3.4.4 Classification results on the AID dataset 

  I experimented on a snapshot ensemble CNN using three CNNs: 

MobileNetV2, VGG16, and VGG19 and three learning rate schedules: CCA, MMCCLR, and 

dropCyclic. The test errors of each experiment are illustrated in Figure 23. The graphs show that 

combining more models obtained better performance than using a single model. I obtained the 

lowest test error when using MobileNetV2 as a backbone CNN, as shown in Figure 23(a). 

Furthermore, using the learning rate schedule with the CCA method outperformed other 

learning rate schedules on both validation and test sets. The overall performance is shown in 

Table 9. 
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a) 

 

 

b) 

 

c) 

Figure 23  Loss error (%) of snapshot ensemble CNN with different learning rate schedule 

methods: CCA (first column), MMCCLR (second column), dropCyclic (third column) and 

CNN architectures: (a) MobileNetV2 (b) VGG16, (c) VGG19, on the AID dataset. Each 

snapshot ensemble CNN was trained with M=5 cycles. 
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Table 9  Classification performances of the snapshot ensemble CNN using different 

learning rate schedules and training with different state-of-the-art CNNs on the AID 

dataset. 

CNNs LR methods LD Validation Test 

MobileNetV2 

CCA 0.1498 93.84±0.0121 94.86 

MMCCLR 0.2018 93.28±0.0036 94.70 

dropCyclic 0.2052 93.57±0.0065 94.58 

VGG16 

CCA 0.3217 91.61±0.0084 93.60 

MMCCLR 0.3070 91.27±0.0052 93.02 

dropCyclic 0.2189 91.79±0.0072 93.38 

VGG19 

CCA 0.3695 92.25±0.0022 93.32 

MMCCLR 0.3243 91.47±0.0051 92.24 

dropCyclic 0.3208 91.93±0.0070 93.54 

 

  Table 9 shows the performance of the snapshot ensemble CNN methods on the 

AID dataset, which is an unbalanced dataset because each class has between 220 to 420 aerial 

images (see Figure 24). I used the LD value to measure the overfitting problems that can be 

found when training the CNN model. I found LD values between 0.1-0.3 with all experiments. 

Hence, the test accuracies of all experiments were higher than the validation accuracies. The 

snapshot ensemble CNN can address the problem with overfitting problems. As a result, using 

MobileNetV2 and the CCA learning rate schedule achieved 94.86% accuracy and 

outperformed other methods on the AID dataset. 
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Figure 24  Class distribution of the AID dataset. 

 

  Three models of snapshot ensemble CNN with various learning rate schedules 

were selected for receiver operating characteristic (ROC) comparison, as shown in Figure 25. 

The snapshot ensemble CNN using MobileNetV2 and CCA learning rate schedule attained an 

AUC value of 0.9982. Using VGG16 and the CCA learning rate schedule and VGG19 and the 

dropCyclic learning rate schedule achieved AUC values of 0.9982 and 0.9981, respectively. 

  Consequently, the dropCyclic learning rate schedule outperformed other 

learning rate schedules when training with the VGG19. Moreover, I concluded that the snapshot 

ensemble CNN using MobileNetV2 could address the unbalanced data better than VGG16 and 

VGG19 architectures. 
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Figure 25  Illustration of the ROC curve for snapshot ensemble CNN models. The highlighted 

area is zoomed in at the upper left area of the curve. 

 

Table 10  The performance comparison of the snapshot ensemble CNN using the proposed 

dropCyclic learning rate schedule with existing techniques on the AID dataset. 

Methods Accuracy References 

GoogLeNet 86.39±0.55 G.-S. Xia et al. (2017) 

CaffeNet 89.53±0.31 G.-S. Xia et al. (2017) 

VGG-VD-16 89.64±0.36 G.-S. Xia et al. (2017) 

IRELBP+ SDSAE 94.11±0.55 Zhao et al. (2018) 

dropCyclic 94.58 Proposed 

BiMobileNet 96.87±0.23 D. Yu et al. (2020) 

 

 Table 10 compares the performance of the proposed dropCyclic method with 

other models for aerial image classification. The proposed method outperformed other methods, 

except for the BiMobileNet method. The proposed method achieved an accuracy of 94.58%, 

while the BiMobileNet method obtained an accuracy of 96.87% on the AID dataset. The 

snapshot ensemble CNN method based on the proposed dropCyclic method did not solve the 

unbalanced dataset problem.  
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3.4.5 Classification results on the EcocropsAID dataset 

This experiment discovered that combining only one or two models could 

achieve the lowest test error, as shown in Figure 26. Because the EcoCropsAID dataset has only 

five classes and each class contains ~1,000 aerial images, the CNN models can cope well with 

many patterns in each class and are well classified. The overall performance is shown in Table 

11. 

Table 11 compares the performance of the snapshot ensemble CNN methods 

on the EcoCropsAID dataset. All the snapshot ensemble CNN models were trained using five 

cycles. I found that all the experiments prevented the overfitting problems with the small LD 

values between approximately 0.006 - 0.01. In this experiment, training the VGG16 using the 

dropCyclic and the CCA learning rate schedules achieved the highest validation accuracy of 

99.60%. However, the MMCCLR learning rate schedule slightly outperformed with an 

accuracy of 99.26%. Figure 27 shows the confusion matrix of the snapshot ensemble CNN 

based on dropCyclic and MobileNetV2 on the EcoCropsAID dataset and illustrates only a few 

misclassifications. 

 

Table 11  Classification performances of the snapshot ensemble CNN using different 

learning rate schedules and training with different state-of-the-art CNNs on the 

EcoCropsAID dataset. 

CNNs LR methods LD Validation Test 

MobileNetV2 

CCA 0.0010 99.37±0.0025 99.07 

MMCCLR 0.0061 99.32±0.0012 98.98 

dropCyclic 0.0041 99.43±0.0038 98.98 

VGG16 

CCA 0.0100 99.60±0.0012 99.17 

MMCCLR 0.0098 99.43±0.0017 99.26 

dropCyclic 0.0343 99.60±0.0012 98.98 

VGG19 

CCA 0.0177 99.29±0.0019 98.98 

MMCCLR 0.0280 99.13±0.0027 98.98 

dropCyclic 0.0492 99.12±0.0023 98.89 



 

 

 

 56 

 

a) 

 

 

b) 

 

 

c) 

 

Figure 26  Illustrated loss error (%) of snapshot ensemble CNN with different learning rate 

schedule methods: CCA (first column), MMCCLR (second column), dropCyclic (third 

column) and CNN architectures: (a) MobileNetV2 (b) VGG16, (c) VGG19, on the 

EcoCropsAID dataset. Each snapshot ensemble CNN was trained with M=5 cycles. 
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Figure 27  The confusion matrix of the snapshot ensemble CNN based on dropCyclic and 

MobileNetV2 on the EcoCropsAID dataset. 

 

In addition, I compared the snapshot ensemble CNN based dropCyclic learning 

rate schedule and MobileNetV2 with the existing method (Noppitak & Surinta, 2021). The 

result showed that I proposed method achieved an accuracy that was 6% higher than the 

existing method, which achieved only 92.80%. 

3.6  Discussion 

3.6.1 Loss error curve of the different learning rate schedules 

I discovered that the learning rate parameter directly affects the accuracy of the 

CNN model. Hence, I have seen existing research focused on tuning the learning rate parameter 

(X. Wu, Ward, & Bottou, 2018; Y. Wu et al., 2019; Xue, Li, & Luo, 2022). However, the 

learning rate parameter was not the primary priority in my experiment because the dropCyclic 

method was proposed to change the maximum of the learning rate in each cycle. Further, the 

maximum learning rate was decreased in each cycle according to the drop parameter, as 

presented in Figure 19. 
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a)                  b) 

 

  

        c) 

Figure 28  Illustration of the training loss values when training with the snapshot ensemble 

CNN using the MobileNetV2 and evaluated with various learning rate schedules: CCA, 

MMCCLR, dropCyclic on (a) UCM, (b) AID, and (c) EcoCropsAID datasets. 

 

Figure 28 shows the training loss values of each learning rate schedule: CCA, 

MMCCLR, and dropCyclic when training with the snapshot ensemble CNN using the 

MobileNetV2 on UCM (see Figure 28(a)), AID (see Figure 28(b)), and EcocropsAID (see 

Figure 28(c)) datasets. In this experiment, the hyperparameters were adjusted, as shown in 

Table II. I adjusted the cycle of the snapshot ensemble CNN to 5 cycles. The loss values started 

with a high value and quickly decreased to the lowest, called the local minimum. Subsequently, 

the loss values increased and then decreased again to the lowest value in the next cycle to find 

other local minimum values. I then snapped the best CNN model at the local minimum value of 
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each cycle and used it in the ensemble method. However, only training on the UCM dataset 

showed that the loss value did not increase too much because the aerial images in the UCM 

dataset contained only 2,100 images. Hence, the CNN model can learn and create the model 

that is appropriate with a small number of aerial images. 

3.6.2 Cosine Cyclic Learning Rate Schedule with Max and Min Values 

In my proposed dropCyclic learning rate schedule, I utilized the idea of a step 

decay schedule to drop the learning rate in every epoch by adding the step decay process into 

the cosine cyclic learning rate schedule (see Equation (7)). In my dropCyclic method, only two 

parameters were required. The  𝑑𝑟𝑜𝑝 and 𝑐 parameters. The 𝑑𝑟𝑜𝑝 parameter was proposed as 

a step decay that drops the learning rate by half every 𝑛 epoch. The 𝑐 parameter allows the 

model to shift to the new local minimum in the next cycle, as shown in Figure 19(b). As a 

result, the best dropCyclic parameters were 𝑑𝑟𝑜𝑝 = 0.95 and 𝑐 = 10. Consequently, the 

proposed dropCyclic learning rate schedule outperformed other learning rate schedules on the 

UCM dataset. Further, the proposed dropCyclic learning rate schedule achieved high accuracy 

on the AID and EcoCropsAID aerial image datasets. In conclusion, the proposed dropCyclic 

learning rate schedule has the advantage that it restricts the maximum learning rate in each cycle 

by using step decay parameters: 𝑑𝑟𝑜𝑝 and 𝑐. Hence, the maximum learning rate is not the 

priority parameter required to adjust. 

3.7  Conclusion and future work   

This research proposed a new learning rate schedule called the dropCyclic. I 

developed the concept of the step decay schedule that decreases half of the learning rate value in 

every 𝑐 epoch, call drop. The 𝑑𝑟𝑜𝑝 parameter was contained in the cosine cyclic learning rate 

schedule. It contained two parameters, the 𝑑𝑟𝑜𝑝 and 𝑐 parameters. The benefit of the 

dropCyclic learning rate schedule is that the learning rate was dropped in the next cycle 

according to the drop parameter. The method allows the convolutional neural network (CNN) 

model to discover the new local minimum in the subsequent cycle using the 𝑐 parameter. I 

evaluated the proposed dropCyclic learning rate schedules and the existing methods: cyclic 

cosine annealing (CCA) and max-min cyclic cosine learning rate scheduler (MMCCLR) on 

three aerial image datasets, including UCM, AID, and EcoCropsAID datasets. Three CNN 

architectures were compared for the backbone CNN architectures, consisting of MobileNetV2, 

VGG16, and VGG19. The proposed dropCyclic learning rate schedule achieved the best results 
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on the UCM dataset. The dropCyclic method obtained very high results on the AID and 

EcoCropsAID datasets. In comparison with other methods, the proposed dropCyclic learning 

rate schedule outperformed all methods on the AID and EcoCropsAID datasets, except on the 

UCM dataset for which the IRELBP+SDSAE slightly outperformed the dropCyclic method. 

In future work, I will continue to concentrate on the learning rate schedule, such as 

adaptive learning rate (Yang & Wang, 2020), cyclical learning rate with triangular, triangular2, 

and exp_range policies (Hung, Wu, & Tseng, 2020; Petrovska et al., 2020). Second, I will 

consider extracting the spatial and temporal features instead of extracting them using only CNN 

architectures (Chaib, Yao, Gu, & Amrani, 2017; Petrovska et al., 2020; Phiphitphatphaisit & 

Surinta, 2021). Finally, the unbalanced data is also a big challenge to be addressed and enhance 

the classification performance ( Jiao & Zhao, 2019; Özdemir, Polat, & Alhudhaif, 2021; 

Sambasivam & Opiyo, 2021) 

 

 



 

 

 

Chapter 4 

Instance Segmentation 

 

Land use is constantly changing, and water plays a critical role in the change process. 

If changes are noticed quickly or are predictable, land use planning and policies can be devised 

to mitigate almost any problem. Accordingly, I present a mask region-based convolutional 

neural network (Mask R-CNN) for water body segmentation from aerial images. The system’s 

Aerial image water resources dataset (AIWR) was tested. The AIWR areas were agricultural 

and lowland areas that require rainwater for farming. Many wells were located throughout the 

agricultural areas. The AIWR dataset presents two types of data: natural water bodies and 

artificial water bodies. The two different areas appear as aerial area images that are different in 

colour, shape, size, and similarity. A pre-trained model of Mask R-CNN was used to reduce 

network learning time. ResNet-101 was used as backbone architecture. The aerial images 

gathered in the learning process was limited, and only 720 images were produced. I used data 

augmentation to increase the amount of information for training using affine image 

transformation, including scale, translation, rotation, and shear. The experiment found that mask 

R-CNN architecture can specify the position of the water surface. The evaluation method in this 

case is the mAP value. 

 

4.1 Introduction 

The two terms “land cover” and “land use” are typically used together (Storie & 

Henry, 2018). Over the past ten years the difference between land cover and land use has 

attracted many researchers (Caldas et al., 2015) prompted by a change in land cover to 

accommodate  changes in land use. As such, if land use data are accurate and up-to-date, that 

information can be applied to many objectives, such as city planning, environmental audit or 

evaluation, and national policy (Treitz & Rogan, 2004). 

Elagouz et al. tracked land use in the Nile River, Egypt with RS technology to 

determine the impact of land changes in urban areas during and after the year 2011. The land 

changed because of the unplanned expansion of a nearby city.  (Jazouli, Barakat, Khellouk, 

Rais, & Baghdadi, 2019) said that soil erosion was the most important cause of land 

degradation throughout the world. Jazouli et al. predicted the impact of land use changes, which 
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affect soil erosion, in the Oum Er Rbia basin, Morocco. They studied mountainous areas with 

steep, slopes, and clay soil and such places face a higher risk of soil erosion. Soil erosion is 

sometimes caused by human activities and local weather. Further research would be beneficial 

for generating land use prediction maps, detecting land use changes, and creating yearly 

mapping for soil erosion.    

Nowadays, deep learning research is very popular, For example,  land cover analysis 

research (Storie & Henry, 2018). Such studies used deep neural networks for analysis of 

Landsat 5/7 satellite images to show land cover maps for agriculture, including  agriculture 

areas, water, grass, mixed woodland, and border. (Kussul et al., 2017),  used convolutional 

neural network (CNN), which is the method for classification of recorded images, in remote 

sensing work. The CNN classified recorded images in categories of optical and synthetic 

aperture radar (SAR) derived from Landsat-8 and Sentinel-1A using CNN type one-

dimensional (1-D) and 2-D. The results from CNN were compared with the random forest 

method and the ensemble neural networks technique. 2D-CNN achieved the highest score with 

a 94.6% accuracy rate. However, 2D-CNN still has some problems distinguishing small 

objects. Spatial resolution of the satellite images is 30 meters, which is low resolution.  

Miao et al. presented water body segmentation using restricted receptive field 

deconvolution network (RRF DeconvNet) for extraction of water body from high-resolution 

spectrum images. This method did not require infrared spectrum images, and also decreased the 

blurring boundaries problem by using a new loss function called edges weighting loss 

(EWLoss). I tested this method with a dataset collected from Google Earth. The images from 

Google earth were in the visible spectrum at 50 meters spatial resolution of rural areas at 

Suzhou and Wuhan, China. The experiments showed that RRF DeconvNet method using 

EWLoss obtained an accuracy rate of 96.9%.. 

Wen et al. used Mask R-CNN to segment the building area and the background from 

Google Earth images. They created a new dataset with 2,000 aerial images in Fujian province, 

China. The sizes of images used was in the experiment range from 1,000x1,000 to 

10,000x10,000 pixels. All aerial images were tagged with a label. In the experiment, the 

researcher used a pre-trained model with ResNet architecture. All images were resized to 

500x500 pixels.  The result showed that Instance Segmentation using Mask R-CNN resulted in 

a mean Average Precision (mAP) value at 0.9063.  
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Contribution: This article presents a mask region-based convolutional neural 

network (Mask R-CNN) for water body segmentation from aerial images. This method has 

been called instance segmentation. ResNet-101 was used as backbone architecture. Mask R-

CNN architecture was tested with aerial image water resources dataset (AIWR). The AIWR 

comprises images of agricultural areas in the northeast region of Thailand; these are fertile 

agricultural areas where people grow rice. The areas require rainwater for farming and many 

wells can be identified throughout the agricultural area. Data were collected for two types of 

water body; natural water bodies (W1) and artificial water bodies (W2). The aerial images of 

water bodies were different in color, shape, size, and similarity. This dataset includeds 800 

images, so the AIWR dataset challenges the instance segmentation process.  

This research also attempted to add data augmentation in the category of affine image 

composed of 4 different methods: scale, translation, rotation, and shear. Augmentation 

processes were used only in the training process. Data augmentation would be a random 

parameter value. The images, which trained in each epoch using mask in the R-CNN process, 

were different. The experiments found that data augmentation had improved the performance of 

Mask R-CNN in the instance of the segmentation process when used with AIWR Dataset. The 

result showed better performance for specifying water bodies. The mAP value increases from 

0.30 to 0.59 when the researcher used data augmentation.  

 

4.2 Mask R-CNN Architecture 

Mask R-CNN was presented by (He, Gkioxari, Dollár, & Girshick, 2020) in 2017 for 

improving instance segmentation performance. Mask R-CNN was developed from Faster R-

CNN, which was presented by (Ren, He, Girshick, & Sun, 2017). 

Faster R-CNN was designed to use a convolutional network (ConvNet) for feature 

map extraction of Images. ConvNet can use VGGNet and ZFNet architectures. After that, the 

region proposal network (RPN) was used for inspecting the object areas. RPN operates location 

inspection for each object. The reason for running RPN was to create a bounding box of each 

object, which is called a ROI pooling layer. In the ROI pooling layer, the ROI in each section 

were sent to fully connected layers (FCs) for ROI feature vector calculation before sending the 

value to the softmax function for consideration of ROI as an object. After that, the function will 

predict the object type in ROI as shown in Figure 29. 
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Figure 29  Mask R-CNN Framework 

 

According to the introduction, Faster R-CNN (Ren et al., 2017) is an object detector, 

so this function cannot specify an object in pixel-to-pixel, or it would be referenced to as  

instance segmentation as shown in Figure 30 a). Mask R-CNN has been designed to help 

instance segmentation by using the capabilities of RPN to specify ROI. The next step is to 

segment the ROI areas to specify the edge of an object as shown in Figure 30 b). 

 

 

        a)               b) 

Figure 30  Result from a) Faster R-CNN method and b) Mask R-CNN. 

 

4.2.1  Backbone Architecture 

   The backbone architecture consists of 2 main networks, ConvNet and RPN. 

ConvNet used in this research is ResNet-101 architecture, using a pre-trained model derived 
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from learning of the COCO dataset. This architecture can reduce network learning time. The 

main function of ResNet architecture is to extract feature maps from aerial images, then use the 

region proposal network (RPN) to find the location of an object using ResNet-101 architecture. 

4.2.2  Head Architecture  

   An advantage of Mask R-CNN is that it can perform instance segmentation 

by using the location of any object, derived from RPN, which is another name for the region of 

interest (ROI). The ROI will be considered whether it is an object or not.  If the ROI area is an 

object, then types of an object would be considered in the next step. This step is similar to Faster 

R-CNN. After that, areas will be calculated for intersection over union (IoU). As shown in 

Equation (11), the IoU values are assigned to be greater or equal to 0.5. 

   Any area with an IoU value greater or equal to 0.5 is required to find the 

perimeter of an image. Sometimes, this method is also known as a segmentation mask.  This 

process is an additional process from Faster R-CNN. In each ROI area, there is only one class. 

Then, the semantic segmentation model is created. It is the same as using binary classification to 

distinguish an object from background. 

 

4.3 Aerial Image Water Resources Dataset 

According to the standard of land use code by fundamental geographic data set 

(FGDS), Thailand (GISTDA, 2013) land use classification requires the analysis and 

transformation of satellite images data together with field survey data. In this article, I studied 

only land use in water bodies. The water bodies in this research can be divided into 2 levels: 

natural body of water (W1) artificial body of (W2) water.  

The deep learning method was used for aerial image data analysis. The aerial images 

were derived from Bing map by collecting only data in the northeastern region of Thailand. The 

northeast of Thailand is a lowland area mainly used for growing rice, there are also agricultural 

areas that rely on rainwater for agriculture and as such, there are many ponds in and around the 

agricultural areas.  

The experiments in the study used the Mask R-CNN algorithm which is a suitable 

method for performing instance segmentation.  The model in this experiment can be further 

developed and applied to water management tasks.  Farmers in the northeastern region of 

Thailand can also create water management plans.  
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The aerial image data used in this research was 1:50 meters. Every aerial image had 

650 x 650 pixels.  Those images included water bodies type W1 and W2 as shown in Figure 31 

a). Ground truth of all aerial images was set for before sending it to be analyzed and interpreted 

by remote sensing experts. This assured that the water bodies groupings were correct. An 

example of ground truth, which has been checked by experts as shown in Figure 31 b).  Ground 

truth has been used in learning the algorithm in deep learning mode and was also used in further 

evaluation. 

The aerial images used in this experiment consisteds of water body: types W1 (see, 

Figure 31, Column 1, 2, and 3) and W2 (see, Figure 31 Column 4). The Aerial Image Water 

Resources Dataset, AIWR has 800 images. Data were chosen at random and divided into 3 

sections: training, validation, and test set with ratio 8:1:1. Therefore, 640 aerial images were 

used for learning and creating the model, 80 images were used for validation, and the remaining 

80 images were used for test. 

 

 

a) 

 

b) 

Figure 31  Example of aerial images. a) Water bodies W1 and W2 b) ground truth of 

water resources. 

 

This dataset presents a challenge to the instance segmentation process because the 

water bodies include W1 and W2 types. There are 4 challenging objectives: color, shape, size, 

and similarity as follows. 
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- Color. Figure 32 a) shows that water bodies have different color, for example 

white, blue, gray and black. Some areas are covered by unwanted flora, so the images are seen 

as dark green and black.  

- Shape. The shapes of the areas have different characteristics such as triangles, 

squares, curves, U-shaped and zigzag as shown Figure 32 b). 

- Size. The water body sizes are different. Size measurement in Bing maps found 

that the water bodies sizes range from 10, 20, 30, 60 and 120 meters as shown in Figure 32 c). 

When researchers observe 10 meter wide water sources, only a small point can be seen. 

- Similarity. Aerial images of some water bodies are similar to other types of 

land use, for example flooded areas, water areas that are obscured by trees, or buildings on 

water areas etc. Figure 32 d) uses dotted lines to show areas that have the characteristics as 

mentioned above 

 

4.4 Experiment and discussion  

A deep learning algorithm was used in this research for instance segmentation. This 

method can identify the areas in pixel-to-pixel by using Mask R-CNN architecture. The method 

is suitable for water body segmentation because it can analyze both natural water bodies and 

artificial water bodies. The data were collected from aerial image data from agricultural areas in 

the northeastern region of Thailand, there was a total of 800 aerial imags. Those images were 

divided by the 10-fold cross-validation method. There were 720 images for training, and 80 

images were used for test. All aerial images were resized to 512x512 pixels. 

In this research, the TensorFlow platform was used for training and testing the Mask 

R-CNN algorithm which runs on GPU GeForce GTX 1070 Ti, Intel(R) Core-i5, 7400CPU @ 

3.00GHz, 8GB RAM, Linux operating system. ResNet architecture is backbone architecture for 

learning aerial imagery learning. This research used transfer learning (Bunrit et al., 2019) to 

reduce learning time of ResNet architecture. A pre-trained model of ResNet-101 architecture, 

which was derived from the learning process of COCO dataset, was also used. I then used the 

mentioned model to perform Fine-Tune for adjusting the parameters in order to make it become 

suitable for the AIWR dataset. 

The parameters used for Fine-tune consist of NUM_CLASSES=2, BATCH_ 

SIZE=4, FPN_CLASSIF_FC_LAYERS_SIZE=512, IMAGES_PER_GPU = 1, IMAGE_ 
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MIN_DIM = 512, IMAGE_MAX_DIM = 512, IMAGE_SHAPE=[512, 512, 3],  RPN_ 

ANCHOR_SCALES= (8, 16, 32, 64, 128), STEPS_PER_EPOCH=100, TRAIN_ROIS_ 

PER_IMAGE=32,  VALIDATION_STEPS=5, and LEARNING_RATE=0.0001. 

 

 

a)                       b)             c)                 d) 

 

Figure 32  Challenges of instance segmentation of collected data are a) color, b) shape, c) size, 

and d) similarity. 
 

One of the deep learning problems is that the amount of training data is too small. A 

common way to solve the problem is to perform data augmentation, which can be divided into 

2 groups including the traditional, white-box method or black-box method. Two common 
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methods for image augmentation in traditional transformations are affine image transformations 

and color modification (Mikołajczyk & Grochowski, 2018). 

This research used data augmentation, affine image transformations series, which 

includes scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 

0.2)}, rotate=(-25, 25), and shear=(-8, 8). Examples of aerial images obtained after data 

augmentation are shown in Figure 33. 

 

 

Figure 33  Examples of data augmentation. 

 

4.4.1   Model Evaluation  

   To Evaluate the Mask R-CNN algorithm, I used mean average precision 

(𝑚AP) (Everingham, Van Gool, Williams, Winn, & Zisserman, 2010) ,which is a method for 

evaluating the effectiveness of image retrieval by an intersection over union (𝐼𝑜𝑈) calculation 

from the following Equation (11). 

 

𝐼𝑜𝑈 =  
𝑎𝑟𝑒𝑎(𝐵𝑝  ⋂ 𝐵𝑔𝑡)

𝑎𝑟𝑒𝑎(𝐵𝑝 ⋃ 𝐵𝑔𝑡)
      (11) 
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where 𝐵𝑝  ⋂ 𝐵𝑔𝑡  are the areas of intersection between the predicted area. Ground truth (𝑔𝑡) is 

bounding boxes and  𝐵𝑝 ⋃ 𝐵𝑔𝑡 is the area of union, determined by the value of  𝐼𝑜𝑈 ≥ 0.5 

   After that, true positive (𝑇𝑃), a correct detection, and false positive (𝐹𝑃) (A 

wrong detection) were calculated. The detection was performed with 𝑣𝑎𝑙𝑢𝑒𝑠 ≥ 0.5, false 

negative (𝐹𝑁) (A ground truth not detected) and true negative ( 𝑇𝑁) (corrected misdetection). 

The 𝑇𝑃, 𝐹𝑃, 𝐹𝑁, 𝑇𝑁 value are taken to calculate precision (𝑃) and Recall (𝑅) value.  

   The 𝐴𝑃 value was considered as an average of maximum precision at a set 

of 11-spaced recall levels. Equation (12) is as follows: 

 

𝐴𝑃 =  
1

11
 ∑ 𝑃𝑖𝑛𝑡𝑒𝑟 𝑝(𝑟)𝑟∈{0,0.1,..,1}    (12) 

 

 

with 𝑃𝑖𝑛𝑡𝑒𝑟 𝑝(𝑟) =
max

𝑟̃. 𝑟̃ ≥ 𝑟
 𝑝(𝑟̃) 

 

 

where  𝑝(𝑟̃) is the measured precision at recall 𝑟̃. 

 

   After that, 𝑚AP value is calculated as the following Equation (13). 

 

𝑚AP =  
1

𝑁
∑ APi

𝑁
𝑖=1      (13) 

 

where 𝑁 is number of queries. 

 

4.4.2   Result of Instance Segmentation of Water Bodies  

   Table 12 shows the results of the experiment of mask R-CNN architecture 

to segment water bodies from the AIWR dataset. Augmentation data experiments of AIWR 

dataset were performed by affine image transformations method, including scale, translation, 

rotation, and shear. The result shows that the loss error value from training processes was up to 

1.08. That resulted in the mAP being as low as 0.30, but when I tested again using data 

augmentation, the loss errors were reduced to only 0.41 and the mAP increased to 0.59, which 

is almost 2 times higher. However, the data augmentation process takes 12 days and 9 hours to 

learn.   
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Table 12  The result of the experiment using mask R-CNN with the AIWR Dataset. 

 

Augment Validation loss mAP Training time Test time/image 

False 1.08 0.30 11d 15h 16min 27s 3 µs 

True 0.41 0.59 12d 9h 48min 25s 4 µs 

 

In figure 34 included the data augmentation method in data training in order to create 

a model were applied. The result shows that data augmentation in data training leads to a better 

result of segmentation. Figure 35 demonstrate errors from instance segmentation. This is 

because Figure 35 c) (Row 1) the method cannot segment the river areas covered with trees, and 

Figure 35 c) (Row 2) is the area covered by unwanted flora. 
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            a)               b)            c) 

Figure 34  Result of instance segmentation using mask R-CNN with data augmentation.  

a) Aerial images b) images with ground truth, and c) instance segmentation. 
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   a)                b)                                           c) 

Figure 35  Error results in segmentation. a) Aerial images b) images with ground truth and  

c) error of instance segmentation. 

 

4.5 Conclusion 

This paper evaluated the accuracy of instance segmentation by Mask R-CNN together 

with data augmentation using aerial images of water resources dataset (AIWR). The mAP 

values were used as the measuring method. The areas are the lowlands which require rainwater 

for farming. The challenges of the AIWR dataset arise because it is a collection of images of 2 

types of water bodies; natural water bodies and artificial water bodies. The two types of data are 

different in color, shape, size, and similarity. This paper used a pre-trained model to reduce 

learning time of the Mask R-CNN. This research has shown that the mask R-CNN architecture 

combined with data augmentation can identify the water surface using the mAP value for 

measurement. The value was high as 0.59 and this was almost two times greater than not using 

the data augmentation method.  

Because the data tested is aerial photography obtained from Bing map, only RGB 

colors can be evaluated. If future research can use data from satellites, such as Landsat, which 

has a band specifically for water analysis, the result of an analysis of water bodies with different 

color might give higher accuracy. Any new architecture suitable for water body analysis might 

be used to expect an even higher accuracy rate.    



 

 

 

Chapter 5  

Discussion 

 

In this thesis, I have demonstrated that the proposed algorithms are very efficient for 

improving land use and land cover recognition on aerial images. The findings of this research, I 

contribute two main types of research; classification and segmentation, to address the challenge 

of aerial images using deep learning techniques. I will now briefly discuss the challenges of the 

land use and land cover classification systems and my findings. 

For the classification task, I have demonstrated that the convolutional neural 

networks (CNNs) had many hyperparameters to optimize, such as activation function, learning 

rate, and batch size. There are many techniques to enhance the accuracy of the CNN model, 

including applying data augmentation techniques while training the CNN model and employing 

ensemble CNNs. In this research, I introduce the novel economic crops aerial image dataset, 

called the EcoCropsAID dataset. It is collected in Thailand from five economic crops (rice, 

sugarcane, cassava, rubber, and longan). The aerial images of the economic crops are selected 

based on Agri-Map Online given by the Ministry of Agriculture and Cooperatives and the 

National Electronics and Computer Technology Center (NECTEC). First, I proposed to use 

various CNN models, such as InceptionResNetV2, MobileNetV2, DenseNet201, Xception, 

ResNet12V2, NASNetLarge, VGG16, and VGG19, to classify the economic crops aerial 

images. The experimental results did not guarantee high accuracy. Second, I applied the data 

augmentation with only basic techniques; height shift, width shift, rotation. This technique 

provided better accuracy results when compared with without using data augmentation 

techniques. Third, I proposed to use a snapshot ensemble CNN method to classify the economic 

crops aerial images. The experimental results showed that the snapshot ensemble CNN method 

outperformed the CNNs. Finally, I proposed a novel learning rate schedule that aimed to 

increase the performance of the snapshot ensemble CNN method, called the drop cosine cyclic 

(dropCyclicLR) learning rate schedule. In the dropCyclicLR, only one parameter was required 

to adjust, which was the drop rate. The performance of the snapshot ensemble CNN method 

was improved when using the dropCyclicLR learning rate schedule. 

For the segmentation task, I applied the mask region-based CNN, called mask R-

CNN, to segment the water body from aerial images. In this research, I collected many water 
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body images from Google Earth, namely aerial image water resources dataset (AIWR). It 

contained two types of water bodies: natural and artificial water bodies, which are different in 

color, shape, size, and similarity. For the mask R-CNN, it contained two architectures; 

backbone and head. In the backbone architecture, I combined the ResNet-101 and region 

proposal network (RPN) the find the location of water bodies. In the head architecture, the 

regions detected from the backbone architecture were transferred to segmented the exact area of 

the water bodies. In the experiments, I applied data augmentation techniques; affine image 

transformations and color modification. The experimental result showed that using the data 

augmentation techniques obtained two times higher than not using the data augmentation 

techniques. 

5.1 Answers to the Research Questions 

Objective 1:  I aim to classify land use and land cover of five economic crops from the aerial 

images using CNN methods. I also enhance the performance of the land use classification 

method using ensemble learning methods. 

Research Question 1: In Thailand, the cultivation of economic crops, including rice, 

sugarcane, cassava, rubber, and longan, throughout the country. It is not simple to analyze the 

area of the economic crops, because I need the expert in geographic information systems (GIS) 

and remote sensing (RS) areas to analyze the economic crops area. It requires information from 

other government sections to compute and evaluate. It requires more time to collect the relevant 

information from all sections and incident delays in data analysis by experts will occur. From 

this issue, how can I reduce the waiting time by collecting all information from government 

sections? Could convolutional neural networks (CNNs), a type of deep learning method, 

classify the areas of economic crops from the aerial images? If possible, applying the economic 

crops classification will help the planner, the policy-maker monitor the land use and land cover 

of the economic crops faster. In addition, can the ensemble learning method improve the land 

use and land cover classification performance? 

 In answering the RQ1, I proposed to use the deep learning method for land use and 

land cover. The proposed method used the aerial images for training to create a robust model 

and classifying the output of the aerial images. It could help us to collect the aerial images 

ourselves by collecting data from the google earth program. Consequently, it reduced the 

waiting time that I have to wait for the high-resolution satellite images from government 
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sections. I proposed a new benchmark dataset, namely the EcoCropsAID dataset. This data set 

contained five classes (rice, sugarcane, cassava, rubber, and longan) and has 5,400 aerial images 

that collected the data between 2014 and 2018. 

 This thesis used eight convolutional neural network (CNN) architectures to create 

the model and classify the aerial images. I decided to choose only three CNN models 

(NASNetLarge, VGG19, and VGG16) that obtained high performance on the test set of the 

EcoCropsAID dataset. Further, I combined three data augmentation techniques (rotation, height 

shift, and width shift) while training the CNN models. The experimental results showed that the 

VGG16 models combined with data augmentation techniques obtained accuracy above 90%. It 

proved that I could create a system to classify the economic crops from the aerial images using 

CNN architectures. 

 Moreover, the ensemble CNN model was proposed to enhance the classification in 

economic crops aerial images. The ensemble CNN model combined two parts; ensemble 

CNNs and ensemble learning method. I created an ensemble CNNs consisting of 3 CNNs 

based on the robust CNN models found from the previous step. For the ensemble learning 

method, I proposed to use the weighted average method. Further, the grid-search method was 

proposed to find the optimal weighted parameters of each CNN. As a result, the ensemble CNN 

model obtained better results than using only the single state-of-the-art CNN. 

 

Objective 2:  I proposed to use the snapshot ensemble CNN technique to improve the 

performance of the land use classification from the aerial images. 

Research Question 2: Many types of ensemble learning methods, such as bagging ensemble 

(Duin & Tax, 2005), boosting ensemble (Choi et al., 2019), stacked ensemble (R. Sun, 2019), 

and snapshot ensemble (Bunrit et al., 2019), are proposed to solve the image classification 

problem. Furthermore, the snapshot ensemble CNN method was designed to find the optimal 

CNN models. The cyclic cosine annealing method was proposed to decrease the learning rate 

value while training the CNN model. It made the learning loss of the CNN drop very fast 

compared to the other CNN methods. Consequently, the outputs of optimal models were then 

combined and given to the weighted ensemble learning method to predict the output. Then, can 

the snapshot ensemble CNN method improve the performance of the economic crops 

classification on the aerial images? I am also concerned with the learning algorithm that 
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proposes to decrease the learning loss and also increase the performance of the snapshot 

ensemble CNN. 

 To answer the RQ2, I propose to use the snapshot ensemble CNN method to 

classify aerial images on three aerial image datasets; UCM, AID, and EcoCripsAID. The idea 

of the snapshot is to divide the training iterations into cycles and snap the CNN model at the 

optimal minimum value in each cycle. For example, if the number of cycles was defined at four 

cycles and training the CNN with 100 iterations. Then the CNN models with the lowest loss 

value in every 25 iterations are snapped. Five CNN models in total are obtained. Further, the 5 

CNN models were classified using an unweighted average ensemble learning. When 

classifying the aerial images, the snapshot ensemble CNN method showed a higher 

performance than classifying with using only one CNN. 

   Furthermore, I proposed a new learning rate schedule method called the dropCyclic. 

I trained the snapshot ensemble CNN method based on the proposed dropCyclic learning rate 

schedule and evaluated it on three aerial image datasets; UCM, AID, and EcoCropsAID. The 

experimental results showed that, when training the snapshot ensemble CNN method with the 

proposed dropCyclic learning rate schedule, it outperformed the original snapshot ensemble 

CNN (G. Huang et al., 2017) and the new snapshot ensemble CNN (L. Wen et al., 2019) on the 

UCM datasets. 

 

Objective 3:  I proposed to use the instance segmentation technique to segment the water body 

from the aerial images. 

Research Question 3: When using the LCM model to calculate land use, I found that the 

water resources were reduced each year (Suwanlertcharoen et al., 2013). It may affect 

agriculture because water resources are essential for cultivation. To find the water resources 

areas, the expert always uses geographic information systems (GIS) and remote sensing 

systems to analyze the areas from the high-resolution satellite image. It spent much computation 

time and more money as well. Importantly, is it possible to employ the deep learning method to 

find the water resources from the aerial images? If possible, it will reduce the cost of 

computation. Also, everyone can download aerial images from the general application, such as 

Google maps and analyze the water resources using the deep learning method. Furthermore, if it 

is accurate, I can also analyze the amount of water and plan to manage water usage. 
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 To answer the RQ3, the computing on the high-resolution satellite image was 

ignored because I plan to download the aerial image of water resources from the google earth 

application. Then, I applied the mask region-based CNN (mask R-CNN), which is the instance 

segmentation technique, to find the region of interest (ROI) of the water resource areas. In this 

experiment, the mask R-CNN method could segment two water bodies (natural and artificial). 

The natural and artificial water bodies were varied in color, shape, size, and similarity. 

Furthermore, the data augmentation techniques were included in the training process to increase 

the amount of training data, consisting of affine image transformations and color modification. 

The experimental results showed that the mask R-CNN combined with data augmentation 

techniques obtained two times better performance than without using data augmentation 

techniques. Consequently, the mask R-CNN method spent more computation time, but it 

performed fast when segmentation. 

5.2  Future work 

  Several future works present in the following could be used as a direction for 

researchers who are interested in inventing better land use and land cover recognition systems in 

aerial images using deep learning techniques. I divide the future directions toward two tasks; 

classification and segmentation. 

  For classification techniques, in the case of finding the ensemble learning 

method, I will increase the performance of the snapshot ensemble convolutional neural network 

(CNN) by designing a new learning rate schedule based on the max-min cosine cyclic learning 

rate scheduler (L. Wen et al., 2019) that can decrease the training loss and avoid overfitting 

while training. In addition, the unweighted average method was included in the snapshot 

ensemble CNN. I plan to replace the unweighted average method with the cost-sensitive 

probability method (Rojarath & Songpan, 2021). 

  For segmentation techniques, in recent years, various deep learning 

architectures for aerial images are popular and have been applied to various applications, such 

as segmentation of buildings (X. Li, Jiang, Peng, & Yin, 2019) and environments (urban, 

suburban, and rural) (Morocho-Cayamcela, 2020), to detect the changes caused by a natural 

disaster (Gupta, Watson, & Yin, 2021). I will consider applying the new deep learning methods 

to enhance the performance of the water resource segmentation. In this thesis, the experimental 

results showed that data augmentation could help the deep learning method increase 
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segmentation performance. The new data augmentation techniques, such as generative data 

augmentation (Kumdakcı, Öngün, & Temizel, 2021), generative adversarial networks (GAN) 

(Goodfellow et al., 2020), and MixChannel (Illarionova et al., 2021), will perform when 

training the deep learning models. 
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