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ABSTRACT

Strategic form game (SFG) has been used widely to model inter-related

decision making. Generally, researchers work on a particular game, specified by

certain actions and corresponding payoffs. In real world, the situation can be much

more complex, a particular game may not be enough. Furthermore, the actions and

payoffs are not known a priori. Here, we consider a more realistic environment, where

payoffs are to be optimally computed from given resources and be used by agent for

making decision. We are interested in wider spectrum of outcomes in games, where

payoffs can vary within a trend such that the agents’ strategies remain unchanged.

The results show that there exist certain ranges of resources that agents do not change

there strategies. Hence, agents receive fair payoffs. Furthermore, taking into account

additional computations normally take place in real world environment do not affect

the acceptable computation time for agents payoffs.
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CHAPTER 1

INTRODUCTION

Game theory has been an important area of research in multiagent systems

because it give underpinning principles for interactions, regardless of competition

or cooperation, among agents. While competition, known as non-cooperation, has

received a lot of attention in the past decades due the great success of Nash in winning

the so called Nobel Prize in Economics, cooperation, known as coalition formation

has gained more attention recently. Two of cooperative game theorists have won the

same award twice in 2005 and 2012 respectively.

While non-cooperative games concentrate on how to react wisely to other agents’

strategies, coalition formation concentrate on how to distribute the benefit received

from the cooperation among agents. The distributed benefits to agents are referred to

as payoffs. Many solution concepts for distributing the benefit to agent were proposed,

including the efficiency, stability and fairness. Efficiency means that the payoffs for

agents are efficient. Stability means that the payoffs do not allow any agent to deviate

from their group for higher payoffs. Fairness means that the payoffs was calculated

fairly.

The solution concept for fairness is known as Shapley Value. It was proposed

by Loyd Shapley, the winner of Nobel Prize of Economics in 2012. It has been

regarded highly because it provides the agents fairness, based on their contributions to

the coalitions’ values. However, the concept works in the superadditive environment,

one in which the value of a coalition is not less than that if its constituting coalitions.

It has been shown that we cannot always assume superadditive environment because

larger coalitions may incur some costs hence reducing the values. Such environment

is referred to as non-superadditive. Another complex environment is externalty, one

in which strategies of agents outside a coalition affects its value.

In general, this research investigates the behavioral results of applying Shapley

value in multiple settings. Most interestingly, we propose a simple game, namely

Bakery Game, in which cooperation does not guarantee higher coalition values. The
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total contributions are in the following. In Chapter 3, we investigate fair payoff

division in characteristic function game both in super additive and non super additive.

In Chapter 4, we investigate fair payoff division in Linear production game where

we explore relation ship between value and quantity of resources passed by agents

and their payoffs in cooperative environment. In Chapter 5, we investigate fair payoff

division in Bakery Game where we explore relationship between value quantity of

resources against payoff and strategy of agent in non cooperative environment. In

Chapter 6, we investigate fair payoff division in generic non-cooperative strategic form

game where we explore relationship between agents payoff and their strategies. Fair

can lead to prediction of outcome of games and in reverse design the rule of the game

which will yield desired outcome.

1.1 Objective

This research is to

1. investigate the payoffs for agents under the domain of study.

2. investigate the behavioral results (trends) of applying Shapley value in non-

superadditive environment with externalties. We propose a simple game, namely

Bakery Game, in which cooperation does not guarantee higher coalition values.

3. propose a compensation scheme for agents to help secure the efficiency of the

system.

1.2 Scope

This research will be conducted under the environment below:

1. The number of agents is 15. The complexity of computing Shapley value

is exponential due to the nature of permutation (n!), while computing agents’

contribution. In practice, computing permutation on typical computers can take

up to around 15 agents within reasonable time.

2. The domain of problem is the class of linear production game, namely bakery

game. This game is more complex than the environment Shapley value was
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originally designed. Here, the strategies of agents outside a coalitions affects

its value. In this bakery game, the higher number of goods produced into the

market, the lower the unit price, and eventually the lower the profit.

1.3 Terminology

1. Characteristic function, function of determine coalition value of agent.

2. Coalition, interest centers on when several players together make a binding

agreement to coordinate their efforts in a joint decision which, perhaps, might

not be guaranteed if they acted separately.

3. Coalition Structure (CS) is means of describing how the players in N divide

themselves into mutually exclusive and exhaustive coalitions.

4. Coalition Value, value of agent in coalition.

5. Payoff, the quantitative representation to a player of an outcome.

6. Contribution, value of agent that agent can contribute in coalition.



 

 

 

CHAPTER 2

LITERATURE REVIEW

In real world, many forms of cooperation, including Shapley value, have been used

extensively throughout the years on several domains. Below, we review the recent

works of applying the concepts as shown in Figure. 2.1.

Figure. 2.1. Overview of literature review.

2.1 Resource allocation

In general, resource allocation aims at maximizing profit. Once there are multiple

agents pooling resources, the profit accruing from cooperative agents are to be fairly

distributed among themselves by using Shapley value.

2.1.1 Supply Chain

The first domain we look at is in supply chain. The original Shapley value is extended

to work in uncertain environment into two dimensions , namely expected Shapley

value and α−optimistic Shapley value [15]. They are used to help allocation profits

for supply chain alliance. Since the complexity of computing Shapley value is NP-

Hard, efficiency in using computational power is very important. For the computing

algorithm, this can be implied that it must estimate the fair shares for agents as quickly
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as possible. Bhagat et al. [9] introduce a framework that can work with a wide variety

of game with efficient algorithm. Collaboration among multiple parties can be complex

because disruptions always take place. This needs appropriat protocol to help make

multi-sourcing decision. Seoket et al. [45] introduce the Intelligent Contingent Sourcing

(ICS) protocol, using Shapley value concept to help reach conclusion quickly.

2.1.2 Inventory and Capacity sharing

Most businesses require proper capacity in their inventory in order to keep with

fluctuation in their supplies. However, large amount of supplies stocking requires

large capacity in their inventory. However this may eventually cost them expensively

because of uncertainty in demands. It is recommended that sharing information among

retailers can solve this problem. This can be achieved by a proper coordination

mechanism [61], based on Shapley value. Since computing Shapley value is NP-hard,

it is often that we estimate the value, instead. For a collaboration of upto 100 agents,

greedy heuristic algorithm is used to estimate and achieve satisfactory results, within

0.12% of the optimal solution [21]. To work with decentralized dealer network, Zhao

et al. [65] analyze the problem and propose a model for inventory sharing. The sharing

behaviors are classified into multiple classes. The principle of computing Shapley value

is applied to achieve satisfactory results.

Collaboration among a set of enterprises incurs many challenges. Among these,

communication protocols is very important because it can bring disscussion issues to

conclusion rapidly. Yoon et al. [64] propose a Shapley-based protocol for sharing

their demands and capacities, helping increase demand fulfillment rate and total profit.

Shippling industry also benefit from the concept of Shapley value. One of the

outstanding problems is about settling their account balances. Li et al. [31] use a

Shpaly-based model to help the shipping forwarders to purchase shipping capacity from

each other. after they order capacity from the carrier but before they set the selling

prices. Yoon et al. [63] designed to find efficient demand and capacity sharing decisions

in the CN, by the proposed demand and capacity sharing decisions and protocols can

significantly increase the demand fulfillment rate and the total profit of the CN. Seok

et al. [46] design the Adaptive CDCS(Collaborative Demand and Capacity Sharing)
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protocol based on dynamic contract mechanism. To deal with volatile product demand

and rapidly changing manufacturing technologies for sustainable returns. Lastly, Renna

et al. [43] help reduce capacity investment value with a Shapley-based model.

2.1.3 Decision Support System

Decision support system is also benefited from Shapley value. Schleich et al. [44]

use an algorithm that helps balance inventorry and demand sharing, using deficit

satisfaction, efficientlyl Andres et al. [3] introduce a Shapley value-based principle

to select strategies with higher alignment levels, resulting in successful collaborations

among enterprises.

2.1.4 Logistics Domain

Logistics is a very challenging but important domain. Based on the belief that adequate

cost allocation can increase efficiency in transforming cost allocation among logistic

partners [13]. Complexity in logistics demand a lot of computational power. Kimms et

al. [24] proposed a solution procedure to relax this demanding stress, resulting in shorter

time computation. Defryn et al. [12] optimize different demands of multiple companies

with their own set of objectives, resulting good quality solutions. Renna et al. [42]

proposes a Shapley-based mechanism for coordination in a network of independent

plants, resulting in increasing performances in various environmental conditions.

2.2 Network Domain

Among many domains, Shapley value is extensively used to help distribute packets of

data from differnt sources towards their destination fairly. Althought the most important

aspect of computer networking is to maximize throughput of the network, distributing

packets fairly help increase the network throughput because there is unlikely dominant

users in the network that keep other users waiting for their turns to send data.

2.2.1 Mobile Network and Wireless Network

The first network application is mobile phone. Shapley value can be used to provide

the overall best performance in terms of throughput, fairness, and transmit power
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[28]. However, there can be a slightly higher time complexity. It is recommended

that the cost savings should be dispersed among the cooperating service provider [25]

by applying a game-theoretic framework with axiomatic Shapley value rule. Shapley

value concept can be used in crowd sensing by integrating integrate quality estimation

incentives and surplus sharing Yang et al. [62]. It is shown that Shapley value can be

used to help increase performance of cooperative communication between relays and

base station in MIMO-OFDM framework [7].

The next domain is wireless network. It is shown that coupling heterogeneous

wireless networks (HetNets) and multiple clouds can provide effective response for the

mobile data in cloud computing (MCC) environment [11]. Shapley value can also be

used to provide security in the network as well [58].

2.2.2 Web Service

Another sub-domain is web service. Shapley value is used as the principle algorithm for

providing an efficient community formation mechanism [5]. The experimental results

provide near-optimal decision making mechanisms. Mong et al. [57] theoretically

prove that these inter-cloud coalition formation strategies can help reach subgame

perfect equilibrium. Furthermore, it is shown that inter-cloud coalition can achieve

fair payoffs. Shapley value is extended to a one-shot auction algorithm. Users

submit their bids at the same time. This help improve bandwid performance in

the network [2]. Cooperation among internet service providers (IPS) are an important

factor to performance of the internet. It is proved that IPSs of different regimes on

the traffic demand and network bandwidth can cooperate based on Shapley value for

better performance [30]. In inter data center on demand bandwidth, a Shapley value

based auction is used to achieve first dynamic pricing mechanism that help improve

performance [56]. In addition, a Shapley value based auction can improve throughput

in the network [6].

2.2.3 Network Topology

Designing network topology is a significant factor for network performance. Apostolaras

et al. [4] simulate the operation of the LTE-A network, and conducting test bed
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experiments for the mesh network. It is found that it can achieve significant savings

for eNBs power consumption and reimbursements for mesh users. Oikonomakou

et al. [37] can achieve significant efficiency of energy by switching off scheme by

bankruptcy game. This provide a balanced and satisfactory cost allocation for different

MNO traffic loads. Muros et al. [34] apply Shapley value to improve quantifying

the value of the communication under different control topologies. Sharma et al. [50]

achieve stable solution that combine appropriate penalties or rewards to participants.

2.3 Other Domains

In addition to resource allocations and network, we also review Shapley value in other

domains. The first one to be discussed in in energy industry. Global optimization

is needed for energy saving. This can be achieved by optimizing timetable and

speed profile. This can be achieved by formulating an integrated energy-efficient

timetable and speed profile optimization model [32]. The concept of fairness is

also used in pricing by estate dealer [19]. An optimal dealer pricing model under

transaction uncertainty is used to maximize the dealer’s total wealth, Balancing work

force for fluctuating need is a tough task. We do not know in advance for certain

when the exactly the actual need for work force will take place. However, holding

the workforce in permanent positions can be costly waste. One approach to provide

certainty for this issue is to apply Branch-and-Price approach to find a stable workforce

assignment [14] To help establishing business partners network, Baum et al. [8] state

that variation in age and size affect firm performance. A general equilibrium model

for multiple firms is proposed by Nocke et al. [36]. The model compares some static

information to decide whether firms differ in capabilities. This will eventually be

used to calculate equilibrium. To create value chains across multiple firms [29],

it is important that exploring and exploiting tendencies must be maintained over

time. In addition, conflicting pressures may arise because of absorptive capacity and

organizational inertia.

In hospital industry, it is important to balance between cost and quality to help

attract income [60]. Imbalance between these two can be fatal to the success of this

business. Similarly, construction industry need to ensure their quality of work (labor)
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much match with cost [41]. It is found that a mismatch between the actual role

and position of their workforce can be a fatal factor for the success of the business.

Balancing quality of service and cost is also a fatal factor for service industry [20].

This can be achievd by measuring and comparing service provider performance. the

performance of physicians can be improved by detailing efforts based on the results

of performance measurement. The fairness concept proposed by Shapley value can

generally be applied for the aforementioned problems. Note that balancing different

factors can also bring equilibrium to real world problem [1] that can be modeled as a

non-cooperative strategic game problem.

2.4 Relation to Our Work

It has been shown that the principle of computing Shapley value has been widely

adopted and extended to real world applications for long time. In this research, we

further investigate the results of applying the principle of Shapley value in wider

domains. both in theoretical basis and real world application basis.



 

 

 

CHAPTER 3

SHAPLEY VALUE IN CHARACTERISTIC FUNCTION GAME

In cooperative game, agent payoffs are the key factor to the outcome of the game,

i.e., which coalitions will be formed and what payoffs the agents will achieved. The

solution concepts provide different principles to consider the outcome of the games.

Among many, efficiency is the most often studied concept. However, we suspect that

achieving efficiency for the system may cause some agents their final payoffs which

may not be individually maximal. This research seek to find if there are sacrificing

agents for their global efficiency. And if that is the case how costly such sacrifice will

be. We measure this by using their payoff value.

3.1 Coalition Formation

In contrast to non-cooperative game theory, cooperative game theory allows for agents

to communicate that leads them to cooperation [26] from which they can benefit more

individually. Agents communicate in order to negotiate with regard to whom they can

cooperate and how the joint benefits will be distributed among them. When several

agents make a binding agreement to cooperate, we say a coalition has been formed.

Hence, the cooperative game theories are also known as the theories of coalition

formation [26].

3.1.1 Coalition

Given A = {a1, a2, ..., am} a set of m agents, a coalition is a non-empty subset S of

A, S ⊆ A, S 6= ∅. The set A itself is called the grand coalition while a coalition of

one agent is called singleton coalition. Let S be the set of all coalitions, whose size

of S is (2m − 1). Given a set of 3 agents,

A = {a1, a2, a3},

all the 7 coalitions are

{a1}, {a2}, {a3},
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{a1, a2}, {a1, a3}, {a2, a3}

and {a1, a2, a3}.

As in set theory, the cardinality, |S|, of S is the size of (the number of agents in)

S.

3.1.2 Coalition Structure

Once agents have formed coalitions, they can be viewed as if they have divided

themselves into a mutually exclusive and exhaustive partitions. We define a coalition

structure, CS, as a partition of M . A CS can be described by

CS = {S1, S2, ..., Sm}.

The set of all CS is denoted by CS. For example, given A = {a1, a2, a3}, all CS in S

are

{{a1}, {a2}, {a3}},

{{a1, a2}, {a3}}, {{a1, a3}, {a1}}, {{a2, a3}, {a1}},

{{a1}, {a2}, {a3}}.

A CS has to satisfy three conditions [26]:

1. Sj 6= ∅, j = a1, a2, ..., aM ,

2. Si ∩ Sj = ∅ for all i 6= j, and

3. ∪ Sj= M .

3.1.3 Coalition Value

The joint benefit of a coalition is call the coalition value, which is a numeric value

that usually represents the utility which accrues from their cooperation. There is a

characteristic function [26], υ that assigns a real number to each S, υ : 2M → R We

shall denote the coalition value of S with υS . Hence, a cooperative n-person game in

characteristic function form is defined by the pair (M ; υ) [26]. For example, a game

is given with a characteristic function as shown below:
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υ({a1}) = 2, υ({a2}) = 4, υ({a3}) = 3

υ({a1, a2}) = 5, υ({a1, a3}) = 6

υ({a2, a3}) = 8

υ({a1, a2, a3}) = 10

3.2 Optimal Coalition Structure (OCS)

Given a CS, we define its value,

υ(CS) =
∑
S∈CS

υs,

An optimal coalition structure is a CS∗ such that

υ(CS)∗ = argmax
∑
S∈CS

υs

For example:

υ({a1}, {a2}, {a3}) = 2 + 4 + 3 = 9,

υ({a1, a2}, {a3}) = 5 + 3 = 8,

υ({a1, a3}, {a2}) = 6 + 4 = 10,

υ({a1}, {a2, a3}) = 2 + 8 = 10,

υ({a1, a2, a3}) = 10

(CS)∗ = ({a1, a3}, {a2}), ({a1}, {a2, a3}) and ({a1, a2, a3})

υ(CS)∗ = 10

3.3 Example of Cooperative Game

We now consider the classic Sandal Maker game [22, 47], in which there are five agents

(sandal makers). Agent a1 and a2 make only left sandals, while agents a3, a4, and a5
make right sandals. In one cycle, a left sandal maker can produce 17 sandals, while

a right sandal maker can produce 10 sandals. A single sandal is worth nothing, only

a pair of left and right sandals can be sold for 20 dollars. Obviously, agents need

to form coalitions of left and right sandal makers. Since sandals can only be sold in
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pairs, a singleton coalition or a coalition of the same side sandal makers (left or right

only) cannot sell sandals. Hence, the coalition values are 0. A coalition of agents

capable of producing both left and right sandals will be constrained by the smallest

number of either side. Below is the characteristic function that summarizes coalition

values as shown in table. 3.1:

Table. 3.1. coalition values

Coalitions Value

{a1}, {a2}, {a3}, {a4}, {a5} 0

{a1, a2}, {a3, a4}, {a3, a5}, {a4, a5}, {a3, a4, a5} 0

{a1, a3}, {a1, a4}, {a1, a5}, {a2, a3}, {a2, a4}, {a1, a5} 200

{a1, a3, a4}, {a1, a3, a5}, {a1, a4, a5}, {a2, a3, a4},

{a2, a3, a5}, {a2, a4, a5} 340

{a1, a2, a3}, {a1, a2, a4}, {a1, a2, a5} 200

{a1, a3, a4, a5}, {a2, a3, a4, a5} 340

{a1, a2, a3, a4}, {a1, a2, a3, a5}, {a1, a2, a4, a5} 400

{a1, a2, a3, a4, a5} 600

If agent a1 and a3 agree to make a deal, while player a2 and a4 agree on another

deal, a payoff configuration could be (100, 50, 100, 150, 0; {a1, a3},

{a2, a4}, {a5}). Is this, however, a solution of the game? Since agents are self-

interested, reaching such agreement may not always be this easy because there may be

a chance that some agents are still looking to increase their payoffs. In the following,

we shall explore solution concepts that bring stability to the game.

3.4 Games Environments

3.4.1 Superadditive

Classical research in cooperative game theory considers games within the superadditive

[26] environment in which the value of a coalition is at least as much as the sum of

the values of each pair of its subcoalitions, e.g.,

υ(S∪T ) ≥ υ(S) + υ(T ) for all S, T ⊆M such that S ∩ T = ∅.
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In contrast to superadditive, the subadditive environment is one in which the

coalition value of a given coalition is strictly less than the sums of the coalition

value of each pair of its subcoalitions, e.g.,

υ(S∪T ) < υ(S) + υ(T ) for all S, T ⊆M such that S ∩ T = ∅.

3.4.2 Non-Superadditive

In both environments, there is monotonicity in coalition value based on the size of

coalitions. However, a non-superadditive [27] environment is one in which coalition

values have no relationship to the size of coalitions at all. They are arbitrarily random.

This environment is similar to the real world. It is less explored in cooperative game

theory but has recently received more attention in multi-agent systems research recently

multi-agent systems research recently [51, 54, 52, 10, 53, 55, 49].

3.5 Solution Concepts

Solution concepts are principle ideas that bring about stable state to the game. In

general, agents are assume to be self-interested. They seek to maximize their payoffs.

Agents choose the strategies that maximize their payoffs. There are principles of

fairness, efficiency and stability. Shapley value ensures fairness for agents. The core

enables efficiency for agents in the system. Kernel brings about stability to the system

for agents. In this section we shall briefly discuss Kernel and the Core.

3.5.1 Kernel Solution Concept

Davis and Maschler [23] propose stabilty solution concept, namely, the Kernel. The

kernel balances each pair of agents payoffs in each coalition. For a payoff configuration

(U ;CS) of a given game, a group of agents M may leave their present coalitions to

join a new coalition R.

The excess : e(R;U) = υR − UR [23] is the difference between the value of R

and the sums of their collective payoffs. For any two agents ai, aj in a coalition S, ai
may join R, and aj /∈ R. The largest of these excesses is called the maximum surplus
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of agent ai over agent aj with respect to (U ;CS), e.g.,

Sai,aj = maxR|ai∈R,aj /∈R e(R;U).

Agent ai can claim that it potentially could gain that much payoff. Similarly, agent

aj can do the same. There are three conditions that brings about stability: i) agent ai
has greater maximum surplus than aj and can ask for compensation from agent aj but

not more than aj’s value, ii) agent aj has greater maximum surplus than aj and can

ask for compensation from agent ai but not more than ai’s value. iii) both ai and aj
have the same maximum surplus. When one of these conditions are met for each pair

of ai and aj for every coalition S in a given CS, we call that payoff configuration is

in Kernel.

Let us consider the game [16],

υa1 = υa2 = υa3 = 0;

υa1,a2 = 90; υa1,a3 = 80; υa2,a3 = 70;

υa1,a2,a3 = 105.

Suppose we have a configuration payoff (U ;CS) = (45, 0, 35; {a1, a3}, {a2})

on offer. In order to find if it is in the Kernel, we find its excesses, maximum

surpluses, then equilibrium as follows. Suppose agent a1 and a3 are considering

their coalition {a1, a3}. There are two coalitions that include a1 but exclude

a3, e.g., {a1} and {a1, a2}. The excesses and maximum surplus are

e(a1;U) = υa1 − Ua1 = 0− 45 = −45.

e({a1, a2};U) = υa1,a2 − Ua1 = 90− 45 = 45.

Sa1,a3 = max(−45, 45) = 45.

Similarly, Sa3,1 = 35. Since Sa1,a3 = 45 > Sa3,a1 = 35, agent a1 outweighs

agent a3, i.e. (U ;C) = (45, 0, 35 : {a1, a3}, a2) is not in the Kernel. What about

the (U ;CS) = (50, 30, 25; {a1, a2, a3})? The excesses and maximum surplus between

agent a2 and a3 are:

Sa2,a3 = max(υa2 − Ua2 , υa1,a2 − Ua2) = max(0− 30, 90− 30) = 60.

Sa3,a2 = max(υa3 − Ua3 , υa1, a3 − Ua3) = max(0− 25, 80− 25) = 55.



 

 

 

16

Agent 2 outweighs agent 3, i.e. (50,30,25; {1,2,3}) is not in Kernel. What about

the (U ;C) = (45, 35, 25; {1, 2, 3})? The excesses and maximum surpluses are:

Sa1,a2 = max(0− 45, 80− 70) = 10 = max(0− 35, 70− 60) = Sa2,a1 ,

i.e. player a1 and a2 are in equilibrium.

Sa1,a3 = max(0− 45, 90− 80) = 10 = max(0− 25, 70− 60) = Sa3,a1 ,

i.e. player a1 and a3 are in equilibrium.

Sa2,a3 = max(0− 35, 90− 80) = 10 = max(0− 25, 80− 70) = Sa3,a2 ,

i.e. player a2 and a3 are in equilibrium.

Hence, the (U ;C) = (45, 35, 25; {a1, a2, a3}) is in the Kernel.

3.5.2 The Core

Von Neumann and Morgenstern [17] consider that searching for stable states in a

cooperative game is actually searching for payoff vectors that satisfy all agents. Hence,

there is no incentive for any agent to deviate. They propose the idea of individual

rationality that states that an agent in a coalition will never accept any payoff less than

what it could receive from its singleton coalition, Ui ≥ υi for all i. This individual

rationality is virtually part of every stable state otherwise there will be at least one

agent who deviates in order to satisfy this condition. Von Neumann et al. [17] also

propose that agents should form coalitions such that the sum of coalition values is

maximal. This is referred to as group rationality [17]. Since the environment they

study is superadditive, υM is the largest coalition value. It can be claimed that agents

should refuse any payoff configuration such that
∑
Ui,i∈M < υN . Von Neumann et

al. [17] define group rationality as “the sum of every agent’s payoff in the grand

coalition is equal to the the grand coalition’s value”,
∑
Ui,i∈M = υM . The implication

of this assumption into the general case is that agents should try to maximize the

system’s utility. A payoff vector that satisfies individual and group rationality is called

an imputation.

Based on these rationalities, Gillies [18] defines the last level of rationality, i.e.,

coalitional rationality which requires that the sum of payoffs of agents in any coalition

is not less than the coalition value,
∑
UT ≥ υT for every T ⊆ M . There is no
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incentive for any agent to leave its coalition. Hence, it brings stability to the system.

Gillies [18] names the set of payoff vectors that satisfy all three levels of rationality

as the Core. Of all existing solution concepts in cooperative game theory, the core is

simply the most beneficial concept that brings the most wealth to individual agents,

coalitions, and the system as a whole. However, it is the hardest to satisfy as we shall

cover in detail later.

Let us consider a simple game of 3 agents in a superadditive environment, explained

in [48]. The game is defined by the characteristic function below:

υa1 = υa2 = υa3 = 0

υa1,a2 = 0.25, υa1,a3 = 0.5, υa2,a3 = 0.75

υa1,a2,a3 = 1

A payoff vector (Ua1 , Ua2 , Ua3) is in the core of the game if

Ua1 + Ua2 ≥ υa1,a2 = 0.25

Ua1 + Ua3 ≥ υa1,a3 = 0.5

Ua2 + Ua3 ≥ υa2,a3 = 0.75

Payoff vector (0.25, 0.5, 0.25), for example, meets all three conditions, so it is in the

core.

Let us consider another example, the House Selling game discussed in [17], [48]

which was analyzed by Von Neumann et al. [17]. Agent a1 has a house which it

values at $100,000 and wants to sell it. Agents a2 and a3 are potential buyers, who

each has $200,000 in cash and values the house at $200,000. The coalition value, in

this case, is actually the difference between the amount that buyers and seller value

the house. Because any singleton coalition and a coalition of buyers cannot make

any deal, hence their values are 0. A coalition of agent a1 and one of the buyers is

$100,000. The grand coalition also (theoretically) has the value $100,000 (although

the house can not be divided). Hence, the characteristic function is shown below:

υa1 = υa2 = υa3 = 0

υa1,a2 = υa1,a3 = 100, 000, υa2,a3 = 0

υa1,a2,a3 = 100, 000
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The core of this game is the set of payoff vectors (U1, U2, U3) with U1 + U2 ≥

100, 000, U1 +U3 ≥ 100, 000 and U2 +U3 ≥ 0. The only payoff vector which satisfies

these conditions is (10,000,000). It implies that agent a1sells the house to either agent

a1 or a2 with the maximum possible price of $200,000. The only agent who gets all

the benefit of this economic cooperation is agent a1. The negotiation that may lead to

this conclusion could be agent a2 offers $150,000to agent a1. Agent a3 then raises the

bid by offering agent a1 $175,000, and so on. As long as the offer is below $200,000,

there is a chance both agents can raise the bids.

Now, let us consider the Sandal game. Since the largest amount possible is $600,

the proposed payoff vector (100, 50, 100, 150, 0) is definitely not in the core because

it is not group rational. Payoff Vector (120, 120, 120, 120, 120) is in the core because

it satisfies individual, group and coalitional rationality. No agent can deviate and be

better off.

3.6 Shapley Value

There are several solution concepts in coalition formaiton, Shapley value[39]. Here,

we briefly review Shapley value as it is the main issue of the paper.

Shapley Value is calculated based on each agent’s contribution to the value of the

coalition. Starting from the beginning, we consider that a coalition Si+ is formed by a

new agent ai joining an existing coalition S. The increased value of the new coalition

is the contribution of the joining agent to the coalition. The number of ways or orders

of which agents join the coalition is actually the number of permutations of members

of that coalition. The payoff for each agent is average contribution of the agent over

all permutation.

Given a characteristic function game, we can summarize that there are two steps

in computing Shapley value of a coalition.

1. For the given coalition, compute all the permutations of coalition members.

2. For each permutation, compute the contribution of each agent, starting from the

first agent on the left, to the last member on the right
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3. For each agent, sum the contribution of each agent over all permutation and

divide it with the number of permutations for the average contribution, which is

the agent’s payoff. See Algorithm 1.

3.6.1 Shapley Value Algorithm

Algorithm 1 Shapley Value Algorithm
1: procedure
2: Set a = noa
3: for each p ∈ P do
4: Set aj = null
5: for each aj ∈ p do
6: Set S(aj) = S(ak)

⋃
aj

7: CP
ak

= v(Sak)− v(Saj)

8: S(aj) = S(ak)

9: end for
10: for each aj ∈ a do
11: C(aj, p) =

∑P
i=0C

P
ak

12: S(aj) = S(ak)

13: end for
14: Arg = 1/a C(aj ,p)

15: end for

For example:

consider characteristic function of this game following :

υ(a1) = 2, υ(a2) = 4, υ(a3) = 3,

υ(a1, a2) = 5, υ(a1, a3) = 6, υ(a1, a3) = 8,

υ(a1, a2, a3) = 10,

In step 1),Computing all the permutation from number of agents in coalition that

contribute payoffs by n! so from the example there are 3 agents = 3!, this is 6

permutations:

{a1, a2, a3}, {a1, a3, a2}, {a2, a1, a3},
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{a2, a3, a1}, {a3, a1, a2} and{a3, a2, a1}.

In step 2), we compute the contribution of each agent. At the beginning, there is no

member in the coalition. The value υ(S)) is ∅. Then agent a1 joins the coalition. Its

contribution is

δ(υ) = υ(Si+)− υ(S) = 2− ∅ = 0.

The next coalition member is then a2, its contribution is

υ(Sa1,a2 )
− υ(Sa1 )

= 5− 2 = 3.

Hence, the contribution of agent a3 is

υ(Sa1,a2,a3 )
− υ(Sa1,a2 )

= 10− 5 = 5.

We repeat this calculation for each agent in the remaining permutations. The

contributions of each agent are shown in the table 3.2.

In step 3), we sum the contributions of each agent,

Contribution of agent a1 :

2 + 2 + 1 + 2 + 3 + 2 = 12

Contribution of agent a2 :

3 + 4 + 4 + 4 + 4 + 5 = 24

Contribution of agent a3 :

5 + 4 + 5 + 4 + 3 + 3 = 24.

In step 4), divide the contribution with 6 permutations for the payoff of each agent,

i.e.

Payoff of agent a1 = 2

Payoff of agent a2 = 4

Payoff of agent a3 = 4.
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According to the results in the table 3.2.

Table. 3.2. For example Contribution By Shapley value

Contribution

Order of Agents

a1 a2 a3

{a1, a2, a3} 2 3 5

{a1, a3, a2} 2 4 4

{a2, a1, a3} 1 4 5

{a2, a3, a1} 2 4 4

{a3, a1, a2} 3 4 3

{a3, a2, a1} 2 5 3

Sum of Contribution 12 24 24

Average Contribution 2 4 4

3.7 Experiment Setting

We assume superadditive environment. It is important that this characteristic must be

preserved. This must be done carefully through every subset when a new coalition

is formed so that υ(S∪T ) ≥ υ(S) + υ(T ) is consistent. The Cup and Cap as shown in

Figure 3.1 ( d ) and ( e ) various shapes of distribution can be done at cardinality: 1)

Consequent coalitions may not have the shapes, 2) Non-superadditive Data distributions

is preserved at all cardinalities.

Table. 3.3. Setting value of agent

Agent 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8

% 50% 30% 25% 20% 16% 14% 12% 11%

Agent 0-9 0-10 0-11 0-12 0-13 0-14 0-15

% 10% 6% 5% 4% 3% 2% 1%

For each of these setting, the coalition value will be initialize as per the tread of

singleton agents value. Then the new coalition will be formed by adding each agents
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to each of the available coalition and the new coalition value will be generated by a

random in uniform distribution function to increase the value by to 3. This process is

repeat for 14 time, i.e.,form conditionality 1 to 15. Then the whole process is repeated

for 100 times. The final payoff for agents are teen averaged.

(a) STA. (b) INC.

(c) DCD. (d) CAP.

(e) CUP.

Figure. 3.1. Initiative value.

Figure 3.1 show 5 Data Distribution types, including. 1) STA, 2) IND, 3) DCD, 4)

Cup and 5) Cap,by consider the following example of CS that have coalition values

listed in |S|, that 2 cardinalities including |S| = 4, 1 and |S| = 3, 2. The details are

as follows data distribution used to define characteristic function divided into 5 data

distribution types including
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1) STA: This is uniform distribution that the value of CS is always the same,

which value in 2 cardinalities as shown in table 3.4.

Table. 3.4. For example Increase value of coalition in superadditive

|S| = {4}, {1} |S| = {3}, {2}

CS of agents Value CS of agents Value

{1, 2, 3, 4}, {5} 15 {3, 4, 5}, {1, 2} 16

{1, 2, 3, 5}, {4} 16 {2, 4, 5}, {1, 3} 17

{1, 2, 4, 5}, {3} 22 {2, 3, 5}, {1, 4} 18

{1, 3, 4, 5}, {2} 23 {2, 3, 4}, {1, 5} 19

{2, 3, 4, 5}, {1} 24 {1, 4, 5}, {2, 3} 20

{1, 3, 5}, {2, 4} 21

{1, 3, 4}, {2, 5} 22

{1, 2, 5}, {3, 4} 23

{1, 2, 4}, {3, 5} 24

{1, 2, 3}, {4, 5} 25

2) INC: The maximal coalition values increase by the cardinalities. (Note that

although this is similar to superadditive but it is not quite the same.) which value in

2 cardinalities. as shown in table 3.5
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Table. 3.5. For example Uniform value of coalition in superadditive

|S| = {4}, {1} |S| = {3}, {2}

CS of agents Value CS of agents Value

{1, 2, 3, 4}, {5} 7 {3, 4, 5}, {1, 2} 10

{1, 2, 3, 5}, {4} 7 {2, 4, 5}, {1, 3} 10

{1, 2, 4, 5}, {3} 7 {2, 3, 5}, {1, 4} 10

{1, 3, 4, 5}, {2} 7 {2, 3, 4}, {1, 5} 10

{2, 3, 4, 5}, {1} 7 {1, 4, 5}, {2, 3} 10

{1, 3, 5}, {2, 4} 10

{1, 3, 4}, {2, 5} 10

{1, 2, 5}, {3, 4} 10

{1, 2, 4}, {3, 5} 10

{1, 2, 3}, {4, 5} 10

3) DCD: The maximal coalition values decrease by the cardinalities. Again, it is

similar but is not subadditive, whose value in 2 cardinalities as shown in table 3.6

Table. 3.6. For example DCD value of coalition in superadditive

|S| = {4}, {1} |S| = {3}, {2}

CS of agents Value CS of agents Value

{1, 2, 3, 4}, {5} 20 {3, 4, 5}, {1, 2} 25

{1, 2, 3, 5}, {4} 19 {2, 4, 5}, {1, 3} 24

{1, 2, 4, 5}, {3} 18 {2, 3, 5}, {1, 4} 23

{1, 3, 4, 5}, {2} 17 {2, 3, 4}, {1, 5} 22

{2, 3, 4, 5}, {1} 16 {1, 4, 5}, {2, 3} 21

{1, 3, 5}, {2, 4} 20

{1, 3, 4}, {2, 5} 19

{1, 2, 5}, {3, 4} 18

{1, 2, 4}, {3, 5} 17

{1, 2, 3}, {4, 5} 18
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4) Cap: This is normal distribution which value in 2 cardinalities as shown in table

3.7

Table. 3.7. For example Cap value of coalition in superadditive

|S| = {4}, {1} |S| = {3}, {2}

CS of agents Value CS of agents Value

{1, 2, 3, 4}, {5} 17 {3, 4, 5}, {1, 2} 16

{1, 2, 3, 5}, {4} 26 {2, 4, 5}, {1, 3} 18

{1, 2, 4, 5}, {3} 30 {2, 3, 5}, {1, 4} 21

{1, 3, 4, 5}, {2} 27 {2, 3, 4}, {1, 5} 25

{2, 3, 4, 5}, {1} 16 {1, 4, 5}, {2, 3} 30

{1, 3, 5}, {2, 4} 27

{1, 3, 4}, {2, 5} 23

{1, 2, 5}, {3, 4} 18

{1, 2, 4}, {3, 5} 15

{1, 2, 3}, {4, 5} 14

5) Cup: The maximal coalition values on cardinalities 1 and n are high and decrease

towards the medium cardinalities, whose value in 2 cardinalities as shown in table. 3.8
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Table. 3.8. For example Cup value of coalition in superadditive

|S| = {4}, {1} |S| = {3}, {2}

CS of agents Value CS of agents Value

{1, 2, 3, 4}, {5} 32 {3, 4, 5}, {1, 2} 34

{1, 2, 3, 5}, {4} 21 {2, 4, 5}, {1, 3} 23

{1, 2, 4, 5}, {3} 16 {2, 3, 5}, {1, 4} 20

{1, 3, 4, 5}, {2} 19 {2, 3, 4}, {1, 5} 18

{2, 3, 4, 5}, {1} 30 {1, 4, 5}, {2, 3} 17

{1, 3, 5}, {2, 4} 19

{1, 3, 4}, {2, 5} 22

{1, 2, 5}, {3, 4} 24

{1, 2, 4}, {3, 5} 31

{1, 2, 3}, {4, 5} 32

3.8 Results

In this section, we assign different patterns of coalition values and observe the the

average and final payoffs of agents for different coalition sizes. There are five

distribution patterns to consider, including STA, INC, DCD, CAP and CUP.

3.8.1 STA Results

As shown in Figure 3.2 (a), the average payoffs tend to increase very slowly when the

size of coalition increases. However, the final payoffs for agents have similar patterns

to the coalition values, as shown in Figure 3.2 (b).
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(a) Average payoffs of STA (b) Final payoffs of STA

Figure. 3.2. STA Result Average payoffs (a) and final payoffs (b).

3.8.2 INC Results

As shown in Figure 3.3 (a), the average payoffs tend to decrease sharply for small

coalitions. For medium an large coalitions, their average payoffs decrease slowly.

However, the final payoffs for agents have similar patterns to the coalition values, as

shown in Figure 3.3 (b).

(a) Average payoffs of INC (b) Final payoffs of INC

Figure. 3.3. INC Result Average payoffs (a) and final payoffs (b).

3.8.3 DCD Results

As shown in Figure 3.4 (a), the average payoffs tend to decrease sharply for small

coalitions. For medium an large coalitions, their average payoffs are quite stable.

However, the final payoffs for agents have similar patterns to the coalition values, as

shown in Figure 3.4 (b).
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(a) Average payoffs of DCD (b) Final payoffs of DCD

Figure. 3.4. DDC Result Average payoffs (a) and final payoffs (b).

3.8.4 CAP Results

As shown in Figure 3.5 (a), the average payoffs tend to decrease sharply for small

coalitions. For medium an large coalitions, their average payoffs are quite stable.

However, the final payoffs for agents have similar patterns to the coalition values, as

shown in Figure 3.5 (b).

(a) Average payoffs of CAP (b) Final payoffs of CAP

Figure. 3.5. CAP Result Average payoffs (a) and final payoffs (b).

3.8.5 CUP Results

As shown in Figure 3.6 (a), the average payoffs tend to decrease when the size of the

coalition increases. However, the final payoffs for agents have similar patterns to the

coalition values, as shown in Figure 3.6 (b).
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(a) Average payoffs of CUP (b) Final payoffs of CUP

Figure. 3.6. CUP Result Average payoffs (a) and final payoffs (b).

3.9 conclusion

In this chapter, we explore the final payoffs of agents whether they are affected by

any pattern of coalition values under Shapley value. We have five coalition value

distribution patterns, namely STA, INC, DEC, CAP and CUP. As we can see, the

final agents payoffs are still in the same trends as their original values. However, the

average payoffs of agents in coalition of different sizes are affected by these patterns.



 

 

 

CHAPTER 4

FAIR PAYOFF IN LINEAR PRODUCTION GAME

In this chapter the we turn our attention to the classic linear production game and

a couple of its variants. In contrast to characteristic function game in which the

coalition value of each coalition is known a prior, agents are given resources and

valeted information than compete coalition values for making decision. This is more

realistic in real world settings. We want to find out relationship of agents resources,

their values, agents decisions and their payoffs.

In the following sections, we will firstly review the original works that we based

our research upon, i.e. game [40, 59]. For the sake of completeness, we briefly

review these works in section 4.1, 4.2, and 4.3, as they were presented. These works

generally do not take into account the computation for payoffs. However, they propose

two different settings. Then we will present our own work in section 4.4, 4.5 examine

agent payoffs given different resources distribution and conclude.

4.1 Generic Case

4.1.1 Linear Production Game

Here, we present the setting of linear production game [40] in non-superadditive

environments, which is the foundation of our work.

Let A = {a1, a2, ..., am} be a set of m agents, whose goals are to maximize the their

individual profit. Let R = {r1, r2..., rn} be a set of n resources. Let G = {g1, g2, ..., go}

be a set of o goods. Resources themselves are not valuable but they can be used to

produce goods. The linear technology matrix [40] L = [αi,j]n×o, where αi,j ∈ Z+,

1 ≤ i ≤ n and 1 ≤ j ≤ o, specifies the units of each resource ri ∈ R required to

produce a unit of the good gj ∈ G. The price of each unit of goods produced is

specified by the vector P = [pj]1×o . Each agent ak ∈ A where 1 ≤ k ≤ m, is

given a resource bundle. The Available Resource matrix B = [βi,k]n×m specifies the

number of resource ri possessed by agent ak. In this setting, some agents would have

the incentive to cooperate, e.g., if they cannot produce a certain good using only the
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resources at their disposal. Hence agents have to cooperate, i.e. form coalitions, in

order to create value from their resources. Let S ⊆ A be a coalition. It will have a

total of

bi =
∑

1≤k≤m

βi,k (4.1)

of the ith resource. The members of coalition S can use all these resources to

produce any vector x = 〈x1, x2, . . . , xo〉 of goods constraints:

α1,1x1 + α1,2x2 + . . .+ αo,1xo ≤ b1,

α2,1x1 + α2,2x2 + . . .+ αo,2xo ≤ b2,

... ... ...,

αm,1x1 + αm,2x2 + . . .+ αo,mxo ≤ bm

(4.2)

and

x1, x2, . . . , xo ≥ 0. (4.3)

We assume that agents have to pool their resources together at a coalition member’s

location to produce these goods. This game can be summarized by Table 4.1.

Table. 4.1. Formulation Linear Production Game

Agent Total Amount L

a1 a2 ... am of Resource g1 g2 ... go Resource
β1,1 β1,2 ... β1,m b1 α1,1 α1,2 ... α1,o r1

β2,1 β2,2 ... β2,m b2 α2,1 α2,2 ... α2,o r2
... ... ... ...

βn,1 βn,2 ... βn,m bn αn,1 αn,2 ... αn,o rn

Price p1 p2 ... po

Thus agents’ cooperation incurs some costs, e.g., transportation cost, etc. The

cooperation cost among agents is specified by the matrix C = [ckl]m×m, which assigns
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a cooperation cost between each pair (ak, al) of agents such that

ckl ∈

 Z+ if k 6= l

{0} if k = l

(4.4)

We assume that all of the resources of agents are pooled at one location, which can

be the location of any agent in the coalition. A singleton coalition yields cooperation

cost of 0. For a coalition of size two, S = {a1, a2}, pooling coalition resources at any

of the two sites yield the same cost for the coalition (i.e. the cooperation cost matrix

is symmetric). The total cost for cooperation incurred by a coalition will be taken

to be the sum of the pairwise cooperation costs between the agent at whose location

coalition resources are pooled, and the other members of coalition. For a coalition of

size three or larger, there is at least one agent, ak, such that

m∑
k′=1

ckk′ ≤
m∑
l′=1

cll′ (4.5)

for all al ∈ S. We shall call a coalition member ak who yields the minimal cooperation

cost for the coalition a coalition center.

Agents in the coalition S have to find a vector x to maximize the revenue accruing

to a coalition. Let

PS =
o∑
l=1

plxl. (4.6)

be the maximal revenue the coalition can generate. Let

CS =
∑
l∈S

ckl. (4.7)

be the minimal cooperation cost for the coalition (obtained by selecting the optimal

coalition center). Obviously, the ultimate objective of agents in the coalition is to

maximize profit, i.e., the coalition value υS , where

υS = PS − CS. (4.8)

The linear inequalities referred to above, together with this objective function

constitutes a linear programming problem. We shall call the solution, the vector
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〈x1, x2, . . . , xo〉 that represents the optimal quantities of goods g1, g2, . . . , go optimal

product mix.

4.2 Case Study: Game 1

Based on the original linear production game [40], Owen further investigate for an

outcome of a game by considering a production game [40] with two resources, and

three types of players, with initial resource bundles

b1 = (6, 1), b2 = (4−
√

2, 4), b3 = (
√

2, 5)

Owen assumes that is only one product, a unit of which requires one unit of each

of the resources, and can be sold for $2. then

b(N) = (10, 10)

and the dual problem takes the form

v(N) = min10y1 + 10y2,

subject to y1 + y2 ≥ 2, y1, y2 ≥ 0.

It is found that the equilibrium here is not unique; in fact, any vector

y1 + y2 = 2, y1 ≥ 0, y2 ≥ 0

will solve the linear program. In particular y1 = y2 = 1 will solve the program, giving

the payoffs u1 = 7, u2 = 8−
√

2, u3 = 5 +
√

2 to the three types.

Owen then consider, the payoff

u(∈) = (7+ ∈1, 8−
√

2+ ∈2, 5 +
√

2+ ∈3),

where the ∈i are small numbers, satisfying ∈1 + ∈2 + ∈3= 0. Owen shows that for

any r, u(∈) will belong to the core for all sufficiently small ∈.
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In fact, suppose S has Zi players of type i(i = 1, 2, 3), where zi ≥ r. Then

b1(S) = 6z1 + (4−
√

2)z2 +
√

2z3,

b2(S) = z1 + 4z2 + 5z3,

and so, since each unit of the product sells for $2.00

v(S) = min

 12z1 + (8− 2
√

2)z2 +
√

2z3,

2z1 + 8z2 + 10z3.

Since v(S) is the smaller of these two numbers, it cannot be more than half their

sum, and so there exists the inequality

v(S) 6 7z1 + (8−
√

2)z2 + (5 +
√

2)z3 (4.9)

with equality holding if and only if

12z1 + (8− 2
√

2)z2 + 2
√

2z3 = 2z1 + 8z2 + 10z3

or

10z1 − 2
√

2z2 + (2
√

2− 10)z3 = 0

Since the zi are integers, this can only happen if z2 = z3 (as this will cause the

irrational terms to vanish). Letting z2 = z3, it holds that

10z1 − 10z3 = 0

and so z1 = z3. Thus, in(4.9), Owen states that equality will hold if and only if

z1 = z2 = z3.

In this case, of course, it holds that

v(S) = 20z1
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and, letting u(S) be the total payoff to the coalition S,

u(S) = (7+ ∈1)z1 + (8−
√

2+ ∈2)z2 + (5 +
√

2+ ∈3)z3

but, with z1 = z2 = z3, this takes form

u(s) = 20z1 + (∈1 + ∈2 + ∈3)z1

However, the assumption ∈1 + ∈2 + ∈3= 0 is made, and so u(S) = 20z1. Hence

v(S) 6 u(s).

Suppose, in the other hand, equality dose not hold in xk, zi > 0,. Then it holds

that

v(S) = 7z1 + (8−
√

2)z2 + (5 +
√

2)z3 − δ,

where δ > 0 . On the other hand, it holds that

u(S) = (7+ ∈1)z1 + (8−
√

2+ ∈2)z2 + (5 +
√

2+ ∈3)z3

or

u(S) = v(S) + δ+ ∈1 z1+ ∈2 z2+ ∈3 z3.

Choose, now, ∈i to satisfy

| ∈i | <
δ

3r
(4.10)

Since zi 6 r, it holds that

| ∈1 z1+ ∈2 z2+ ∈3 z3| <
δ

3r
(z1 + z2 + z3) 6 δ

and so

u(S) > v(S).

Owen states that no matter how large r is, the vector u(∈) will be in the core tor

all ∈ satisfying (4.16), with ∈1 + ∈2 + ∈3= 0. But this gives us a two-dimensional

set of core imputation. Since the equilibrium payoffs form only a one-dimensional

set, it is clear that the mapping ui = bi1y
∗
1 + bi2y

∗
2 + .... + bimy

∗
m cannot give rise to a
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two-dimensional set, and owen conclude that. for any r, the core will contain non-

equilibrium payoffs. In other words, convergence here requires an infinite number of

steps.

Here, we have different settings from that of owen. In our environment, we will

explore the outcome of game where resources are provided and will be computed for

prices and payoffs.

4.3 Case Study: Game 2

The original a linear production game [40] was extended in many ways. One of these

extended game is Tijis’s [59], which is defined by


G1 G2

P1 1 2

P2 2 1


5

7


b1 = (5, 8)

b2 = (5, 2)

b3 = (0, 2) (4.11)

As given in this situation (4.11), where 2 resource G1 and G2 are involved and 2

products P1 and P2, with prices per unit 5 and 7. Suppose that 10 units of G1 and 12

units of G2 are available: player 1, 2 and 3 own, respectively, resource bundles (5,

8), (5, 2) and (0, 2). This situation corresponds to a 3-person linear production game

< N, v > with

v(S) := max{5x1 + 7x2|x1 > 0, x2 > 0, x1 + 2x2 6 b1(S), 2x1 + x2 6 b2(S)} (4.12)

where bk(S) = (
∑

i∈S b
i)k for k ∈ {1, 2} denotes the total amount of resource Gk

owned by coalition S.

Tijis’s [59] states that i v, is derived from the duality theorem of linear programming

theory. The reason is that for all dual programs corresponding to the 2n − 1 = 7
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coalitions the feasible region is the same. It holds that

v(S) = min{b1(S)y1 + b2(S)y2|y1 > 0, y2 > 0, y1 + 2y2 > 5, 2y1 + y2 > 7} (4.13)

It can be seen that the feasible region of the dual problem has 3 extreme points,

namely ŷ = (3, 1), ŷ′ = (5, 0), ŷ′′ = (0, 7). For each of the 7 problems, the minimum is

attained at one of these extreme points. It is also shown that the minimum is attained

and gives also the characteristic function v.

Table. 4.2. An example resource

S b(S) minimum v(S)

(1) (5, 8) ŷ 23
(2) (5, 2) ŷ′′ 14
(3) (0, 2) ŷ′ 0

(1, 2) (10, 10) ŷ 40
(1, 3) (5, 10) ŷ, ŷ′ 25
(2, 3) (5, 4) ŷ 19

(1, 2, 3) (10, 12) ŷ 42

As shown in Table 4.2 the grand coalition N ’s the value is equal to 42 and is attained

at ŷ = (3, 1). Here, 3 can be interpreted as (shadow) price for G1. According to these

prices the bundle b1 = (5, 8), owned by player 1, has value 5 · 3 + 8 · 1 = 23. For

players 2 and 3 the values of their bundles are 17 and 2 receptively. These values

correspond to the importation (23, 17, 2) of < N, v >. Note that (23, 17, 2) is even a

core element of < N, v > and that to find this vector we only need to solve the dual

linear program in Table 4.2 for S = N.

In the Owen model each player i owns a bundle

bi = (bii, b
i
2, ..., b

i
q)

of resources and b(S) :=
∑

i∈S b
i for each

S ∈ 2N\{0}.
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Tijis’s [59] proposes that in the Granot model one considers the q commodity

games < N, ck > with ck(S) := bk(S) and assumes that these games are balanced.

In the Curiel-Derks-Tijs model for each commodity Gk there are portions

αk1, αk2, ..., αkt(k)

respectively. One assumes that the control of these games are simple games with veto

players. Hence, bk(S) =
∑t(k)

r=1 αkrwkr(S) for each S.

Tijis propose that in the Owen [40] model

bk(S) =
∑
i∈S

bik =
n∑
i=1

bikδi(S)

for all k ∈ N and S ∈ 2n\{0}, where δi is the dictator game with dictator i. This

implies that this model is a special case of the third model by taking for each k ∈

{1, ..., q} : t(k) = n, and for each i ∈ N : αki = bik, wki = δi

4.4 Experiment Setting and Result

Based on these works [40, 59], we proceed with different resource distributions. There

are 13 agents and 6 resource of data distribution patterns in Figure 4.1.
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Figure. 4.1. Data Distributions.

In IND, agent has the lowest quantity of both R1 and R2. The numbers of both

resources increase / decrease for other agents.

Case 1: Superadditive IND

Table. 4.3. Game 1 and 2: IND Setting

Agents

1 2 3 4 5 6 7 8 9 10 11 12 13

Resource
R1 2 4 6 8 10 12 14 16 18 20 22 24 26

R2 1 3 5 7 9 11 13 15 17 19 21 23 25

Case 2: Superadditive DCD
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Table. 4.4. Game 1 and 2: DCD Setting

Agents

1 2 3 4 5 6 7 8 9 10 11 12 13

Resource
R1 26 24 22 20 18 16 14 12 10 8 6 4 2

R2 25 23 21 19 17 15 13 11 9 7 5 3 1

Case 3: Superadditive IND VS DCD.

In IND VS DCD, agent 1 has the highest number of R1 but has the lowest number

of R2. The number of R1 is increased for other agents while the number of R2 is

decreed.

Table. 4.5. Game 1 and 2: IND VS DCD Setting

Agents

1 2 3 4 5 6 7 8 9 10 11 12 13

Resource
R1 2 4 6 8 10 12 14 16 18 20 22 24 26

R2 26 24 22 20 18 16 14 12 10 8 6 4 2

Case 4: Superadditive CAP

In CAP, agent1 has the lowest number of R1 and R2 the numbers of both resources

rise and reach the peals for agent 1 then decrease and reach the lowest for agent 13.

Table. 4.6. Game 1 and 2: Cap Setting

Agents

1 2 3 4 5 6 7 8 9 10 11 12 13

Resource
R1 2 4 6 9 11 13 14 13 11 9 6 4 2

R2 1 3 5 8 10 12 13 12 10 8 5 3 1

Case 5: Superadditive CUP

In CUP, the pattern of resource distribution for all agents are opposite to CAP, i.e.,

agent 1 and 13 have the highest number of both resources where as agent 8 has the

lowest.
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Table. 4.7. Game 1 and 2: Cup Setting

Agents

1 2 3 4 5 6 7 8 9 10 11 12 13

Resource
R1 13 11 9 6 4 2 1 2 4 6 9 11 13

R2 12 10 8 5 3 1 0 1 3 5 8 10 12

Case 6: Superadditive CAP VS CUP

In CAP VS CUP agent 1 and 13 have the lowest number of R1 but have the highest

number of R2. Where as agent 8 has the highest number of R2 but has the lowest

number of R2.

Table. 4.8. Game 1 and 2: Cap VS Cup Setting

Agents

1 2 3 4 5 6 7 8 9 10 11 12 13

Resource
R1 2 4 6 9 11 13 14 13 11 9 6 4 2

R2 13 11 9 6 4 2 1 2 4 6 9 11 13
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4.5 Experiment Results

(a) Game 1 Trend 0 (b) Game 1 Trend 1

(c) Game 1 Trend 2 (d) Game 1 Trend 3

(e) Game 1 Trend 4 (f) Game 1 Trend 5

Figure. 4.2. Results Game 1 Trend 0-5

Figure 4.2 (a) shows that, results of original payoffs and payoffs of 13 agents in game

1 trend 0 continuous increase. Figure 4.2 (b) shows that, results of original payoffs

and payoffs of 13 agents in game 1 trend 1 continuous decrease. Figure 4.2 (c) shows

that, results of original payoffs are the rise and reach and payoffs are increased equally

of 13 agents in game 1 trend 2. Figure 4.2 (d) shows that, results of original payoffs

and payoffs are the rise and reach the peals for agent 1 then decrease and reach the

lowest for agent 13 in game 1 trend 3. Figure 4.2 (e) shows that, results of original
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payoffs and payoffs are agent 1 and 13 have the highest number and whereas agent 7

has the lowest in game 1 trend 4. Figure 4.2 (f) shows that, the original payoffs of

small (1 agent), medium ( 7 agents), and large (13 agents) coalitions are low. The

payoffs of quite small (3, 4 agents) and quite (10, 11 agents) coalitions are high.

(a) Game 2 Trend 0 (b) Game 2 Trend 1

(c) Game 2 Trend 2

Figure. 4.3. Results Game 1 Trend 5 and Game2 Trend 0-2

Figure 4.3 (a) shows that, the original payoffs of small (1 agent), medium ( 7

agents), and large (13 agents) coalitions are high. The payoffs of quite small (1

agents) and quite (10, 11 agents) coalitions are high. Figure 4.3 (b) shows that, the

original payoffs of small (1 agent), medium ( 7 agents), and large (9 agents) coalitions

are low. The payoffs of quite small (3, 4 agents) and quite (10, 11 agents) coalitions

are low. Figure 4.3 (c) shows that, the original payoffs of small (1 agent), medium

( 7 agents), and large (9 agents) coalitions are low. The payoffs of quite small (3, 4

agents) and quite (10, 11 agents) coalitions are high.
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(a) Game 2 Trend 3 (b) Game 2 Trend 4

(c) Game 2 Trend 5

Figure. 4.4. Results Game 2 Trend 3-5

Figure 4.4 (a) shows that, the original payoffs of small (1 agent), medium ( 7

agents), and large (13 agents) coalitions are low. The payoffs of quite small (3, 4

agents) and quite (10, 11 agents) coalitions are high. Figure 4.4 (b) shows that, the

original payoffs of small (1 agent), medium ( 7 agents), and large (13 agents) coalitions

are high. The payoffs of quite small (3, 4 agents) and quite (10, 11 agents) coalitions

are high. Figure 4.4 (c) shows that, the original payoffs of small (1 agent), medium (

7 agents), and large (9 agents) coalitions are low. The original payoffs of quite small

(3, 4 agents) and quite (10, 11 agents) coalitions are low.

4.6 Conclusion

Based on [40, 59] where only certain games are considered, we found that with our

setting where resources are given of agents in various trends, payoffs of agents differ

from trends of resources. In other words, the main factor that controls the trend of

agents payoffs are both technology matrix and trend of resources.



 

 

 

CHAPTER 5

FAIR PAYOFF IN BAKERY GAME IN NON-COOPERATIVE
GAME

Strategic form game (SFG), a popular non-cooperative game theory, offer wide

applications in real world. Generally, researchers use certain actions and corresponding

payoffs to study SFG to find out the outcome of the game, which specifies how agents

will behave and what the payoffs will be. Furthermore, traditional research in SFG

considers merely actions and payoffs of agents. In real world, such information may

not be known a priori but must be computed on the fly in timely fashion to be further

used in online analytical processes. Here, we consider a more realistic environment,

where payoffs are to be optimally computed from given resources and be used by

agent for making decision. We are interested in wider spectrum of outcomes in

games, where payoffs can vary within a trend such that the agents’ strategies remain

unchanged. We choose Bakery Game as our test bed to investigate two objectives: i)

Explore range of resources and payoffs that does not affect the behaviors of agents.

In other words, the payoffs remain fair to agents. and ii) Take into account whether

computation of payoffs, using related factors, including resources, technology matrix,

price function, and costs, is acceptable. The results show that there exist certain ranges

of resources that agents do not change there strategies. Hence, agents receive fair

payoffs. Furthermore, taking into account additional computations normally take place

in real world environment do not affect the acceptable computation time for agents

payoffs.

5.1 Setting

Let there be 3 cheese shops, a1, a2 and a3. The resources needed for making cheese

are mixed fruit topping, r1, and cream cheese, r2. Each of them has resources as

following: {3, 30}, {11, 10} and {6, 20}, respectively. It is known to all of them that

there are two recipes for making cheese during festive Christmas. The first one is

for making the top-quality cheese, g1, each lb of which requires 0.2 lb of mixed fruit



 

 

 

46

topping and 0.8 lb of cream cheese. The second one is for making the mid-quality

cheese, g2, each lb of which requires 0.2 lb of mixed fruit topping and 0.3 lb of cream

cheese. Given this information, agents may form coalitions to pull resources and seek

for higher benefits. Table 5.1 shows all possible coalitions and their resources.

Table. 5.1. Resources of agent coalitions

a1 a2 a3 Total
Coalition r1 r2 r1 r2 r1 r2 r1 r2

{a1} 3 30 0 0 0 0 3 30
{a2} 0 0 11 10 0 0 11 10
{a3} 0 0 0 0 6 20 6 20

{a1, a2} 3 30 11 10 0 0 14 40
{a1, a3} 3 30 0 0 6 20 9 50
{a2, a3} 0 0 11 10 6 20 17 30

{a1, a2, a3} 3 30 11 10 6 20 20 60

5.2 Prices

From previous seasons, it is also known to every agent that over supply can be costly.

The demand and price relation for both goods is as the following:

d1 = 190− 25p1 and d2 = 250− 50p2,

where dj is the demand (in pound) of gj , and pj is its price (in dollars per pound). The

prices of both goods drops when the numbers are increased as shown in Figure 5.1.

It is very important to note that this is common in real world and bring along a

remarkable consequence, the profit, to the outcome of the game. The highest prices

for both goods will be achieved if the number of goods are minimal, i.e. 1. For the

top-quality cheese, the highest price is 7.56 per unit when it is produced only 1. For

the mid-quality cheese, the highest price is 4.98 per unit when it is produced only 1.

Both prices drop constantly when the number of each good is increased. The price

of the top-quality cheese is 0 when the number of biscuit is 190. The price of the

mid-quality cheese is 0 when the number of soft bread is 250.
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Figure. 5.1. Prices of the goods drop when the numbers are increased.

5.2.1 Profits

The objective function is to maximize profit

z = p1x1 + p2x2 (5.1)

The product is sold out when the production does not exceed the requirements, i.e.

x1 ≤ D1 and x2 ≤ D2. This implies that

x1 + 25p1 ≤ 190 and x2 + 50p2 ≤ 250. (5.2)

The objective of the shops is to maximize their profit:

z = (7.6− 0.04x1)x1 + (5− 0.02x2)x2 (5.3)

The profit is affected significantly by price function. As show in Figure 5.2, each

good’s profit increases slowly when it is close to the optimal point and drops after that.

Given the price functions, the individual profits of goods are concave. The maximal

profit of g1 is 361 when the number of g1 is 95 and the unit price is 3.8. The maximal

profit of g2 is 312.5 when the number of g2 is 125 and the unit price is 2.5. After

these points, both profits drop and reach 0 at g1 = 190 and g2 = 250, respectively. The

direct implication is that both goods must not be produced beyond their optimal points

(not necessarily the highest point). We can obviously see that there are incentives

for agents to cooperate by pooling their resources to produce more goods. However,

producing too many goods to the market can harm them, as we have just discussed.
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The optimal global profit of producing good to the market is g1 = 95 p1 = 3.8 and

g2 = 125 p2 = 2.5 yield the maximal profit of 673.5.

Figure. 5.2. Price functions and optimal plans of both goods.

The situation is more complex when an agent can produce both goods at the same

time. Optimal plan for producing both goods, given enough resources, is shown in

Figure 5.3.

Figure. 5.3. Optimal plan for producing both goods.

5.3 Strategies and Outcomes

In a typical linear production problem, we can simply find the optimal plan for any

agent, taking into account their resource constraints. However, the situation is far

more complex here because there are 3 agents and strategies of other agents outside

a coalition affect its value. Agents may form coalitions when their individual payoffs
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are better than their singleton coalition values. The final profit of each agent also

depends on other agents’ strategies. If they greedily produce the same good because

of its high price into the market, they will definitely suffer because the price will drop

gradually. Here, there are 5 coalition structures (5 ways for agents to cooperate), i.e.

1) {{a1}, {a2}, {a3}},

2) {{a1, a2}, {a3}},

3) {{a1, a3}, {a2}},

4) {{a1}, {a2, a3}} and

5) {{a1, a2, a3}}.

In order to find the outcome of this game, i.e. what coalition structure will take

place, we need to know what will happen in each of them.

5.3.1 Case 1

We now consider case 1). Firstly, we find out what each agent can do best. There

are many options for each agent. For example, agent a1 may produce 15 units of g1,

a combination of 14 unit of g1 plus 1 unit of g2, . . ., and 15 units of g2. Among

many possibilities, agents may have following plans. For a1, strategy s1,1 is to produce

g1 = 15, g2 = 0, expecting profit of 105, strategy s1,2 is to produce g1 = 8, g2 = 7

expecting profit of 92.26, strategy s1,3 is to produce g1 = 0, g2 = 15 expecting profit

of 70.5. For a2, strategy s2,1 is to produce g1 = 12, g2 = 0 expecting profit of 85.44,

strategy s2,2 is to produce g1 = 9, g2 = 9 expecting profit of 108.54, strategy s2,3 is to

produce g1 = 0, g2 = 33 expecting profit of 143. For a3, strategy s3,1 is to produce

g1 = 25, g2 = 0 expecting profit of 165, strategy s3,2 is to produce g1 = 15, g2 = 15

expecting profit of 175.5, strategy s3,3 is to produce g1 = 0, g2 = 30 expecting profit

of 132. Unfortunately, the above expectations are not the final outcomes due to the

fact that the actual prices depends on the number of goods being produced into the

market. The higher the number, the lower the price.
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Table. 5.2. Strategies of {a1}, {a2}, {a3} agent

s1,1

a3

s3,1 s3,2 s3,3

s2,1 82.8, 66.24, 138 88.8, 71.04, 88.8 97.8, 78.24, 0

a2 s2,2 84.6, 50.76, 141 94.8, 56.88, 94.8 99.6, 59.76, 0

s2,3 90, 0, 150 96, 0, 96 105, 0, 0

s1,2

a3

s3,1 s3,2 s3,3

s2,1 46.4, 69.6, 145 49.6, 74.4, 93 54.4, 81.6, 0

a2 s2,2 47.36, 53.28, 148 50.56, 56.88, 94.8 55.36, 62.28, 0

s2,3 50.24, 0, 157 53.44, 0, 100.2 58.24, 0, 0

s1,3

a3

s3,1 s3,2 s3,3

s2,1 0, 73.44, 153 0, 78.24, 97.8 0, 85.44, 0

a2 s2,2 0, 56.16, 156 0, 59.76, 99.6 0, 65.16, 0

s2,3 0, 0, 165 0, 0, 100.2 0, 0, 0

We plot agents’ strategies and respective outcomes in table 5.2. The first outcome

(82.8, 66.24, 138) means agent a1 gains 82.8 by producing 15 units of g1, agent a2
gains 66.24 by producing 12 units of g1 and agent a3 gains 138 by producing 25 units

of g1. This is because the total number of g1 is 52 lowering the unit price to 5.52.

We now focus on agent a3. Suppose, agent a1 plays s1,1. If agent a2 plays s2,1, the

best strategy for a3 is s3,1 because it gives the maximal payoff 138 to a3. This is also

the case even a2 chose to play s2,2 or s2,3. This strategy s1,3 is also the best choice

for a3 if a1 plays s1,2, regardless of what strategy a2 plays, or s1,3, regardless of what

strategy a2 plays. We can conclude that in case 1), where agents do not cooperate,

agent a3 will always play s1,3. Following the same analytic process, the outcome of

case 1) is a1 plays s1,1 and gains 82.8, a2 plays s2,1 and gains 66.24, and a3 plays s3,1
and gains 138.
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5.3.2 Case 2, 3, 4 and 5

We now consider case 2, in which the coalitions are {a1, a2} and {a3}. Among many

possibilities, agents may have the following plans. For {a1, a2}, strategy s12,1 is to

produce g1 = 50, g2 = 0, expecting profit of 280, strategy s12,2 is to produce g1 =

35, g2 = 34 expecting profit of 363.88, strategy s12,3 is to produce g1 = 10, g2 = 60

expecting profit of 300. For a3, strategy s3,1 is to produce g1 = 25, g2 = 0 expecting

profit of 165, strategy s3,2 is to produce g1 = 15, g2 = 15 expecting profit of 175.5,

strategy s3,3 is to produce g1 = 0, g2 = 30 expecting profit of 132. We plot agents’

strategies and respective outcomes in table 5.3.

Table. 5.3. Strategies of {a1, a2}, {a3} agent

a3

s3,1 s3,2 s3,3

s12,1 230, 115 250, 75 280, 0

a1, a2 s12,2 182, 130 196, 84 217, 0

s12,3 62, 155 66, 99 72, 0

Following the same analytic process, the outcome of case 2 is {a1, a2} play s12,1

and gain 230, and {a3} plays s3,1 and gains 115.

We now consider case 3, in which the coalitions are {a1, a3} and {a2}. Among

many possibilities, agents may have the following plans. For {a1, a3}, strategy s13,1

is to produce g1 = 44, g2 = 0, expecting profit of 256.96, strategy s13,2 is to produce

g1 = 23, g2 = 22 expecting profit of 253.96, strategy s13,3 is to produce g1 = 0, g2 = 45

expecting profit of 184.5. For a2, strategy s2,1 is to produce g1 = 12, g2 = 0 expecting

profit of 85.44, strategy s2,2 is to produce g1 = 9, g2 = 9 expecting profit of 108.54,

strategy s2,3 is to produce g1 = 0, g2 = 33 expecting profit of 143. We plot agents’

strategies and respective outcomes in table 5.4.
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Table. 5.4. Strategies of {a1, a3}, {a2} agent

a2

s2,1 s2,2 s2,3

s13,1 235.84, 64.32 241.12, 49.32 256.96, 0

a1, a3 s13,2 142.6, 74.4 145.36, 56.88 153.64, 0

s13,3 0, 85.44 0, 65.16 0, 0

Following the same analytic process, the outcome of case 3 is {a1, a3} play s13,1

and gain 235.84, and {a2} plays s2,1 and gains 64.32

We now consider case 4, in which the coalitions are {a1} and {a2, a3}. Among

many possibilities, agents may have the following plans. For {a1}, strategy s1,1 is

to produce g1 = 15, g2 = 0, expecting profit of 105, strategy s1,2 is to produce

g1 = 8, g2 = 7 expecting profit of 92.26, strategy s1,3 is to produce g1 = 0, g2 = 15

expecting profit of 70.5. For a2, a3, strategy s23,1 is to produce g1 = 37, g2 = 0

expecting profit of 226.44, strategy s23,2 is to produce g1 = 10, g2 = 10 expecting

profit of 120, strategy s23,3 is to produce g1 = 0, g2 = 85 expecting profit of 280.5.

We plot agents’ strategies and respective outcomes in table 5.5.

Table. 5.5. Strategies of {a1}, {a2, a3} agent

a2, a3

s23,1 s23,2 s23,3

s1,1 82.8, 204.24 99, 66 105, 0

a1 s1,2 46.4, 214.6 55.04, 68.8 58.24, 0

s1,3 0, 226.44 0, 72 0, 0

Following the same analytic process, the outcome of case 4 is {a1} play s1,1 and

gain 82.8, and {a2, a3} plays s23,1 and gains 204.24

Lastly, the grand coalition {a1, a2, a3} can produce 55 unit of g1 and 45 units of

g2 and make profit of 481.

5.3.3 Payoffs by Shapley Value

As previously mentioned, this is more complicated than the environment Shapley value

was originally assumed for. Because strategies of agents outside a coalition can affect
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the coalition value, we need to take the affected coalition values to compute the payoffs

for agents. By taking into account other agents’ strategies, the affected coalition values

vary. According to the basic principle of cooperative game, the coalition value is

the highest possible value the coalition can make. Therefore, the coalition values for

{a1}, {a2}, {a3}, {a1, a2}, {a1, a3}, {a2, a3} and {a1, a2, a3} are 82.8, 66.24, 138, 230,

235.48, 204.24 and 481, respectively. the payoffs for agents are 178.11, 139.49,163.39.

If we do not take into account the strategies of agents outside coalitions, the

coalition values will be 105, 143, 186, 370, 265.16, 333 and 481. The (mistakenly

calculated) payoffs will be 157.36, 188.28 and 135.36, which are very different from

the correct ones.

5.4 Experiments

In this section, we explore further to see the behavior of Shapley value on payoffs for

agents in the aforementioned bakery game.

5.4.1 Settings

We consider game of 3 agents, similarly to the previous section, but with more varieties

on the agents’ possession. The sum of r1 is 30 and the sum of r2 is 60. Both resources

are distributed among agent in five trends. In trend 1, both goods are distributed evenly

to all agents, i.e. 10 units of r1 and 20 units of r2. In trend 2, a1 receives merely 3

units of r1 but 35 units of r2, a2 receives the same number of resources as in trend

1 and also in other trends, and a3 receives 35 units of r1 and 3 units of r2. We can

see that the number of resources of a1 and a2 are opposite. Trend 3 is a reverse of

trend 2. In trend 4, a1 receives low number of both resources, while a2 receives high

number of them. Trend 5 is a reverse of trend 4. The resources distributed to agents

are shown in table 5.6.
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Table. 5.6. Ressource

Resources

a1 a2 a3

Trends r1 r2 r1 r2 r1 r2

1 10 20 10 20 10 20

2 3 35 10 20 17 5

3 17 5 10 20 3 35

4 3 5 10 20 17 35

5 17 35 10 20 3 5

5.5 Strategies and Outcomes

By following the complex analytic processes, we receive the outcomes of each trend

as shown in table 5.7. The outstanding figure is the grand coalition’s value remain

the same and is the best strategy for all agents. Another notable result is that a2’s

coalition values change all the times even it receives the same number of resources in

all trends. Lastly, trend 2 and 3 are diagonally similar as well as trend 4 and 5.

Table. 5.7. Coalition Structure(CS)

Outcomes

Trends {a1},{a2},{a3} {a1,a2},{a3} {a1,a3},{a2} {a1},{a2,a3} {a1,a2,a3}

s1,1 = [25, 0] = 115, s12,1 = [50, 0] = 230, s13,1 = [50, 0] = 230, s1,1 = [25, 0] = 115,

1 s2,1 = [25, 0] = 115, s3,1 = [25, 0] = 115 s2,1 = [25, 0] = 115 s23,1 = [50, 0] = 230 533.76

s3,1 = [25, 0] = 115

s1,1 = [15, 0] = 86.4, s12,1 = [65, 0] = 309.4, s13,1 = [50, 0] = 230, s1,1 = [15, 0] = 86.4,

2 s2,1 = [25, 0] = 144, s3,1 = [6, 0] = 28.56 s2,1 = [25, 0] = 115 s23,1 = [31, 0] = 178.56 533.76

s3,1 = [6, 0] = 34.56

s1,1 = [6, 0] = 34.56, s12,1 = [31, 0] = 178.56, s13,1 = [50, 0] = 230, s1,1 = [6, 0] = 28.56,

3 s2,1 = [25, 0] = 144, s3,1 = [15, 0] = 86.4 s2,1 = [25, 0] = 115 s23,1 = [65, 0] = 309.4 533.76

s3,1 = [15, 0] = 86.4

s1,1 = [6, 0] = 27.84, s12,1 = [31, 0] = 143.84, s13,1 = [50, 0] = 230, s1,1 = [6, 0] = 27.84,

4 s2,1 = [25, 0] = 116, s3,1 = [43, 2] = 199.52 s2,1 = [25, 0] = 115 s23,1 = [68, 1] = 315.52 533.76

s3,1 = [43, 2] = 199.52

s1, s1 = [43, 2] = 199.52, s12,1 = [68, 1] = 315.52, s13,1 = [50, 0] = 230, s1,1 = [43, 2] = 199.52,

5 s2,1 = [25, 0] = 116, s3,1 = [6, 0] = 27.84 s2,1 = [25, 0] = 115 s23,1 = [31, 0] = 143.84 533.76

s3,1 = [6, 0] = 27.84
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The agents’ payoffs are shown in table 5.28. As one may expect, the agents’ payoffs

have some pattern reflecting the patterns of resources the are allocated. In trend 2

and 3, the payoffs of a1 and a3 are diagonally similar, i.e. 116 and 207.34, while a2
receives 210.42. In trend 4 and 5, the payoffs of a1 and a3 are also diagonally similar,

i.e. 263.43 and 91.75, while a2 receives 178.59.

5.5.1 Trend 1

case 1

For a1, strategy s1,1 is to produce g1 = 50, g2 = 0, expecting profit of 165, strategy

s1,2 is to produce g1 = 18, g2 = 17 expecting profit of 203.06, strategy s1,3 is to

produce g1 = 0, g2 = 25 expecting profit of 112.5. For a2, strategy s2,1 is to produce

g1 = 25, g2 = 0 expecting profit of 165, strategy s2,2 is to produce g1 = 18, g2 = 17

expecting profit of 203.06, strategy s2,3 is to produce g1 = 0, g2 = 25 expecting profit

of 112.5. For a3, strategy s3,1 is to produce g1 = 25, g2 = 0 expecting profit of 165,

strategy s3,2 is to produce g1 = 18, g2 = 17 expecting profit of 203.06, strategy s3,3

is to produce g1 = 0, g2 = 25 expecting profit of 112.5. Unfortunately, the above

expectations are not the final outcomes due to the fact that the actual prices depends

on the number of goods being produced into the market. The higher the number, the

lower the price.

We plot agents’ strategies and respective outcomes in table 5.8. The first outcome

(115, 115, 115) means agent a1 gains 115 by producing 25 units of g1, agent a2 gains

115 by producing 25 units of g1 and agent a3 gains 115 by producing 25 units of

g1. This is because the total number of g1 is 75 lowering the unit price to 4.6. We

now focus on agent a3. Suppose, agent a1 plays s1,1. If agent a2 plays s2,1, the best

strategy for a3 is s3,1 because it gives the maximal payoff 115 to a3. This is also the

case even a2 chose to play s2,2 or s2,3. This strategy s1,3 is also the best choice for

a3 if a1 plays s1,2, regardless of what strategy a2 plays, or s1,3, regardless of what

strategy a2 plays. We can conclude that in case 1), where agents do not cooperate,

agent a3 will always play s1,3. Following the same analytic process, the outcome of

case 1) is a1 plays s1,1 and gains 115, a2 plays s2,1 and gains 115, and a3 plays s3,1
and gains 115.
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Table. 5.8. Strategies of {a1}, {a2}, {a3} agent

s1,1

a3

s3,1 s3,2 s3,3

s2,1 115, 115, 115 122, 122, 87.84 140, 140, 0
a2 s2,2 122, 87.84, 122 129, 92.88, 92.88 147, 105.84, 0

s2,3 140, 0, 140 147, 0, 105.84 165, 0, 0
s1,2

a3

s3,1 s3,2 s3,3

s2,1 87.84, 122, 122 92.88, 129, 92.88 113.04, 157, 0
a2 s2,2 92.88, 92.88, 129 97.92, 97.92, 97.92 110.88, 110.88, 0

s2,3 105.84, 0, 147 110.88, 0, 110.88 123.84, 0, 0
s1,3

a3

s3,1 s3,2 s3,3

s2,1 0, 140, 140 0, 147, 105.84 0, 165, 0
a2 s2,2 0, 105.84, 147 0, 110.88, 110.88 0, 123.84, 0

s2,3 0, 0, 165 0, 0, 123.84 0, 0, 0

Case 2, 3, 4 and 5

We now consider case 2, in which the coalitions are {a1, a2} and {a3}. Among

many possibilities, agents may have the following plans. For {a1, a2}, strategy s12,1

is to produce g1 = 50, g2 = 0, expecting profit of 280, strategy s12,2 is to produce

g1 = 35, g2 = 34 expecting profit of 363.88, strategy s12,3 is to produce g1 = 0, g2 = 50

expecting profit of 200. For a3, strategy s3,1 is to produce g1 = 25, g2 = 0 expecting

profit of 165, strategy s3,2 is to produce g1 = 18, g2 = 17 expecting profit of 203.06,

strategy s3,3 is to produce g1 = 0, g2 = 25 expecting profit of 112.5. We plot agents’

strategies and respective outcomes in table 5.9.

Table. 5.9. Strategies of {a1, a2}, {a3} agent

a3

s3,1 s3,2 s3,3

s12,1 230, 115 244, 87.84 280, 0
a1, a2 s12,2 182, 130 191.8, 98.64 217, 0

s12,3 0, 165 0, 123.84 0, 0

Following the same analytic process, the outcome of case 2 is {a1, a2} play s12,1
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and gain 230, and {a3} plays s3,1 and gains 115.

We now consider case 3, in which the coalitions are {a1, a3} and {a2}. Among

many possibilities, agents may have the following plans. For {a1, a3}, strategy s13, 1

is to produce g1 = 50, g2 = 0, expecting profit of 280, strategy s13,2 is to produce

g1 = 15, g2 = 14 expecting profit of 171.08, strategy s13,3 is to produce g1 = 0, g2 = 25

expecting profit of 200. For a2, strategy s2,1 is to produce g1 = 25, g2 = 0 expecting

profit of 165, strategy s2,2 is to produce g1 = 18, g2 = 17 expecting profit of 203.06,

strategy s2,3 is to produce g1 = 0, g2 = 25 expecting profit of 112.5. We plot agents’

strategies and respective outcomes in table 5.10.

Table. 5.10. Strategies of {a1, a3}, {a2} agent

a2

s2,1 s2,2 s2,3

s13,1 230, 115 244, 87.84 280, 0
a1, a3 s13,2 90, 150 94.2, 113.04 105, 0

s13,3 0, 165 0, 123.84 0, 0

Following the same analytic process, the outcome of case 3 is {a1, a3} play S13,1

and gain 230, and {a2} plays S2,1 and gains 115

We now consider case 4, in which the coalitions are {a1} and {a2, a3}. Among

many possibilities, agents may have the following plans. For {a1}, strategy s1,1 is

to produce g1 = 25, g2 = 0, expecting profit of 165, strategy s1,2 is to produce

g1 = 18, g2 = 17 expecting profit of 203.06, strategy s1,3 is to produce g1 = 0, g2 = 25

expecting profit of 112.5. For a2, a3, strategy s23,1 is to produce g1 = 50, g2 = 0

expecting profit of 280, strategy s23,2 is to produce g1 = 25, g2 = 24 expecting profit

of 273.48, strategy s23,3 is to produce g1 = 12, g2 = 88 expecting profit of 370.56. We

plot agents’ strategies and respective outcomes in table 5.11.

Table. 5.11. Strategies of {a1}, {a2, a3} agent

a2, a3

s23,1 s23,2 s23,3

s1,1 115, 230 140, 140 153, 73.44
a1 s1,2 87.84, 244 105.84, 147 115.2, 76.8

s1,3 0, 280 0, 165 0, 85.44
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Following the same analytic process, the outcome of case 4 is {a1} play s1,1 and

gain 115, and {a2, a3} plays s23,1 and gains 230

5.5.2 Trend 2

Case 1

For a1, strategy s1,1 is to produce g1 = 15, g2 = 0, expecting profit of 105, strategy s1,2
is to produce g1 = 8, g2 = 7 expecting profit of 92.26, strategy s1,3 is to produce g1 =

0, g2 = 15 expecting profit of 70.5. For a2, strategy s2,1 is to produce g1 = 25, g2 = 0

expecting profit of 165, strategy s2,2 is to produce g1 = 13, g2 = 12 expecting profit

of 149.16, strategy s2,3 is to produce g1 = 0, g2 = 25 expecting profit of 112.5. For

a3, strategy s3,1 is to produce g1 = 6, g2 = 0 expecting profit of 44.16, strategy s3,2

is to produce g1 = 3, g2 = 2 expecting profit of 32.36, strategy s3,3 is to produce

g1 = 0, g2 = 16 expecting profit of 47.88. Unfortunately, the above expectations are

not the final outcomes due to the fact that the actual prices depends on the number of

goods being produced into the market. The higher the number, the lower the price.

Table. 5.12. Strategies of {a1}, {a2}, {a3} agent

s1,1

a3

s3,1 s3,2 s3,3

s2,1 86.4, 144, 34.56 88.2, 147, 17.64 90, 150, 0

a2 s2,2 93.6, 81.12, 37.44 95.4, 82.68, 19.08 97.2, 84.24, 0

s2,3 101.4, 0, 40.56 103.2, 0, 20.64 105, 0, 0

s1,2

a3

s3,1 s3,2 s3,3

s2,1 48.32, 151, 36.24 49.28, 154, 18.48 50.24, 157, 0

a2 s2,2 52.16, 84.76, 39.12 53.12, 86.32, 19.92 54.08, 87.88, 0

s2,3 56.32, 0, 42.24 57.28, 0, 21.48 58.24, 0, 0

s1,3

a3

s3,1 s3,2 s3,3

s2,1 0, 159, 38.16 0, 162, 19.44 0, 165, 0

a2 s2,2 0, 81.12, 37.44 0, 90.48, 20.88 0, 92.04, 0

s2,3 0, 0, 44.16 0, 0, 22.44 0, 0, 0

We plot agents’ strategies and respective outcomes in table 5.12. The first outcome

(86.4, 144, 34.56) means agent a1 gains 86.4 by producing 15 units of g1, agent a2



 

 

 

59

gains 144 by producing 25 units of g1 and agent a3 gains 34.56 by producing 6 units

of g1. This is because the total number of g1 is 46 lowering the unit price to 5.76. We

now focus on agent a3. Suppose, agent a1 plays s1,1. If agent a2 plays s2,1, the best

strategy for a3 is s3,1 because it gives the maximal payoff 34.56 to a3. This is also

the case even a2 chose to play s2,2 or s2,3. This strategy s1,3 is also the best choice

for a3 if a1 plays s1,2, regardless of what strategy a2 plays, or s1,3, regardless of what

strategy a2 plays. We can conclude that in case 1), where agents do not cooperate,

agent a3 will always play s1,3. Following the same analytic process, the outcome of

case 1) is a1 plays s1,1 and gains 86.4, a2 plays s2,1 and gains 144, and a3 plays s3,1
and gains 34.56.

Case 2, 3, 4 and 5

We now consider case 2, in which the coalitions are {a1, a2} and {a3}. Among many

possibilities, agents may have the following plans. For {a1, a2}, strategy s12,1 is to

produce g1 = 65, g2 = 0, expecting profit of 325, strategy s12,2 is to produce g1 =

33, g2 = 32 expecting profit of 346.76, strategy s12,3 is to produce g1 = 12, g2 = 52

expecting profit of 291.36. For a3, strategy s3,1 is to produce g1 = 6, g2 = 0 expecting

profit of 44.16, strategy s3,2 is to produce g1 = 3, g2 = 2 expecting profit of 32.36,

strategy s3,3 is to produce g1 = 0, g2 = 16 expecting profit of 74.88. We plot agents’

strategies and respective outcomes in table 5.13.

Table. 5.13. Strategies of {a1, a2}, {a3} agent

a3

s3,1 s3,2 s3,3

s12,1 309.4, 28.56 317.2, 14.64 494, 0

a1, a2 s12,2 199.32, 36.24 203.28, 18.48 207.24, 0

s12,3 0, 41.28 84, 21 85.44, 0

Following the same analytic process, the outcome of case 2 is {a1, a2} play s12,1

and gain 309.4, and {a3} plays s3,1 and gains 28.56.

We now consider case 3, in which the coalitions are {a1, a3} and {a2}. Among

many possibilities, agents may have the following plans. For {a1, a3}, strategy s13,1 is
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to produce g1 = 50, g2 = 0, expecting profit of 280, strategy s13,2 is to produce g1 =

25, g2 = 24 expecting profit of 273.48, strategy s13,3 is to produce g1 = 13, g2 = 86

expecting profit of 374.12. For a2, strategy s2,1 is to produce g1 = 25, g2 = 0 expecting

profit of 165, strategy s2,2 is to produce g1 = 18, g2 = 17 expecting profit of 149.16,

strategy s2,3 is to produce g1 = 0, g2 = 25 expecting profit of 112.5. We plot agents’

strategies and respective outcomes in table 5.14.

Table. 5.14. Strategies of {a1, a3}, {a2} agent

a2

s2,1 s2,2 s2,3

s13,1 230, 115 254, 66.04 280, 0

a1, a3 s13,2 140, 140 91.2, 79.04 165, 0

s13,3 79.04, 152 85.28, 85.28 92.04, 0

Following the same analytic process, the outcome of case 3 is {a1, a3} play s13,1

and gain 230, and {a2} plays s2,1 and gains 115

We now consider case 4, in which the coalitions are {a1} and {a2, a3}. Among

many possibilities, agents may have the following plans. For {a1}, strategy s1,1 is

to produce g1 = 15, g2 = 0, expecting profit of 105, strategy s1,2 is to produce

g1 = 8, g2 = 7 expecting profit of 92.26, strategy s1,3 is to produce g1 = 0, g2 = 15

expecting profit of 70.5. For a2, a3, strategy s23,1 is to produce g1 = 31, g2 = 0

expecting profit of 197.16, strategy s23,2 is to produce g1 = 16, g2 = 15 expecting

profit of 181.86, strategy s23,3 is to produce g1 = 0, g2 = 83 expecting profit of 277.22.

We plot agents’ strategies and respective outcomes in table 5.15.

Table. 5.15. Strategies of {a1}, {a2, a3} agent

a2, a3

s23,1 s23,2 s23,3

s1,1 86.4, 178.56 95.4, 101.76 105, 0

a1 s1,2 48.32, 187.24 53.12, 106.24 58.24, 0

s1,3 0, 197.16 0, 111.36 0, 0

Following the same analytic process, the outcome of case 4 is {a1} play s1,1 and
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gain 86.4, and {a2, a3} plays s23,1 and gains 178.56

5.5.3 Trend 3

Case 1

For a1, strategy s1,1 is to produce g1 = 6, g2 = 0, expecting profit of 44.16, strategy s1,2
is to produce g1 = 3, g2 = 2 expecting profit of 32.36, strategy s1,3 is to produce g1 =

0, g2 = 16 expecting profit of 74.88. For a2, strategy s2,1 is to produce g1 = 25, g2 = 0

expecting profit of 165, strategy s2,2 is to produce g1 = 13, g2 = 12 expecting profit

of 149.16, strategy s2,3 is to produce g1 = 0, g2 = 25 expecting profit of 112.5. For

a3, strategy s3,1 is to produce g1 = 15, g2 = 0 expecting profit of 105, strategy s3,2

is to produce g1 = 8, g2 = 7 expecting profit of 92.26, strategy s3,3 is to produce

g1 = 0, g2 = 15 expecting profit of 70.5. Unfortunately, the above expectations are

not the final outcomes due to the fact that the actual prices depends on the number of

goods being produced into the market. The higher the number, the lower the price.

Table. 5.16. Strategies of {a1}, {a2}, {a3} agent

s1,1

a3

s3,1 s3,2 s3,3

s2,1 34.56, 144, 86.4 36.24, 151, 48.32 38.16, 159, 0

a2 s2,2 37.44, 81.12, 93.6 39.12, 84.76, 52.16 41.04, 88.92, 0

s2,3 40.56, 0, 101.4 42.24, 0, 56.32 44.16, 0, 0

s1,2

a3

s3,1 s3,2 s3,3

s2,1 17.64, 147, 88.2 18.48, 154, 49.28 19.44, 162, 0

a2 s2,2 19.08, 82.68, 95.4 19.92, 86.32, 53.12 20.88, 90.48, 0

s2,3 20.64, 0, 103.2 21.48, 0, 57.28 22.44, 0, 0

s1,3

a3

s3,1 s3,2 s3,3

s2,1 0, 150, 90 0, 157, 50.24 0, 165, 0

a2 s2,2 0, 84.24, 97.2 0, 87.88, 54.08 0, 92.04, 0

s2,3 0, 0, 105 0, 0, 58.24 0, 0, 0
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We plot agents’ strategies and respective outcomes in table 5.16. The first outcome

(34.56, 144, 86.4) means agent a1 gains 34.56 by producing 6 units of g1, agent a2
gains 144 by producing 25 units of g1 and agent a3 gains 86.4 by producing 15 units

of g1. This is because the total number of g1 is 46 lowering the unit price to 5.76. We

now focus on agent a3. Suppose, agent a1 plays s1,1. If agent a2 plays s2,1, the best

strategy for a3 is s3,1 because it gives the maximal payoff 34.56 to a3. This is also

the case even a2 chose to play s2,2 or s2,3. This strategy s1,3 is also the best choice

for a3 if a1 plays s1,2, regardless of what strategy a2 plays, or s1,3, regardless of what

strategy a2 plays. We can conclude that in case 1), where agents do not cooperate,

agent a3 will always play s1,3. Following the same analytic process, the outcome of

case 1) is a1 plays s1,1 and gains 34.56, a2 plays s2,1 and gains 144, and a3 plays s3,1
and gains 86.4.

Case 2, 3, 4 and 5

We now consider case 2, in which the coalitions are {a1, a2} and {a3}. Among

many possibilities, agents may have the following plans. For {a1, a2}, strategy s12,1

is to produce g1 = 15, g2 = 0, expecting profit of 105, strategy s12,2 is to produce

g1 = 8, g2 = 7 expecting profit of 92.26, strategy s12,3 is to produce g1 = 0, g2 = 15

expecting profit of 70.5. For a3, strategy s3,1 is to produce g1 = 31, g2 = 0 expecting

profit of 197.16, strategy s3,2 is to produce g1 = 15, g2 = 15 expecting profit of 181.86,

strategy s3,3 is to produce g1 = 83, g2 = 83 expecting profit of 277.22. We plot agents’

strategies and respective outcomes in table 5.17.

Table. 5.17. Strategies of {a1, a2}, {a3} agent

a3

s3,1 s3,2 s3,3

s12,1 86.4, 178.56 95.4, 101.76 105, 0

a1, a2 s12,2 48.32, 187.24 53.12, 106.24 58.24, 0

s12,3 0, 197.16 0, 111.36 0, 0

Following the same analytic process, the outcome of case 2 is {a1, a2} play s12,1

and gain 86.4, and {a3} plays s3,1 and gains 178.56.
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We now consider case 3, in which the coalitions are {a1, a3} and {a2}. Among

many possibilities, agents may have the following plans. For {a1, a3}, strategy s13,1 is

to produce g1 = 50, g2 = 0, expecting profit of 280, strategy s13,2 is to produce g1 =

25, g2 = 24 expecting profit of 273.48, strategy s13,3 is to produce g1 = 16, g2 = 86

expecting profit of 239.54. For a2, strategy s2,1 is to produce g1 = 25, g2 = 0 expecting

profit of 165, strategy s2,2 is to produce g1 = 13, g2 = 12 expecting profit of 149.16,

strategy s2,3 is to produce g1 = 0, g2 = 25 expecting profit of 112.5. We plot agents’

strategies and respective outcomes in table 5.18.

Table. 5.18. Strategies of {a1, a3}, {a2} agent

a2

s2,1 s2,2 s2,3

s13,1 230, 115 254, 66.04 280, 0

a1, a3 s13,2 140, 140 91.2, 79.04 165, 0

s13,3 92.8, 168.2 103.04, 83.72 111.36, 0

Following the same analytic process, the outcome of case 3 is {a1, a3} play s13,1

and gain 230, and {a2} plays s2,1 and gains 115

We now consider case 4, in which the coalitions are {a1} and {a2, a3}. Among

many possibilities, agents may have the following plans. For {a1}, strategy s1,1 is

to produce g1 = 6, g2 = 0, expecting profit of 44.16, strategy s1,2 is to produce

g1 = 3, g2 = 2 expecting profit of 32.36, strategy s1,3 is to produce g1 = 0, g2 = 16

expecting profit of 74.88. For a2, a3, strategy s23,1 is to produce g1 = 65, g2 = 0

expecting profit of 325, strategy s23,2 is to produce g1 = 33, g2 = 32 expecting profit

of 346.76, strategy s23,3 is to produce g1 = 12, g2 = 52 expecting profit of 291.36. We

plot agents’ strategies and respective outcomes in table 5.19.

Table. 5.19. Strategies of {a1}, {a2, a3} agent

a2, a3

s23,1 s23,2 s23,3

s1,1 28.56, 309.4 36.24, 199.32 41.28, 82.56

a1 s1,2 14.64, 317.2 18.48, 203.28 21, 84

s1,3 0, 325 0, 207.24 0, 85.44
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Following the same analytic process, the outcome of case 4 is {a1} play s1,1 and

gain 28.56, and {a2, a3} plays s23,1 and gains 309.4

5.5.4 Trend 4

Case 1

For a1, strategy s1,1 is to produce g1 = 6, g2 = 0, expecting profit of 44.16, strategy s1,2
is to produce g1 = 3, g2 = 2 expecting profit of 32.36, strategy s1,3 is to produce g1 =

0, g2 = 15 expecting profit of 70.5. For a2, strategy s2,1 is to produce g1 = 25, g2 = 0

expecting profit of 165, strategy s2,2 is to produce g1 = 13, g2 = 12 expecting profit

of 149.16, strategy s2,3 is to produce g1 = 0, g2 = 50 expecting profit of 200. For

a3, strategy s3,1 is to produce g1 = 43, g2 = 2 expecting profit of 262.76, strategy s3,2
is to produce g1 = 22, g2 = 21 expecting profit of 244.02, strategy s3,3 is to produce

g1 = 11, g2 = 74 expecting profit of 339.24. Unfortunately, the above expectations are

not the final outcomes due to the fact that the actual prices depends on the number of

goods being produced into the market. The higher the number, the lower the price.

Table. 5.20. Strategies of {a1}, {a2}, {a3} agent

s1,1

a3

s3,1 s3,2 s3,3

s2,1 27.84, 116, 199.52 32.88, 137, 120.56 35.52, 148, 65.12

a2 s2,2 30.72, 66.56, 220.16 35.76, 77.48, 131.12 38.4, 83.2, 70.4

s2,3 33.84, 0, 242.52 38.88, 0, 142.56 41.52, 0, 76.12

s1,2

a3

s3,1 s3,2 s3,3

s2,1 17.64, 147, 252.84 16.8, 140, 123.2 18.12, 151, 66.44

a2 s2,2 15.12, 65.52, 216.72 18.24, 79.04, 133.76 19.56, 84.76, 71.72

s2,3 17.28, 0, 247.68 19.8, 0, 145.2 21.12, 0, 77.44

s1,3

a3

s3,1 s3,2 s3,3

s2,1 0, 122, 209.84 0, 143, 125.84 0, 154, 67.76

a2 s2,2 0, 69.68, 230.48 0, 80.6, 136.4 0, 86.32, 73.04

s2,3 0, 0, 88.2 0, 0, 53.76 0, 0, 78.76

We plot agents’ strategies and respective outcomes in table 5.20. The first outcome

(27.84, 116, 199.52) means agent a1 gains 27.84 by producing 6 units of g1, agent a2
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gains 116 by producing 25 units of g1 and agent a3 gains 199.52 by producing 43 units

of g1. This is because the total number of g1 is 74 lowering the unit price to 4.64. We

now focus on agent a3. Suppose, agent a1 plays s1,1. If agent a2 plays s2,1, the best

strategy for a3 is s3,1 because it gives the maximal payoff 199.52 to a3. This is also

the case even a2 chose to play s2,2 or s2,3. This strategy s1,3 is also the best choice

for a3 if a1 plays s1,2, regardless of what strategy a2 plays, or s1,3, regardless of what

strategy a2 plays. We can conclude that in case 1), where agents do not cooperate,

agent a3 will always play s1,3. Following the same analytic process, the outcome of

case 1) is a1 plays s1,1 and gains 27.84, a2 plays s2,1 and gains 116, and a3 plays s3,1
and gains 199.52.

Case 2, 3, 4 and 5

We now consider case 2, in which the coalitions are {a1, a2} and {a3}. Among

many possibilities, agents may have the following plans. For {a1, a2}, strategy s12,1

is to produce g1 = 31, g2 = 0, expecting profit of 197.16, strategy s12,2 is to produce

g1 = 16, g2 = 15 expecting profit of 181.86, strategy s12,3 is to produce g1 = 0, g2 = 65

expecting profit of 240.5. For a3, strategy s3,1 is to produce g1 = 43, g2 = 2 expecting

profit of 262.76, strategy s3,2 is to produce g1 = 22, g2 = 21 expecting profit of 244.02,

strategy s3,3 is to produce g1 = 11, g2 = 74 expecting profit of 339.24. We plot agents’

strategies and respective outcomes in table 5.21.

Table. 5.21. Strategies of {a1, a2}, {a3} agent

a3

s3,1 s3,2 s3,3

s12,1 143.84, 199.52 169.88, 120.56 183.52, 65.12

a1, a2 s12,2 83.84, 225.32 97.28, 133.76 104.32, 71.72

s12,3 0, 252.84 0, 147.84 0, 78.76

Following the same analytic process, the outcome of case 2 is {a1, a2} play s12,1

and gain 143.84, and {a3} plays s3,1 and gains 199.52.

We now consider case 3, in which the coalitions are {a1, a3} and {a2}. Among

many possibilities, agents may have the following plans. For {a1, a3}, strategy s13,1 is



 

 

 

66

to produce g1 = 50, g2 = 0, expecting profit of 280, strategy s13,2 is to produce g1 =

25, g2 = 24 expecting profit of 273.48, strategy s13,3 is to produce g1 = 16, g2 = 84

expecting profit of 390.24. For a2, strategy s2,1 is to produce g1 = 25, g2 = 0 expecting

profit of 165, strategy s2,2 is to produce g1 = 13, g2 = 12 expecting profit of 149.16,

strategy s2,3 is to produce g1 = 0, g2 = 50 expecting profit of 200. We plot agents’

strategies and respective outcomes in table 5.22.

Table. 5.22. Strategies of {a1, a3}, {a2} agent

a2

s2,1 s2,2 s2,3

s13,1 230, 115 254, 66.04 280, 0

a1, a3 s13,2 140, 140 152, 79.04 165, 0

s13,3 95.36, 149 103.04, 83.72 111.36, 0

Following the same analytic process, the outcome of case 3 is {a1, a3} play s13,1

and gain 230, and {a2} plays s2,1 and gains 115

We now consider case 4, in which the coalitions are {a1} and {a2, a3}. Among

many possibilities, agents may have the following plans. For {a1}, strategy s1,1 is

to produce g1 = 6, g2 = 0, expecting profit of 44.16, strategy s1,2 is to produce

g1 = 3, g2 = 2 expecting profit of 32.36, strategy s1,3 is to produce g1 = 0, g2 = 15

expecting profit of 70.5. For a2, a3, strategy s23,1 is to produce g1 = 68, g2 = 1

expecting profit of 336.82, strategy s23,2 is to produce g1 = 36, g2 = 35 expecting

profit of 372.26, strategy s23,3 is to produce g1 = 35, g2 = 90 expecting profit of 505.

We plot agents’ strategies and respective outcomes in table 5.23.

Table. 5.23. Strategies of {a1}, {a2, a3} agent

a2, a3

s23,1 s23,2 s23,3

s1,1 27.84, 315.52 35.52, 213.12 35.76, 208.6
a1 s1,2 14.28, 323.68 18.12, 217.44 18.24, 212.8

s1,3 0, 331.84 0, 221.76 0, 217

Following the same analytic process, the outcome of case 4 is {a1} play s1,1 and

gain 27.84, and {a2, a3} plays s23,1 and gains 315.52
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5.5.5 Trend 5

Case 1

For a1, strategy s1,1 is to produce g1 = 43, g2 = 2, expecting profit of 262.76, strategy

s1,2 is to produce g1 = 22, g2 = 21 expecting profit of 244.02, strategy s1,3 is to

produce g1 = 11, g2 = 74 expecting profit of 339.24. For a2, strategy s2,1 is to produce

g1 = 25, g2 = 0 expecting profit of 165, strategy s2,2 is to produce g1 = 13, g2 = 12

expecting profit of 149.16, strategy s2,3 is to produce g1 = 0, g2 = 50 expecting profit

of 200. For a3, strategy s3,1 is to produce g1 = 6, g2 = 0 expecting profit of 44.16,

strategy s3,2 is to produce g1 = 3, g2 = 2 expecting profit of 32.36, strategy s3,3 is to

produce g1 = 0, g2 = 15 expecting profit of 70.5. Unfortunately, the above expectations

are not the final outcomes due to the fact that the actual prices depends on the number

of goods being produced into the market. The higher the number, the lower the price.

Table. 5.24. Strategies of {a1}, {a2}, {a3} agent

s1,1

a3

s3,1 s3,2 s3,3

s2,1 199.52, 116, 27.84 204.68, 119, 14.28 209.84, 122, 0

a2 s2,2 220.16, 66.56, 30.72 225.32, 68.12, 15.72 230.48, 69.68, 0

s2,3 242.52, 0,33.84 247.68, 0, 17.28 252.84, 0, 0

s1,2

a3

s3,1 s3,2 s3,3

s2,1 120.56, 137, 32.88 123.2, 140, 16.8 125.84, 143, 0

a2 s2,2 131.12,77.48, 35.76 133.76, 79.04, 18.24 136.4, 80.6, 0

s2,3 142.56, 0, 38.88 145.2, 0, 19.8 147.84, 0, 0

s1,3

a3

s3,1 s3,2 s3,3

s2,1 65.12, 148, 35.52 66.44, 151, 18.12 67.76, 154, 0

a2 s2,2 70.4, 83.2, 38.4 71.72, 84.76, 19.56 73.04, 86.32, 0

s2,3 76.12, 0, 41.52 77.44, 0, 21.12 78.76, 0, 0

We plot agents’ strategies and respective outcomes in table 5.24. The first outcome
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(199.52, 116, 27.84) means agent a1 gains 199.52 by producing 43 units of g1, agent

a2 gains 116 by producing 25 units of g1 and agent a3 gains 27.84 by producing 6

units of g1. This is because the total number of g1 is 74 lowering the unit price to

4.64. We now focus on agent a3. Suppose, agent a1 plays s1,1. If agent a2 plays s2,1,

the best strategy for a3 is s3,1 because it gives the maximal payoff 27.84 to a3. This

is also the case even a2 chose to play s2,2 or s2,3. This strategy s1,3 is also the best

choice for a3 if a1 plays s1,2, regardless of what strategy a2 plays, or s1,3, regardless

of what strategy a2 plays. We can conclude that in case 1), where agents do not

cooperate, agent a3 will always play s1,3. Following the same analytic process, the

outcome of case 1) is a1 plays s1,1 and gains 199.52, a2 plays s2,1 and gains 116, and

a3 plays s3,1 and gains 27.84.

Case 2, 3, 4 and 5

We now consider case 2, in which the coalitions are {a1, a2} and {a3}. Among many

possibilities, agents may have the following plans. For {a1, a2}, strategy s12,1 is to

produce g1 = 68, g2 = 1, expecting profit of 336.82, strategy s12,2 is to produce g1 =

39, g2 = 38 expecting profit of 396.68, strategy s12,3 is to produce g1 = 38, g2 = 82

expecting profit of 506.56. For a3, strategy s3,1 is to produce g1 = 6, g2 = 0 expecting

profit of 44.16, strategy s3,2 is to produce g1 = 3, g2 = 2 expecting profit of 32.36,

strategy s3,3 is to produce g1 = 0, g2 = 15 expecting profit of 70.5. We plot agents’

strategies and respective outcomes in table 5.25.

Table. 5.25. Strategies of {a1, a2}, {a3} agent

a3

s3,1 s3,2 s3,3

s12,1 315.52, 27.84 323.68, 14.28 331.84, 0

a1, a2 s12,2 226.2, 34.8 230.88, 17.76 235.56, 0

s12,3 221.92, 35.04 226.48, 17.88 231.04, 0

Following the same analytic process, the outcome of case 2 is {a1, a2} play s12,1

and gain 315.52, and {a3} plays s3,1 and gains 27.84.

We now consider case 3, in which the coalitions are {a1, a3} and {a2}. Among
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many possibilities, agents may have the following plans. For {a1, a3}, strategy s13,1 is

to produce g1 = 50, g2 = 0, expecting profit of 280, strategy s13,2 is to produce g1 =

25, g2 = 24 expecting profit of 273.48, strategy s13,3 is to produce g1 = 16, g2 = 84

expecting profit of 390.24. For a2, strategy s2,1 is to produce g1 = 25, g2 = 0 expecting

profit of 165, strategy s2,2 is to produce g1 = 13, g2 = 12 expecting profit of 149.16,

strategy s2,3 is to produce g1 = 0, g2 = 50 expecting profit of 200. We plot agents’

strategies and respective outcomes in table 5.26.

Table. 5.26. Strategies of {a1, a3}, {a2} agent

a2

s2,1 s2,2 s2,3

s13,1 230, 115 254, 66.04 280, 0
a1, a3 s13,2 140, 140 152, 79.04 165, 0

s13,3 95.36, 149 103.04, 83.72 111.36, 0

Following the same analytic process, the outcome of case 3 is {a1, a3} play s13,1

and gain 230, and {a2} plays s2,1 and gains 115

We now consider case 4, in which the coalitions are {a1} and {a2, a3}. Among

many possibilities, agents may have the following plans. For {a1}, strategy s1,1

is to produce g1 = 43, g2 = 2, expecting profit of 262.76, strategy s1,2 is to produce

g1 = 22, g2 = 21 expecting profit of 244.02, strategy s1,3 is to produce g1 = 11, g2 = 74

expecting profit of 339.24. For a2, a3, strategy s23,1 is to produce g1 = 31, g2 = 0

expecting profit of 197.16, strategy s23,2 is to produce g1 = 16, g2 = 15 expecting

profit of 181.86, strategy s23,3 is to produce g1 = 0, g2 = 65 expecting profit of 240.5.

We plot agents’ strategies and respective outcomes in table 5.27.

Table. 5.27. Strategies of {a1}, {a2, a3} agent

a2, a3

s23,1 s23,2 s23,3

s1,1 199.52, 143.84 225.32, 83.84 252.84, 0
a1 s1,2 120.56, 169.88 133.76, 97.28 147.84, 0

s1,3 65.12, 183.52 71.72, 104.32 78.76, 0

Following the same analytic process, the outcome of case 4 is {a1} play s1,1 and

gain 199.52, and {a2, a3} plays s23,1 and gains 143.84
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Compensate

By following the complex analytic processes, we receive the outcomes of each trend

as shown in table 5.7. The outstanding figure is the grand coalition’s value remain

the same and is the best strategy for all agents. Another notable result is that a2’s

coalition values change all the times even it receives the same number of resources in

all trends. Lastly, trend 2 and 3 are diagonally similar as well as trend 4 and 5.

Table. 5.28. Payoff of agent in all 5 trends

Coalition Structure Trend 1 Trend 2 Trend 3 Trend 4 Trend 5

a1 115 86.4 34.56 27.84 199.52

a2 115 144 144 116 116

a3 115 34.56 86.4 199.52 27.84

a1, a2 230 309.4 178.56 143.84 315.52

a1, a3 230 230 230 230 230

a2, a3 230 178.56 309.4 315.52 143.84

a1, a2, a3 533.76 533.76 533.76 533.76 533.76

Payoff by SV 177.92,177.92,177.92 116.0,210.42,207.34 207.34,210.42,116 263.43,178.59,91.75 91.75,178.59,263.43

The agents’ payoffs are shown in table 5.28. As one may expect, the agents’

payoffs have some pattern reflecting the patterns of resources the are allocated. In

trend 2 and 3, the payoffs of a1 and a3 are diagonally similar, i.e. 116 and 207.34,

while a2 receives 210.42. In trend 4 and 5, the payoffs of a1 and a3 are also diagonally

similar, i.e. 263.43 and 91.75, while a2 receives 178.59.

5.5.6 For example to find nash equilibrium

Form Strategy Profile and Payoff Vector with Strategies and Outcomes of Trend 1 Case

1, as shown in table 5.8. That the grand coalition’s value is the same for all trends, it

is the best strategy for all agents. The coalition value of a2 in all trends vary despite

the same number of resources in all trends because of number of goods produced by

other agents. Also, there is a diagonal similarity between Trend 2, Trend 3 and Trend

4, Trend 5. Based on the given resources in each game, there can be many possible

plans for producing goods for each agent. Each of these plans can be considered a

strategy of each agent in each game. Since there are so many possibilities, we consider
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only three strategies for each agent in each game. The first strategy is to produce only

g1. The second strategy is to optimally produce both g1 and g2. The third strategy

is to produce only g2. Hence, there are strategies {s1,1, s1,2, s1,3}, {s2,1, s2,2, s2,3}

and {s3,1, s3,2, s3,3} for agent a1, a2 and a3, respectively. For each strategic profile,

the optimal plan for each agent will be computed and the actual payoff will also be

calculated taken into account the total amount of goods and respective unit prices.

Note that the actual payoff for each agent may be less than its expected value. Given

a strategic profile, the payoffs for all agents a payoff vector (v1, v2, v3)

Following SFG structure, there are twenty-seven strategic profiles for each game

and their respective payoff vectors will be presented in the game table accordingly.

Strategic profile (s1,1, s2,1, s3,1), indicating that agent a1 plays s1,1, a1 plays s1,1, a1
plays s1,1, is associated with payoff vector (v1, v2, v3), indicating that payoffs for agent

a1, a2 and a3 are v1, v2 and v3, respectively, as shown in table 5.29.
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Table. 5.29. Strategy Profile and Payoff Vector

Strategy Profile Payoff Vector

a1 a2 a3 v1 v2 v3

s1,1 s2,1 s3,1 115 115 115

s1,1 s2,1 s3,2 122 122 87.84

s1,1 s2,1 s3,3 140 140 0

s1,1 s2,2 s3,1 122 87.84 122

s1,1 s2,2 s3,2 129 92.88 92.88

s1,1 s2,2 s3,3 147 105.84 0

s1,1 s2,3 s3,1 140 0 140

s1,1 s2,3 s3,2 147 0 105.84

s1,1 s2,3 s3,3 165 0 0

s1,2 s2,1 s3,1 87.84 122 122

s1,2 s2,1 s3,2 92.88 129 92.88

s1,2 s2,1 s3,3 113.04 157 0

s1,2 s2,2 s3,1 92.88 92.88 129

s1,2 s2,2 s3,2 97.92 97.92 97.92

s1,2 s2,2 s3,3 110.88 110.88 0

s1,2 s2,3 s3,1 105.84 0 147

s1,2 s2,3 s3,2 110.88 0 110.88

s1,2 s2,3 s3,3 123.84 0 0

s1,3 s2,1 s3,1 0 140 140

s1,3 s2,1 s3,2 0 147 105.84

s1,3 s2,1 s3,3 0 165 0

s1,3 s2,2 s3,1 0 105.84 147

s1,3 s2,2 s3,2 0 110.88 110.88

s1,3 s2,2 s3,3 0 123.84 0

s1,3 s2,3 s3,1 0 0 165

s1,3 s2,3 s3,2 0 0 123.84

s1,3 s2,3 s3,3 0 0 0
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5.5.7 Discussion

Given resources in Trend 1, we deliberately compute for the best plan for each agent

as a sole seller and compute for agents’ payoff in strategic form game. Table 5.29

shows both agents’ expected profits as sole sellers in the market and agents’ payoffs as

players in game of Trend 1. As a sole seller in the market, a1, a2, a3 expect to produce

18 units of g1, 17 units of g2 and receive profit of 203.6. Since they are all in the

market, we have to carefully consider the outcome of the game. Let’s consider agent

a3, Assuming, agent a1 plays s1,1 and agent a2 plays s2,1, agent a3’s best strategy is

s3,1, receiving the highest payoff 115. This remains the same when agent a2 plays

s2,2 or s2,3. If a1 plays s1,2, strategy s1,3 remains the best choice for a3, no matters

what a2 plays. In other words, agent a3 always plays s1,3. By similarly analyzing

the situation, the strategic profile (s1,1, s2,1, s3,1) is the outcome and is also in Nash

Equilibrium. Their actual payoffs drop to 115 each.

5.6 Conclusion

We study non-cooperative bakery game. A wide range of amount of resources into

5 trends. Trend 1 is used as a reference. Trend 2, 3 and Trend 4, 5 are diagonally

similar. Given certain technology matrix and price functions, we find that within our

settings agents’ strategies remain unchanged even though resources vary upto 75%.

Furthermore, agents’ payoffs changes relatively small. In the future, this research can

be extended to consider more complex situations with more details. While there are

a small number of agents and actions are used in this research, there should be more

agents and actions involved. Furthermore, there could be algorithms working on other

aspects, including efficiency, etc.



 

 

 

CHAPTER 6

FAIR PAYOFF IN NON-COOPERATIVE GAME

Nash proves in this thesis [35] that there are always equilibria in n-person strategic

form game. However, it was later proves that it is not actually the case in these

works, particular game are invented and considered of a small number of agents, each

of which having a couple of strategies.

In real world domains, number of agents can be up to hundreds or thousands,

resulting in much larger search space. It is important that we know how we can find

satisfactory results in timely section. Knowing such trends we can possibly predict the

outcome of the game given relation of agents payoffs. more interesting, the acquired

knowledge may lead to the design of rules of game (or set of strategic profiles) in

order to achieve desired results.

However, a game of a small number of agents can still be challenging because

search apace of possible outcomes, deriving form a small number of possible strategy

payoffs, can still be very large. In typical research in game theory, a game consisting

of a couple of agents, each of which possesses a couple of strategies, will be consider.

Here, we also start off with a couple of agents, but we consider a larger search space

by including all possible combination of agents strategies. We expressively explore

1.8 hundred thousand millions of game to find out patterns or trend of games with and

without equilibrium.

6.1 Introduction to strategy in normal form game

In gaem theory, the first game form is extensive form game, a non-cooperative game,

where sequence of actions are associated with payoffs, in form of tree, until leaves

of the tree. Here, we present the definition of strategic form game, defined by [33],

for the sake of completeness. It is described that the game is defined by exhibiting

on each side of the matrix the different players (here players 1 and 2), each strategy

or choice they can make (here strategies A and B) and sets of payoffs they will each

receive for a given strategy (p1A, p2A; p1A, p2B; p1B, p2A; p1B, p2B). It is explained [33]
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that the strategic form allows us to quickly analyse each possible outcome of a game.

In the depicted matrix, if player 1 chooses strategy A and player 2 chooses strategy

B, the set of payoffs given by the outcome would be p1A, p2B. If player 1 chooses

strategy B and player 2 chooses strategy A, the set of payoffs would be p1B, p2A.

Table. 6.1. strategies A and B

PLAYER 2
Strategy A Strategy B

PLAYER 2 Strategy A p1A, p2A p1A, p2A

Strategy B p1B, p2A p1B, p2B

Gallego [33] suggests that an n-person game in strategic form (or, normal form)

has 3 essential elements

1. A finite set of players I = 1, 2, ..., n.

2. For each player i, a finite set of strategies Si. Let s = (s1, s2, ...sn) denote

an n-tuple of strategies, one for each player. This n-tuple is called a strategy

combination or strategy profile. The set S = S1 × S2 × ... × Sn denotes the set

of n-tuple of strategies.

3. For each player i, there is a payoff function Pi : S → R, which associates with

each strategy combination (s1, s2, ..., sn), a payoff Pi(s1, s2, ..., sn) for player

i. Since we have one such function for each player i, in all we have n such

functions.

6.2 NE in strategy in normal form game

The most famous, widely adopted and studied solution concept of strategic form game

is Nash Equilibrium [35]. There are so many re-invented definitions, in addition

to the original one [35]. Here we use the definition defined by [38]: "A Nash

equilibrium [38] is an action profile a∗ with the property that no player i can do better

by choosing an action different from a∗i , given that every other player j adheres to a∗j ."

It is explained [38] that A Nash equilibrium corresponds to a steady state. If, when

ever the game is played, the action profile is the same Nash equilibrium a∗, then no
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player has a reason to choose any action different from her component of a∗; there is

no pressure on the action profile to change. It is believed that [38] Nash equilibrium

embodies a stable “social norm”: if everyone else adheres to it, no individual wishes

to deviate from it. Furthermore, it is stated [38] that the players’ beliefs about each

other’s actions are correct implies, in particular, that two players’ beliefs about a third

player’s action are the same. For this reason, the condition is sometimes said to be

that the players’ “expectations are coordinated”.

Here, we present a definition of a Nash equilibrium, presented by [38]. Let a be

an action profile, in which the action of each player i is ai. Let a′i be any action

of player i (either equal to ai, or different from it). Then (a′i, a−i) denotes j except

i chooses her action aj as specified by a, whereas player i chooses a′i. (The −i

subscript on a stands for "except i".) That is, (a′i, a−i) is the action profile in which

all the players other than i adhere to a while i “deviates” to a′i. (If a′i = ai then of

course (a′i, a−i = (ai, a−i) = a.) If there are three players, for example, then (a′2, a−2)

is the action profile in which players 1 and 3 adhere to a (player 1 chooses a1, player

3 chooses a3) and player 2 deviates to a′2. Using this notation, we can restate the

condition for an action profile a∗ to be a Nash equilibrium: no player i has any action

ai for which she prefers (ai, a∗−i) to a∗. Equivalently, for every player i and every

action ai of player i, the action profile a∗ is at least as good for player i as the action

profile (ai, a∗−i).

6.3 Strategy profile spectrum

We consider games of three agents, each of which has true strategies. In this set

of games. The payoffs for agents range from one to three. That is the payoff

vectors are 27 combinations of there value, e.g. (0, 0, 0), (0, 0, 1), (0, 1, 0), ...,

(2, 2, 2). Having three agents with these payoff combinations, there can be as many

as 27×27×27×27×27×27×27×27 = 282, 429, 536, 481 games. shown in table 6.2.
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Table. 6.2. Payoff Combinations

0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

Game 1

0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 1

Game 2

0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 2

Game 3

0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

0, 0, 0 0, 0, 0 0, 0, 0 0, 1, 0

Game 4

0, 0, 0 0, 0, 0 . 0, 0, 0 0, 0, 0

0, 0, 0 0, 0, 0 . 0, 0, 0 1, 1, 0

.

0, 0, 0 0, 0, 0 . 0, 0, 0 0, 0, 0

0, 0, 0 0, 0, 0 . 0, 0, 0 1, 1, 1

.

0, 0, 0 0, 0, 0 . 0, 0, 0 0, 0, 0

0, 0, 0 0, 0, 0 . 0, 0, 0 1, 1, 2

.

0, 0, 0 0, 0, 0 . 0, 0, 0 0, 0, 0

0, 0, 0 0, 0, 0 . 0, 0, 0 1, 2, 0

.

0, 0, 0 0, 0, 0 . 0, 0, 0 0, 0, 0

0, 0, 0 0, 0, 0 . 0, 0, 0 1, 2, 1

.

0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

0, 0, 0 0, 0, 0 0, 0, 0 1, 2, 2

Game 282,429,536,479

2, 2, 2 2, 2, 2 . 2, 2, 2 2, 2, 2

2, 2, 2 2, 2, 2 . 2, 2, 2 2, 1, 3

Game 282,429,536,480

2, 2, 2 2, 2, 2 . 2, 2, 2 2, 2, 2

2, 2, 2 2, 2, 2 . 2, 2, 2 2, 2, 2

Game 282,429,536,481

Table 6.2 is an overview of payoff combinations of all games from 1 - 282,429,536,481

games, the components of Game 1 are 3 agents, each of which has 2 strategy. With

these payoff vector, there can be as many as 3×3×3 = 27 payoff vectors. By strategy

combination in which each agent. Agent a, there are 2 strategy combination, a1 and

a2. Agent b, there are 2 strategy combination, b1 and b2. And agent C, there are 2

strategy combination, c1 and c2. As shown in table 6.3
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Table. 6.3. Strategy combination

a1 C a2 C

C1 C2 C1 C2

b
b1 0, 0, 0 0, 0, 0

b
b1 0, 0, 0 0, 0, 0

b2 0, 0, 0 0, 0, 0 b2 0, 0, 0 0, 0, 0

Game1

Addition to we consider each game to search NE. By division game that start P1 of

first payoff combinations from 0 - 2 payoff combinations than we search NE in every

payoff combinations for P1, P2, ...., P8 of all 282,429,536,481 games

Figure. 6.1. Example payoff combinations.

6.4 External Relational Characteristic

There are external relationship of these games. The complete ranges are shown in

table 6.4 and 6.5. In table 6.4, the integer portion of those setting is shown. In

table 6.5 the number of games is shown in form of a binomial coefficient.
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Table. 6.4. Integer partition

Case

Z Y X W V U T S R Q P O N M L K J I H G F E D C B A 0

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

8 0 0 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0

7 1 0 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0

7 0 1 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

7 0 0 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 1

6 2 0 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0

6 0 2 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0

6 0 0 2 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 2 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 2 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

6 0 0 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 2 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 2 0

6 0 0 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 2

5 3 0 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0

5 0 3 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0

5 0 0 3 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 3 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 3 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 3 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

5 0 0 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 3 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 3 0

5 0 0 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 3

5 2 1 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0

5 0 2 1 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0

5 0 0 2 1 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 2 1 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 2 1 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 2 1 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

5 0 0 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 1 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 2 1 0

5 0 0 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 2 1

5 1 1 1 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0

5 0 1 1 1 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0

5 0 0 1 1 1 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 1 1 1 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 1 1 1 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

5 0 0 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 1 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 1 1 0

5 0 0 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 1 1 1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 6 2

0 0 0 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 7 1

0 0 0 0 0 0 0 0 0 0 0 0 0 · · · · · · · · · 0 0 0 0 0 0 0 0 0 0 8
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Table. 6.5. Number of games

8 7 6 5 4 3 2 1

Z 8C8
26C1

26C1
26C1

26C1
26C1

26C1
26C1

+ 26C2 + 26C2 + 26C2 + 26C2 + 26C2 + 26C2

+ 26C3 + 26C3 + 26C3 + 26C3 + 26C3

+ 26C4 + 26C4 + 26C4 + 26C4

+ 26C5 + 26C5 + 26C5

+ 26C6 + 26C6

+ 26C7

Y 8C8
25C1

25C1
25C1

25C1
25C1

25C1
25C1

+ 25C2 + 25C2 + 25C2 + 25C2 + 25C2 + 25C2

+ 25C3 + 25C3 + 25C3 + 25C3 + 25C3

+ 25C4 + 25C4 + 25C4 + 25C4

+ 25C5 + 25C5 + 25C5

+ 25C6 + 25C6

+ 25C7

X 8C8
24C1

24C1
24C1

24C1
24C1

24C1
24C1

+ 24C2 + 24C2 + 24C2 + 24C2 + 24C2 + 24C2

+ 24C3 + 24C3 + 24C3 + 24C3 + 24C3

+ 24C4 + 24C4 + 24C4 + 24C4

+ 24C5 + 24C5 + 24C5

+ 24C6 + 24C6

+ 24C7

W 8C8
23C1

23C1
23C1

23C1
23C1

23C1
23C1

+ 23C2 + 23C2 + 23C2 + 23C2 + 23C2 + 23C2

+ 23C3 + 23C3 + 23C3 + 23C3 + 23C3

+ 23C4 + 23C4 + 23C4 + 23C4

+ 23C5 + 23C5 + 23C5

+ 23C6 + 23C6

+ 23C7

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

A 8C8
1C1

1C1
1C1

1C1
1C1

1C1
1C1

+ 1C2 + 1C2 + 1C2 + 1C2 + 1C2 + 1C2

+ 1C3 + 1C3 + 1C3 + 1C3 + 1C3

+ 1C4 + 1C4 + 1C4 + 1C4

+ 1C5 + 1C5 + 1C5

+ 1C6 + 1C6

+ 1C7

0 8C8
0C1

0C1
0C1

0C1
0C1

0C1
0C1

+ 0C2 + 0C2 + 0C2 + 0C2 + 0C2 + 0C2

+ 0C3 + 0C3 + 0C3 + 0C3 + 0C3

+ 0C4 + 0C4 + 0C4 + 0C4

+ 0C5 + 0C5 + 0C5

+ 0C6 + 0C6

+ 0C7
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6.5 Algorithm analytic

6.5.1 Integer Partition

Let m be a positive integer. A partition of m is a representation of m as a sum of

positive integers, say m = a1 + .....+ an The summands a1, ...., an are called the parts

of the partition, and their order is ignored. The notation P (m) is used to denote the

number of partitions of m;P (m) is called a partition number.

The first few partition numbers are P (1) = 1, P (2) = 2, P (3) = 3, P (4) =

5, P (5) = 7, P (6) = 11. As an example, the 11 different partitions of the integer

6

Table. 6.6. Groups partitions

1 6

2 5 + 1

2 4 + 2

3 4 + 1 + 1

2 3 + 3

3 3 + 2 + 1

4 3 + 1 + 1 + 1

3 2 + 2 + 2

4 2 + 2 + 1 + 1

5 2 + 1 + 1 + 1 + 1

6 1 + 1 + 1 + 1 + 1 + 1

Although partitions have been studied by mathematicians for hundreds of years

and many interesting results are known, there is no known formula for the values

P (m). The growth rate of P (m) is known however; it can be shown the P (m) is

Θ(eπ
√

2m/3/m).

A partition m = a1 + ...+ an is said to be in standard form if a1 ≥ a2 ≥ . . . ≥ an.

(Note that the 11 partitions of 6 given above are all in standard form.) A partition in

standard form as a list. i.e., [a1, a2, . . . , an], particularly in Algorithm 2.
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Algorithm 2 Integer Partition
1: procedure
2: System Initialization
3: Read the value
4: Set Array a
5: Set m
6: Set vector partition
7: input m, b, n
8: if m = 0 then
9: a[n] = 0

10: rj = 1

11: else
12: for each i = 1, i 6 min(b,m) do
13: a[n+ 1] = i

14: Set m− i, i, n+ 1

15: end for
16: end if
17: for each i = m, i 6 1, i−− do
18: a[1] = i

19: Set m− i, i, n+ 1

20: return partition
21: end for
22: Set n = noa

23: Set parts = 2

24: for i = m, i < 1, i+ + do
25: count = 0
26: for j = 1, j < m.length, j + + do
27: if temp[j] > 0 then
28: ++count
29: end if
30: end for
31: end for

6.5.2 Subset

A set A is a subset of a set B if all elements of A are also elements of T; B is then

a superset of A. It is possible for A and B to be equal; if they are unequal, then A is

a proper subset of B. The relationship of one set being a subset of another is called
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inclusion (or sometimes containment). A is a subset of B may also be expressed as B

includes (or contains) A or A is included (or contained) in B.

The subset relation defines a partial order on sets. In fact, the subsets of a given

set form a Boolean algebra under the subset relation, in which the join and meet are

given by intersection and union, and the subset relation itself is the Boolean inclusion

relation. Algorithm 3.

Algorithm 3 Subset
1: procedure
2: System Initialization
3: for each i from 1 to N do
4: let T be a list consisting of xi + y, for all y in S
5: let U be the union of T and S
6: sort U
7: make S empty
8: let y be the smallest element of U
9: add y to S

10: for each element z of U in increasing order do
11: . Trim the list by eliminating numbers close to one another and throw out

elements greater than s.
12: if y + cs/N < z 6 s then
13: y = z

14: add z to S
15: end if
16: end for
17: end for

6.5.3 NE of 3 agents and 2 Strategy Algorithm

In order to fine relationship between agents payoffs profile and predict the outcome of

the game, we expressively explore all the possible 272 = (0, 0, 0), (0, 0, 1), (0, 0, 2),

(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (0, 2, 1), (0, 2, 2), (1, 0, 0), (1, 0, 1), (1, 0, 2),

(1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2), (2, 0, 0), (2, 0, 1), (2, 0, 2),

(2, 1, 0), (2, 1, 1), (2, 1, 2), (2, 2, 0), (2, 2, 1) and (2, 2, 2) games. there are 8 levels

of loops, each of which represent a combination of agent payoffs in a payoff vector.

The value 27 in each loop represent the agent payoffs in one value. For example value
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1 represents vector 0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0),

(0, 2, 1), (0, 2, 2), (1, 0, 0), (1, 0, 1), (1, 0, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0),

(1, 2, 1), (1, 2, 2), 2, 0, 0), (2, 0, 1), (2, 0, 2), (2, 1, 0), (2, 1, 1), (2, 1, 2), (2, 2, 0),

(2, 2, 1) and (2, 2, 2)

We find NE, NonNE, and Elapsed to primarily exploring trend of outcomes in a

3-Person-2-Strategy game as shown in Figure 6.2

Figure. 6.2. Overview 2p3s.
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Algorithm 4 3 agents and 2 Strategy Algorithm
1: procedure
2: System Initialization
3: Read the value
4: Set payoffs = noa
5: Set sp = 0
6: for each sp < 27, sp + + do
7: for each sp < 27, sp1 + + do
8: for each sp < 27, sp2 + + do
9: for each sp < 27, sp3 + + do

10: for each sp < 27, sp4 + + do
11: for each sp < 27, sp5 + + do
12: for each sp < 27, sp6 + + do
13: for each sp < 27, sp7 + + do
14: for each sp < payoffs, sa + + do . identify payoff
15: for each sb < payoffs, sb + + do
16: for each sc < payoffs, sc + + do
17: for each a < payoffs, a + + do
18: payoffs[sa][sb][sc] = p3x3[sa * 2 * 2 + sb * 2 + sc];
19: boolean ne = true
20: double p0 = payoffs[i][j][k][a0]
21: for each st < payoffs.length, st + + do
22: if p0 < payoffs[st][j][k][a0] then
23: ne = false
24: break
25: end if
26: end for
27: double p1 = payoffs[i][j][k][a1]
28: for each st < payoffs[i].length, st + + do
29: if p1 < payoffs[st][j][k][a0] then
30: ne = false
31: break
32: end if
33: end for
34: double p1 = payoffs[i][j][k][a2]
35: for each st < payoffs[i].length, st + + do
36: if p2 < payoffs[st][j][k][a0] then
37: ne = false
38: break
39: end if
40: end for
41: if ne then
42: Print "profile[i][j][k]:Payoff is IN NE. "
43: necount++
44: else
45: Print "profile[i][j][k]:Payoff is not IN NE. "
46: nonnecount++
47: end if
48: end for
49: end for
50: end for
51: end for
52: end for
53: Set count++
54: if count mod mileStone == 0 then
55: time = System currentTimeMillis
56: elapsed = time - start
57: Print count, necounts, nonnecounts, nonnecount, elapsed
58: end if
59: end for
60: end for
61: end for
62: end for
63: end for
64: end for
65: end for
66: end for
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6.6 Result

6.6.1 NE Result

Table. 6.7. Experiment NE Setting (8 - 5)

Pattern
8 7 6 5

#NE % #NE % #NE % #NE %

0 0 0 0 0 0 0 0 0

A 8 0.0000000 28 0.0000000 56 0.0000000 70 0.0000000

B 1,024 0.0000004 1,792 0.0000006 1,792 0.0000006 1,120 0.0000004

C 17,496 0.0000062 20,412 0.0000072 13,608 0.0000048 5,606 0.0000020

D 130,944 0.0000464 114,592 0.0000406 57,312 0.0000203 17,916 0.0000063

E 625,000 0.0002213 437,500 0.0001549 175,000 0.0000620 43,750 0.0000155

F 2,237,760 0.0007923 1,302,912 0.0004613 432,384 0.0001531 89,696 0.0000318

G 6,577,368 0.0023289 3,289,468 0.0011647 940,296 0.0003329 168,006 0.0000595

H 16,777,216 0.0059403 7,340,032 0.0025989 1,835,008 0.0006497 286,720 0.0001015

I 38,263,752 0.0135481 14,818,140 0.0052467 3,265,272 0.0011561 444,742 0.0001575

J 79,466,096 0.0281366 27,502,948 0.0097380 5,464,024 0.0019347 688,892 0.0002439

K 153,394,536 0.0543125 48,276,124 0.0170932 8,828,904 0.0031261 1,016,870 0.0003600

L 278,634,600 0.0986563 79,560,504 0.0281700 13,238,016 0.0046872 1,414,140 0.0005007

M 489,057,160 0.1731608 132,299,760 0.0468435 20,560,816 0.0072800 1,993,064 0.0007057

N 832,449,912 0.2947461 209,668,444 0.0742374 30,075,648 0.0106489 2,688,620 0.0009520

O 1,318,363,992 0.4667940 302,233,788 0.1070121 40,590,600 0.0143719 3,474,374 0.0012302

P 2,103,484,080 0.7447819 464,031,256 0.1642998 58,443,768 0.0206932 4,583,184 0.0016228

Q 3,282,709,384 1.1623109 675,851,932 0.2392993 79,511,992 0.0281529 5,846,470 0.0020701

R 4,800,622,464 1.6997594 922,285,440 0.3265542 101,198,592 0.0358314 7,047,136 0.0024952

S 6,934,186,248 2.4551916 1,261,154,884 0.4465379 132,853,224 0.0470394 8,918,882 0.0031579

T 9,834,839,808 3.4822278 1,700,725,408 0.6021769 172,413,696 0.0610466 11,043,776 0.0039103

U 13,721,158,296 4.8582590 2,249,197,956 0.7963749 215,533,176 0.0763140 13,231,970 0.0046851

V 19,194,083,904 6.7960611 3,079,703,248 1.0904324 284,100,352 0.1005916 16,326,192 0.0057806

W 26,630,055,288 9.4289201 4,100,737,444 1.4519506 359,277,144 0.1272095 19,579,106 0.0069324

X 34,720,373,088 12.2934639 4,979,854,944 1.7632203 421,547,520 0.1492576 22,719,424 0.0080443

Y 47,433,848,536 16.7949320 6,724,153,492 2.3808252 543,577,624 0.1924649 27,312,194 0.0096704

Z 64,254,481,408 22.7506238 8,649,641,728 3.0625840 665,075,840 0.2354838 31,776,008 0.0112510
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Table. 6.8. Experiment NE Setting (4 - 1)

Pattern
4 3 2 1

#NE % #NE % #NE % #NE %

0 0 0 0 0 0 0 1 0.000000000

A 56 0.0000000 28 0.0000000 8 0.000000003 1 0.000000000

B 448 0.0000002 112 0.0000000 16 0.000000006 1 0.000000000

C 1,512 0.0000005 252 0.0000001 24 0.000000008 1 0.000000000

D 3,584 0.0000013 448 0.0000002 32 0.000000011 1 0.000000000

E 7,000 0.0000025 700 0.0000002 40 0.000000014 1 0.000000000

F 12,096 0.0000043 1,008 0.0000004 48 0.000000017 1 0.000000000

G 19,208 0.0000068 1,372 0.0000005 56 0.000000020 1 0.000000000

H 28,672 0.0000102 1,792 0.0000006 64 0.000000023 1 0.000000000

I 40,824 0.0000145 2,268 0.0000008 72 0.000000025 1 0.000000000

J 56,000 0.0000198 2,800 0.0000010 80 0.000000028 1 0.000000000

K 74,536 0.0000264 3,388 0.0000012 88 0.000000031 1 0.000000000

L 96,768 0.0000343 4,032 0.0000014 96 0.000000034 1 0.000000000

M 123,032 0.0000436 4,732 0.0000017 104 0.000000037 1 0.000000000

N 153,664 0.0000544 5,488 0.0000019 112 0.000000040 1 0.000000000

O 189,000 0.0000669 6,300 0.0000022 120 0.000000042 1 0.000000000

P 229,376 0.0000812 7,168 0.0000025 128 0.000000045 1 0.000000000

Q 275,128 0.0000974 8,092 0.0000029 136 0.000000048 1 0.000000000

R 326,592 0.0001156 9,072 0.0000032 144 0.000000051 1 0.000000000

S 384,104 0.0001360 10,108 0.0000036 152 0.000000054 1 0.000000000

T 448,000 0.0001586 11,200 0.0000040 160 0.000000057 1 0.000000000

U 518,616 0.0001836 12,348 0.0000044 168 0.000000059 1 0.000000000

V 596,288 0.0002111 13,552 0.0000048 176 0.000000062 1 0.000000000

W 681,352 0.0002412 14,812 0.0000052 184 0.000000065 1 0.000000000

X 774,144 0.0002741 16,128 0.0000057 192 0.000000068 1 0.000000000

Y 875,000 0.0003098 17,500 0.0000062 200 0.000000071 1 0.000000000

Z 944,271 0.0003343 16,050 0.0000057 119 0.000000042 0 0

6.6.2 Result Primarily Exploring Trend of outcomes in a 3-Person-2-Strategy
game

We divided the situation of NE searches into 9 stages, as follows: 0-3, 3-6, 6-9, 9-12,

12-15, 15-18, 18-21, 21-24, 24-27 We want to consider the results. To find the pattern

of numbers that derive NE Of Outcome in the game. In this step We want to test the
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accuracy of the algorithm to find the NE of Primarily Exploring Trend of outcomes in

a 3-Person-2-Strategy game.

6.7 Experiment

In each loop we have all a profiles which we can fine the relationship between agents

payoff and the outcome of the game. After all we possibly can predict the outcome of

the game given trends of relation of agents payoff.

6.7.1 Overview 3p2s

The result of the process of Overview 3p2s. Divided into 5 parts as follows,

1. Results from finding NE Count.

2. Results from finding the difference NE Count.

3. Results from NonNE Count results.

4. Results of finding differences in NonNE Count.

5. Results from finding differences Elapsed.

Figure. 6.3. NE Count.
Figure 6.3 shows that necount has a constant and incremental NE count. Starting from
round 1 billion, the amount of NE Range 0 - 3 at 988,639,264 until rising continuously
in the range 24 - 27 at 30,389,551,438
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Figure. 6.4. Diff NE Count.
Figure 6.4 shows that when finding the difference in the number of NEs in each rounds.
The result is shown in the Diffnecount graph. The number of NE in the range 24 -
27 is Difference during round 10,000,000,000. The NE difference is 10,000,000,000.
Then decreasing and increasing until 10,000,000,000 again at round 20,000,000,000 at
a constant at 10,000,000,000 up to round 30,000,000,000.

Figure. 6.5. NonNE.
Figure 6.5 shows that the number of NonNE that occurred increasing steadily. But
with a range of games during the period 24 - 27. Has a higher NnoNE count start
point than every period starting from 38,335,680 up to round 20,000,000,000 At a
constant at 610,448,562 to round 31,000,000,000.
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Figure. 6.6. Diff NonNE Count.
Figure 6.6 shows that the number of Diff NonNE Count that occurred increasing
steadily. But with a range of games during the period 24 - 27. Has a higher NnoNE
count start point than every period starting from 43,026,045 up to round 20,000,000,000
At a constant at 0 to round 30,000,000,000.

Figure. 6.7. Elapsed.
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6.7.2 3p2s loop1

The result of the process of Overview 3p2s loop1. Divided into 5 parts as follows,

1. Results from finding NE Count Loop1.

2. Results from finding the difference NE Count Loop1.

3. Results from NonNE Count results Loop1.

4. Results of finding differences in NonNE Count Loop1.

5. Results from finding differences Elapsed Loop1.

Figure. 6.8. NE Count Loop1.
Figure 6.8 shows that necount has a constant and incremental NE count. Starting from
round 1 billion, the amount of NE Range 0 - 3 at 988,639,264 until rising continuously
in the range 24 - 27 at 30,389,551,438

6.7.3 3p2s loop2

The result of the process of Overview 3p2s loop2. Divided into 5 parts as follows,

1. Results from finding NE Count Loop2.

2. Results from finding the difference NE Count Loop2.

3. Results from NonNE Count results Loop2.

4. Results of finding differences in NonNE Count Loop2.

5. Results from finding differences Elapsed Loop2.
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Figure. 6.9. Diff NE Count Loop1.
Figure 6.9 shows that when finding the difference in the number of NE in each rounds.
The result is shown in the Diffnecount graph. The number of NE in the range 24 -
27 is Difference during round 10,000,000,000. The NE difference is 10,000,000,000.
Then decreasing and increasing until 10,000,000,000 again at round 20,000,000,000 at
a constant at 10,000,000,000 up to round 30,000,000,000.

Figure. 6.10. NonNE Loop1.
Figure 6.10 shows that the number of NonNE that occurred increasing steadily. But
with a range of games during the period 24 - 27. Has a higher NnoNE count start
point than every period starting from 38,335,680 up to round 20,000,000,000 At a
constant at 610,448,562 to round 31,000,000,000.
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Figure. 6.11. Diff NonNE Count Loop1.
Figure 6.11 shows that the number of Diff NonNE Count that occurred increasing
steadily. But with a range of games during the period 24 - 27. Has a higher NnoNE
count start point than every period starting from 43,026,045 up to round 20,000,000,000
At a constant at 0 to round 30,000,000,000.

Figure. 6.12. Elapsed Loop1.
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Figure. 6.13. NE Count Loop2.
Figure 6.13 shows that, when finding the difference in the number of NEs in each
rounds. The result is shown in the Diffnecount graph. The number of NE in the
range 24 - 27 is Difference during round 10,000,000,000. The NE difference is
10,000,000,000. Then decreasing and increasing until 10,000,000,000 again at round
20,000,000,000 at a constant at 10,000,000,000 up to round 30,000,000,000.

Figure. 6.14. Diff NE Count Loop2.
Figure 6.14 shows that the number of NonNE that occurred increasing steadily. But
with a range of games during the period 24 - 27. Has a higher NnoNE count start
point than every period starting from 38,335,680 up to round 20,000,000,000 At a
constant at 610,448,562 to round 31,000,000,000.



 

 

 

95

Figure. 6.15. NonNE Loop2.
Figure 6.15 shows that the number of Diff NonNE Count that occurred increasing
steadily. But with a range of games during the period 24 - 27. Has a higher NnoNE
count start point than every period starting from 43,026,045 up to round 20,000,000,000
At a constant at 0 to round 30,000,000,000.

Figure. 6.16. Diff NonNE Count Loop2.
Figure 6.16 shows that the number of Diff NonNE Count that occurred increasing
steadily. But with a range of games during the period 24 - 27. Has a higher NnoNE
count start point than every period starting from 43,026,045 up to round 20,000,000,000
At a constant at 0 to round 30,000,000,000.
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Figure. 6.17. Elapsed Loop2.

6.7.4 3p2s loop3

The result of the process of Overview 3p2s loop3. Divided into 5 parts as follows,

1. Results from finding NE Count Loop3.

2. Results from finding the difference NE Count Loop3.

3. Results from NonNE Count results Loop3.

4. Results of finding differences in NonNE Count Loop3.

5. Results from finding differences Elapsed Loop3.

6.7.5 3p2s loop4

The result of the process of Overview 3p2s loop4. Divided into 5 parts as follows,

1. Results from finding NE Count Loop4.

2. Results from finding the difference NE Count Loop4.

3. Results from NonNE Count results Loop4.

4. Results of finding differences in NonNE Count Loop4.

5. Results from finding differences Elapsed Loop4.
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Figure. 6.18. NE Count Loop3.
Figure 6.18 shows that when finding the difference in the number of NEs in each
rounds. The result is shown in the Diffnecount graph. The number of NE in the
range 24 - 27 is Difference during round 10,000,000,000. The NE difference is
10,000,000,000. Then decreasing and increasing until 10,000,000,000 again at round
20,000,000,000 at a constant at 10,000,000,000 up to round 30,000,000,000.

Figure. 6.19. Diff NE Count Loop3.
Figure 6.19 shows that the number of NonNE that occurred increasing steadily. But
with a range of games during the period 24 - 27. Has a higher NnoNE count start
point than every period starting from 38,335,680 up to round 20,000,000,000 At a
constant at 610,448,562 to round 31,000,000,000.
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Figure. 6.20. NonNE Loop3.
Figure 6.20 shows that the number of Diff NonNE Count that occurred increasing
steadily. But with a range of games during the period 24 - 27. Has a higher NnoNE
count start point than every period starting from 43,026,045 up to round 20,000,000,000
At a constant at 0 to round 30,000,000,000.

Figure. 6.21. Diff NonNE Count Loop3.
Figure 6.21 shows that the number of Diff NonNE Count that occurred increasing
steadily. But with a range of games during the period 24 - 27. Has a higher NnoNE
count start point than every period starting from 43,026,045 up to round 20,000,000,000
At a constant at 0 to round 30,000,000,000.
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Figure. 6.22. Elapsed Loop3.

Figure. 6.23. NE Count Loop4.
Figure 6.23 shows then, when finding the difference in the number of NEs in each
rounds. The result is shown in the Diffnecount graph. The number of NE in the
range 24 - 27 is Difference during round 10,000,000,000. The NE difference is
10,000,000,000. Then decreasing and increasing until 10,000,000,000 again at round
20,000,000,000 at a constant at 10,000,000,000 up to round 30,000,000,000.
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Figure. 6.24. Diff NE Count Loop4.
Figure 6.24 shows that the number of NonNE that occurred increasing steadily. But
with a range of games during the period 24 - 27. Has a higher NnoNE count start
point than every period starting from 38,335,680 up to round 20,000,000,000 At a
constant at 610,448,562 to round 31,000,000,000.

Figure. 6.25. NonNE Loop4.
Figure 6.25 shows that the number of Diff NonNE Count that occurred increasing
steadily. But with a range of games during the period 24 - 27. Has a higher NnoNE
count start point than every period starting from 43,026,045 up to round 20,000,000,000
At a constant at 0 to round 30,000,000,000.
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Figure. 6.26. Diff NonNE Count Loop4.
Figure 6.26 shows that the number of NonNE that occurred increasing steadily. But
with a range of games during the period 24 - 27. Has a higher NnoNE count start
point than every period starting from 38,335,680 up to round 20,000,000,000 At a
constant at 610,448,562 to round 31,000,000,000.

Figure. 6.27. Elapsed Loop4.
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6.7.6 3p2s loop5

The result of the process of Overview 3p2s loop5. Divided into 5 parts as follows,

1. Results from finding NE Count Loop5.

2. Results from finding the difference NE Count Loop5.

3. Results from NonNE Count results Loop5.

4. Results of finding differences in NonNE Count Loop5.

5. Results from finding differences Elapsed Loop5.

Figure. 6.28. NE Count Loop5.
Figure 6.28 shows that when finding the difference in the number of NEs in each
rounds. The result is shown in the Diffnecount graph. The number of NE in the
range 24 - 27 is Difference during round 10,000,000,000. The NE difference is
10,000,000,000. Then decreasing and increasing until 10,000,000,000 again at round
20,000,000,000 at a constant at 10,000,000,000 up to round 30,000,000,000.

6.7.7 3p2s loop6

The result of the process of Overview 3p2s loop6. Divided into 5 parts as follows,

1. Results from finding NE Count Loop6.

2. Results from finding the difference NE Count Loop6.

3. Results from NonNE Count results Loop6.

4. Results of finding differences in NonNE Count Loop6.

5. Results from finding differences Elapsed Loop6.
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Figure. 6.29. Diff NE Count Loop5.
Figure 6.29 shows that the number of NonNE that occurred increasing steadily. But
with a range of games during the period 24 - 27. Has a higher NnoNE count start
point than every period starting from 38,335,680 up to round 20,000,000,000 At a
constant at 610,448,562 to round 31,000,000,000.

Figure. 6.30. NonNE Loop5.
Figure 6.30 shows that the number of Diff NonNE Count that occurred increasing
steadily. But with a range of games during the period 24 - 27. Has a higher NnoNE
count start point than every period starting from 43,026,045 up to round 20,000,000,000
At a constant at 0 to round 30,000,000,000.
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Figure. 6.31. Diff NonNE Count Loop5.
Figure 6.31 shows that the number of NonNE that occurred increasing steadily. But
with a range of games during the period 24 - 27. Has a higher NnoNE count start
point than every period starting from 38,335,680 up to round 20,000,000,000 At a
constant at 610,448,562 to round 31,000,000,000.

Figure. 6.32. Elapsed Loop5.



 

 

 

105

Figure. 6.33. NE Count Loop6.
Figure 6.33 shows that when finding the difference in the number of NEs in each
rounds. The result is shown in the Diffnecount graph. The number of NE in the
range 24 - 27 is Difference during round 10,000,000,000. The NE difference is
10,000,000,000. Then decreasing and increasing until 10,000,000,000 again at round
20,000,000,000 at a constant at 10,000,000,000 up to round 30,000,000,000.

Figure. 6.34. Diff NE Count Loop6.
Figure 6.34 shows that the number of NonNE that occurred increasing steadily. But
with a range of games during the period 24 - 27. Has a higher NnoNE count start
point than every period starting from 38,335,680 up to round 20,000,000,000 At a
constant at 610,448,562 to round 31,000,000,000.



 

 

 

106

Figure. 6.35. NonNE Loop6.
Figure 6.35 shows that the number of Diff NonNE Count that occurred increasing
steadily. But with a range of games during the period 24 - 27. Has a higher NnoNE
count start point than every period starting from 43,026,045 up to round 20,000,000,000
At a constant at 0 to round 30,000,000,000.

Figure. 6.36. Diff NonNE Count Loop6.
Figure 6.36 shows that the number of NonNE that occurred increasing steadily. But
with a range of games during the period 24 - 27. Has a higher NnoNE count start
point than every period starting from 38,335,680 up to round 20,000,000,000 At a
constant at 610,448,562 to round 31,000,000,000.
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Figure. 6.37. Elapsed Loop6.

6.7.8 3p2s loop7

The result of the process of Overview 3p2s loop7. Divided into 5 parts as follows,

1. Results from finding NE Count Loop7.

2. Results from finding the difference NE Count Loop7.

3. Results from NonNE Count results Loop7.

4. Results of finding differences in NonNE Count Loop7.

5. Results from finding differences Elapsed Loop7.

6.7.9 3p2s loop8

The result of the process of Overview 3p2s loop8. Divided into 5 parts as follows,

1. Results from finding NE Count Loop8.

2. Results from finding the difference NE Count Loop8.

3. Results from NonNE Count results Loop8.

4. Results of finding differences in NonNE Count Loop8.

5. Results from finding differences Elapsed Loop8.
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Figure. 6.38. NE Count Loop7.
From the Figure 6.38 shows then, when finding the difference in the number of NEs
in each rounds. The result is shown in the Diffnecount graph. The number of NE in
the range 24 - 27 is Difference during round 10,000,000,000. The NE difference is
10,000,000,000. Then decreasing and increasing until 10,000,000,000 again at round
20,000,000,000 at a constant at 10,000,000,000 up to round 30,000,000,000.

Figure. 6.39. Diff NE Count Loop7.
Figure 6.39 shows that the number of NonNE that occurred increasing steadily. But
with a range of games during the period 24 - 27. Has a higher NnoNE count start
point than every period starting from 38,335,680 up to round 20,000,000,000 At a
constant at 610,448,562 to round 31,000,000,000.
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Figure. 6.40. NonNE Loop7.
Figure 6.40 shows that the number of Diff NonNE Count that occurred increasing
steadily. But with a range of games during the period 24 - 27. Has a higher NnoNE
count start point than every period starting from 43,026,045 up to round 20,000,000,000
At a constant at 0 to round 30,000,000,000.

Figure. 6.41. Diff NonNE Count Loop7.
Figure 6.41 shows that the number of NonNE that occurred increasing steadily. But
with a range of games during the period 24 - 27. Has a higher NnoNE count start
point than every period starting from 38,335,680 up to round 20,000,000,000 At a
constant at 610,448,562 to round 31,000,000,000.
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Figure. 6.42. Elapsed Loop7.

Figure. 6.43. NE Count Loop8.
Figure 6.43 shows that when finding the difference in the number of NEs in each
rounds. The result is shown in the Diffnecount graph. The number of NE in the
range 24 - 27 is Difference during round 10,000,000,000. The NE difference is
10,000,000,000. Then decreasing and increasing until 10,000,000,000 again at round
20,000,000,000 at a constant at 10,000,000,000 up to round 30,000,000,000.
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Figure. 6.44. Diff NE Count Loop8.
Figure 6.44 shows that the number of NonNE that occurred increasing steadily. But
with a range of games during the period 24 - 27. Has a higher NnoNE count start
point than every period starting from 38,335,680 up to round 20,000,000,000 At a
constant at 610,448,562 to round 31,000,000,000.

Figure. 6.45. NonNE Loop8.
Figure 6.45 shows that the number of Diff NonNE Count that occurred increasing
steadily. But with a range of games during the period 24 - 27. Has a higher NnoNE
count start point than every period starting from 43,026,045 up to round 20,000,000,000
At a constant at 0 to round 30,000,000,000.
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Figure. 6.46. Diff NonNE Count Loop8.
Figure 6.46 shows that the number of NonNE that occurred increasing steadily. But
with a range of games during the period 24 - 27. Has a higher NnoNE count start
point than every period starting from 38,335,680 up to round 20,000,000,000 At a
constant at 610,448,562 to round 31,000,000,000.

Figure. 6.47. Elapsed Loop8.
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6.8 Conclusion

In this chapter we extensively explore a vast search space of generic strategic form

game. Altogether, there are 27× 27× 27× 27× 27× 27× 27× 27 = 282, 429, 536, 481

games. We investigate these game and found there exists external relation of these

games. In addition, we further explore the internal relationship by looking for Nash

equillibrium in each of them. We categorize these games based on their external

relation. Altogether, there are 35 cases. We found that there are 9 cases that there are

certain patterns, or 25%. This shows that having extensively explore over 28 millions

games, there exist certain patterns.



 

 

 

CHAPTER 7

CONCLUSION

7.1 Conclusion Chapter 2

It has been shown that the principle of computing Shapley value has been widely

adopted and extended to real world applications for long time. In this research, we

further investigate the results of applying the principle of Shapley value in wider

domains. both in theoretical basis and real world application basis.

7.2 Conclusion Chapter 3

In this chapter, we explore the final payoffs of agents whether they are affected by

any pattern of coalition values under Shapley value. We have five coalition value

distribution patterns, namely STA, INC, DEC, CAP and CUP. As we can see, the

final agents payoffs are still in the same trends as their original values. However, the

average payoffs of agents in coalition of different sizes are affected by these patterns.

7.3 Conclusion Chapter 4

Based on [40, 59] where only certain games are considered, we found that with our

setting where resources are given of agents in various trends, payoffs of agents differ

from trends of resources. In other words, the main factor that controls the trend of

agents payoffs are both technology matrix and trend of resources.

7.4 Conclusion Chapter 5

We study non-cooperative bakery game. A wide range of amount of resources into

5 trends. Trend 1 is used as a reference. Trend 2, 3 and Trend 4, 5 are diagonally

similar. Given certain technology matrix and price functions, we find that within our

settings agents’ strategies remain unchanged even though resources vary upto 75%.

Furthermore, agents’ payoffs changes relatively small. In the future, this research can

be extended to consider more complex situations with more details. While there are
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a small number of agents and actions are used in this research, there should be more

agents and actions involved. Furthermore, there could be algorithms working on other

aspects, including efficiency, etc.

7.5 Conclusion Chapter 6

In this chapter we extensively explore a vast search space of generic strategic form

game. Altogether, there are 27× 27× 27× 27× 27× 27× 27× 27 = 282, 429, 536, 481

games. We investigate these game and found there exists external relation of these

games. In addition, we further explore the internal relationship by looking for Nash

equillibrium in each of them. We categorize these games based on their external

relation. Altogether, there are 35 cases. We found that there are 9 cases that there are

certain patterns, or 25%. This shows that having extensively explore over 28 millions

games, there exist certain patterns.
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