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ABSTRACT 

  

This thesis focuses on three main types of research. - (1) data 

augmentation ensemble learning (2) learning rate schedules improved and (3) plant 

leaf disease recognition performance Chapter 1 provides a brief general introduction 

to deep learning for plant leaf disease recognition and uses deep learning techniques 

for detecting and diagnosing diseases in plants, followed by the research questions. 

The objectives of the dissertation and its contributions are described. In Chapter 2, 

Two deep convolutional neural networks (CNNs): MobileNetV2 and NasNetMobile 

are proposed to recognize plant leaf disease. I have experimented with training 

techniques; online, offline, and mixed training techniques on two plant leaf diseases 

which were the leaf disease dataset, and the iCassava2019 dataset. I have also used 

data augmentation techniques combining rotation, scrolling, and zooming techniques 

to further enhance the recognition performance. Chapter 3 presents the stacking 

ensemble of lightweight convolutional neural networks to improve the performance of 

the recognition of plant leaf disease images. I proposed a stacking ensemble of deep 

CNNs to evaluate three plant leaf disease datasets; PlantDoc, Crop-PlantDoc, and 

iCassava2019. We experimented with five classifiers that were logistic regression, 

support vector machine, K-nearest neighbors, random forest, and long short-term 

memory network. The random forest method achieved a more accurate performance. 

Chapter 4 proposes fusion and ensemble CNN to improve the performance of plant 

leaf disease recognition. The work reported in this thesis experimented with a new 

learning rate schedule, called equal learning rate range (ELRR) and step decay equal 

learning rate range (SD-ELRR), which is proposed and compared with two baseline 

learning rate [AP1] schedules. The proposed learning rate schedule was evaluated on 

two datasets: Cropped-PlantDoc and Plant Pathology. The results showed that the 

ELRR and SD-ELRR equations improved the efficiency of plant leaf disease 

recognition significantly better than the basic equations in the entire E plant disease 

dataset. Chapter 5 comprises two main sections: - 1) Answers to the research 

questions 2) Future work. This chapter briefly explains the proposed approaches and 

answers three main research questions in plant leaf disease recognition using deep 

learning techniques. Two main approaches are planned to be the focus of future work, 

as follows. For the data augmentation techniques, I plan to study and apply other data 

augmentation techniques such as AutoAugment and neural style transfer. For the 

ensemble learning techniques, I will focus on experiments with the other CNN 
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frameworks, such as snapshot ensemble CNN and 1D-CNN. 

 

Keyword : Plant leaf disease recognition, Deep learning, Convolutional neural 

network (CNN), Lightweight CNN, Transfer learning, Data augmentation, Stacking 

ensemble learning method, Ensemble learning method, Meta-learner Method, 

Learning rate schedule, Deep fusion, Early stopping 
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Chapter 1  

Introduction 

 

Plant diseases are a significant problem affecting the quality and quantity of 

agricultural products for consumption, distribution, and export. If farmers cannot 

identify plant diseases in time, it will affect productivity and plant quality [1]. In 

general, farmers in underdeveloped countries may not have advanced devices to 

detect plant diseases and farmers rely on visual diagnosis by other experienced 

farmers. Diagnosis of plant leaf disease by experts may be expensive and require 

analysis in a laboratory. Sometimes, it takes much time to analyze, thereby allowing 

the plant disease to spread widely [2]. In this study, plant diseases that show leaf 

symptoms were divided into two main characteristics illustrated in the following 

figures: - Figure 1a) the stage of disease formation may be the initial stage or the stage 

where a disease is widely spread, and Figure 1b) some plant diseases have similar 

symptoms. If farmers lack the knowledge and fail to diagnose plant diseases, yields 

may be damaged. 

 

 

Figure 1 leaf symptoms were divided into two characteristics: (a) The stage of 

disease formation and (b) some plant diseases have similar symptoms.  

 

Deep learning is currently combined with computer vision and artificial 

intelligence to help detect and recognize images and videos, as well as to help solve 

problems in different areas. For example, in medicine, deep learning is used in 
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medical image classification [3], magnetic resonance imaging (MRI) [4], retinal 

image quality [5], brain abnormality classification [6], and sperm morphology 

analysis [7]. In the industrial arena, the deep belief network (DBN) is used in  process 

monitoring systems that employ industrial process images [8] and also in concrete 

pore structure [9]. 

In the agricultural domain,  advances in computer vision techniques have 

increased efficiency in monitoring and recognition [10], such as by detecting plant 

diseases, recognizing the types of  diseases, and counting the number of plants. 

Further, deep learning methods are used in a large number of agricultural applications. 

Deep learning is proposed for use in conjunction with the internet of things (IoT) 

technology and unmanned aerial vehicles (UAV) [11] to develop intelligent 

agriculture systems, such as agricultural environment prediction with long short-term 

memory (LSTM) and gated recurrent unit (GRU) to analyze data for temperature, soil 

moisture, pollution index, wind pressure, wind speed, and wind direction [12]. Deep 

learning and IoT used in agriculture result in higher quality agricultural products and 

also a reduction in the cost of farming. Militante et al. [10] proposed computer vision 

and deep learning techniques for detecting and diagnosing diseases in plants. The 

proposed systems can take plant images using a camera and recognize diverse plant 

disease types. Zhong & Zhao [1] studied the significance of the deep learning method 

based on convolutional neural network (CNN) architecture to identify diseases that 

appeared on apple leaves. 

The main objective of this thesis is to use deep convolution neural networks to 

recognize plant leaf images. This thesis suggests that benefit will arise from rapid leaf 

disease identification with high accuracy. In addition to helping to diagnose plant 

diseases at an early stage in order to treat, prevent or control the spread of plant 

diseases, it will also help farmers who lack expertise in growing crops or who lack 

amenities to avoid the costs and the time required for contacting specialists who by 

just seeing the symptoms expressed on the leaves of the plant are able to identify plant 

diseases immediately. The conclusions from this thesis will also help support farmers 

to manage plant diseases by using biological methods, replacing the use of expensive 

chemicals that pose a danger to users, consumers, and the environment. Knowledge of 

plant diseases helps with understanding the causes, allowing biological methods to 
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more effectively prevent and protect from environmental infections, thus better 

preventing plant disease.  

1.1 Research question 

The main problems that directly affects agricultural products are abnormalities 

caused by plant diseases and insect pests. Farmers must have the knowledge and 

expertise to diagnose or solve problems in order to prevent and resolve them quickly 

and avoid spreading the infection to a broader area. If farmers lack the knowledge and 

fail to diagnose plant diseases, it may damage yields. Therefore, I aim to diagnose 

plant diseases early in order to treat, prevent or control the spread of plant diseases. 

RQ1: Generally, convolutional neural networks take a large amount of data to 

learn to build an effective model. To avoid overfitting, most of the time, data 

collection problems are encountered. Therefore, there is an idea to create new data 

based on the existing data, called Data Augmentation. There are several methods 

employed in this such as Rotation, Brightness, Shift, Zoom, Cutout, and Mixup. Data 

Augmentation techniques can be divided into three processes, online, offline, and 

mixed. In addition, can using convolutional neural networks in combination with 

learning techniques and data augmentation help increase the efficiency of plant leaf 

image recognition performance? 

RQ2: Ensemble learning is a combination of different models, and 

independent of several models together to increase the efficiency of the model. 

Models are divided into unweighted majority vote, unweighted average, and stacking 

ensemble. Therefore, can I use convolutional neural networks combined with 

ensemble learning to increase the efficiency of plant leaf image recognition? Is 

Stacking Ensemble suitable for improving plant leaf image recognition? Because of 

stacking the output probabilities of each CNN model and providing it as output to 

train to create the second model using the machine learning classifier, do the number 

of models used in collective learning and the classification method make the Stacking 

Ensemble method more efficient? 

RQ3:  The special aspect related to neural network learning is 

hyperparameters, For example, the learning rate, momentum, and activation function. 

The most critical variable is the learning rate. Therefore, can I use the learning rate 

schedules when training deep learning neural networks to improve plant leaf image 
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recognition? I created a new equation to compare it with the original equation to see 

which gives better performance. 

In order to answer all of these questions (RQ1 to RQ3), Chapter 2 to Chapter 

4, describe the research done in this thesis. Finally, Chapter 5 provides concrete 

answers to research questions. 

 

1.2 The objective of this dissertation 

This study will focus on three detailed objectives: 

1) Improve plant leaf image recognition by data augmentation and training 

techniques. 

2) Improve plant leaf image recognition by ensemble learning. 

3) Improve plant leaf image recognition by learning rate schedules. 

 

1.3 Contribution 

 The main contribution was intended to be to improve the accuracy 

performance of the deep learning method for plant leaf disease recognition. I 

performed experiments on four plant leaf disease datasets consisting of iCassava 

2019, PlantDoc, and Crop-PlantDoc. The contributions of the thesis are as follows. 

Chapter 2. Studying the architecture of convolutional neural networks (CNNs) 

to create smaller models, including MobileNetV2 and NASNetMobile, and perform 

scratch and transfer learning for training speed and recognition accuracy with the aim 

of having an efficient and small model for use in applications on a smartphone. The 

performance of the deep learning method is improved when combining data 

augmentation techniques and training techniques. In this thesis, the image 

manipulation techniques consisting of width and height shift, rotation, zoom, 

brightness, cutout [13], and mixup [14] are used. I also test using three training 

techniques; offline, online, and mixed methods. I examine the proposed deep learning 

method on two sets of plant leaf disease data; the leaf disease and iCassava 2019 

datasets. I found that the NASNetMobile architecture outperforms the MobileNetV2 

architecture on the two plant leaf disease datasets when applying offline training 

technique and data augmentation, including rotation, shift, and zoom. 
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 Enkvetchakul and Surinta [15], “Effective data augmentation and training 

techniques for improving deep learning in plant leaf disease recognition”, Appl. Sci. 

Eng. Prog., vol. 15, no. 3, pp. 1–12, Jul. 2022. 

In chapter 3, I proposed a stacking ensemble of deep CNNs to evaluate three 

plant leaf disease datasets; PlantDoc, Crop-PlantDoc and iCassava2019. In the first 

process, I proposed to use four CNN architectures; InceptionResNetV2, 

NASNetMobile, MobileNetV2, and EfficientNetB1, to train on the plant leaf disease 

images accordingly to obtain the fittest CNN model that applies in the meta-learner 

process. In the second process, in the meta-learner process, I applied the output 

probabilities obtained from the fittest CNN models as inputs of a classifier. I 

employed five classifiers consisting of logistic regression (LR), support vector 

machine (SVM), K-nearest neighbors (KNN), random forest (RF), and long short-

term memory (LSTM) network. Finally, the proposed stacking ensemble was 

integrated with the best CNN model from the first process and the classifier from the 

second process to recognize and evaluate the plant leaf disease images. 

Enkvetchakul and Surinta [16], “Stacking ensemble of lightweight 

convolutional neural networks for plant leaf disease recognition”,  ICIC Express Lett., 

vol. 16, no. 5, pp. 521–528, 2022. 

In chapter 4, I present the optimization of learning rate schedules in deep 

learning to increase efficiency in plant leaf disease recognition, and use early stopping 

to determine the optimal time to use in plant leaf disease recognition. Finally, I 

enhanced the recognition efficiency by fusion and ensemble learning to evaluate two 

plant leaf disease datasets, Cropped-PlantDoc and Plant Pathology. As a first step, I 

used three CNN architectures, EfficientnetB1, MobileNetV2, and NASNetMobile, 

using a method to optimize recognition by adjusting learning rate schedules during 

learning with two basic equations; time-based decay and step decay; and two self-

improved equations called equal learning rate range (ELRR) and step decay-equal 

learning rate range (SD-ELRR). In step 2: I performed the same process as the first 

step, but used the early stopping method to help stop learning to compare time 

together with the performance of the model, and then the final step selects the best 

CNN from two basic equations and two self-made equations for Deep Fusion by deep 
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feature extraction from both CNNs. In addition, the CNN mentioned above was used 

for ensemble learning in 3 methods; unweighted majority vote, unweighted average, 

and weighted average. Finally, I compared the performance achieved by the 

fundamental equations with the newly created equations and the fusion efficiency 

with ensemble learning. 
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Chapter 2  

Data augmentation and training techniques for deep 

learning  

 

Plant disease is the most common problem in agriculture. Usually, the 

symptoms appear on leaves of the plants which allow farmers to diagnose and prevent 

the disease from spreading to other areas. An accurate and consistent plant disease 

recognition system can help prevent the spread of diseases and save maintenance 

costs. In this paper, I present a plant leaf disease recognition system using two deep 

convolutional neural networks (CNNs); MobileNetV2 and NasNetMobile. These 

CNN architectures are designed to be suitable for smartphones due to the models 

being small. I have experimented on training techniques; online, offline, and mixed 

training techniques on two plant leaf diseases. As for data augmentation techniques, I 

found that the combination of rotation, shift, and zoom techniques significantly 

increases the performance of the CNN architectures. The experimental results show 

that the most accurate algorithm for plant leaf disease recognition is NASNetMobile 

architecture using transfer learning. Additionally, the most accurate result is obtained 

when combining the offline training technique with data augmentation techniques. 

 

2.1  Introduction 

Deep learning is currently combined with computer vision and artificial 

intelligence to help detect and recognize images and videos, as well as to help solve 

problems in different areas. For example, in medicine, deep learning is used in 

medical image classification [3], magnetic resonance imaging (MRI) [4], retinal 

image quality [5], brain abnormality classification [6], and sperm morphology 

analysis [7]. In the industrial arena, the deep belief network (DBN) is used in the 

process monitoring process employing industrial process images [8] and concrete pore 

structure [9]. 

 In agriculture, deep learning is proposed for use in conjunction with the 

internet of things (IoT) technology and unmanned aerial vehicles (UAV) [11] to 

develop intelligent agriculture systems, such as agricultural environment prediction 
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with long short-term memory (LSTM) and gated recurrent unit (GRU) to analyze data 

for temperature, soil moisture, pollution index, wind pressure, wind speed, and wind 

direction [12]. Deep learning and IoT used in agriculture result in higher quality 

agricultural products and also a reduction in the cost of farming. 

The main problem that directly affects agricultural products is abnormalities 

caused by plant diseases and insect pests. Farmers must have knowledge and expertise 

to diagnose or solve problems in order to prevent and resolve them quickly and to 

avoid the spread of disease to a wider area. In this study, plant diseases that show leaf 

symptoms were divided into two main characteristics as follows: 1) The stage of 

disease formation may be the initial stage or the stage where a disease is widely 

spread and 2) some plant diseases have similar symptoms. If farmers lack the 

knowledge and fail to diagnose plant diseases, yields may be damaged. Therefore, 

many researchers have developed plant disease identification based on the leaves of 

plants such as rice, tomato, cucumber, apple, grape, and cassava [17]–[20]. 

Furthermore, most plant diseases can be identified by leaf. 

This chapter studies deep learning that can be used in plant leaf disease 

recognition system.  The contributions of this chapter can be summarized as follows: 

1) Studying the architecture of convolutional neural networks (CNNs) to 

create smaller models, including MobileNetV2 and NASNetMobile, and perform 

scratch and transfer learning for training speed and recognition accuracy with the aim 

of having an efficient and small model for use in applications on a smartphone. 

2) The performance of the deep learning method is improved when 

combining data augmentation techniques and training techniques. In this paper, the 

image manipulation techniques consisting of width and height shift, rotation, zoom, 

brightness, cutout [13], and mixup [14] are used. I also test on three training 

techniques, including offline, online, and mixed methods. 

3) I examine the proposed deep learning method on two sets of plant leaf 

disease data: the leaf disease and iCassava 2019 datasets.I found that the 

NASNetMobile architecture outperforms the MobileNetV2 architecture on the two 

plant leaf disease datasets when applying offline training technique and data 

augmentation, including rotation, shift, and zoom. 
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2.2  Related Work 

2.2.1 Deep Learning Architectures for Plant Leaf Disease Recognition 

Deep learning architecture is proposed for plant recognition, which can 

categorize characters of the leaf and fruit. Pawara et al. [21] proposed to use deep 

convolutional neural networks (CNNs), including AlexNet and GoogLeNet 

architectures. The accuracy performance of these CNN architectures provided more 

than 97% when using the transfer learning method. However, it obtained an accuracy 

of approximately 89% when training from scratch. It was reported that the transfer 

learning technique is more efficient in recognition and also reduces training time. 

Additionally, CNN architectures are used to recognize the plant disease, for example 

in rice [17], cassava [20], tomato, and cucumber leaf diseases.  

Ramcharan et al. [20] experimented on the cassava disease dataset 

using Inception v3. This CNN architecture obtained an accuracy of 93%. Lu et al. 

[18] presented a new architecture of deep CNN architecture consisting of a 

convolutional layer and stochastic pooling layer. The softmax regression was 

proposed as the softmax layer. It was found that the deep CNN architecture achieved 

95% accuracy, while Zhang et al. [17] designed three channels CNN for RGB color 

values, called TCCNN architecture. Each color channel was separated to calculate in 

the specific CNN of each channel: CNN1, 2, and 3. The final layers of CNN1, 2, and 

3 were concatenated and delivered to the fully-connected layer for training and 

recognition. The recognition performance with this method was 91.15% on the tomato 

leaf disease dataset and 91.16% on the cucumber leaf disease dataset. 

Sun et al. [22] presented the BJFU100 dataset, a plant dataset taken 

from a natural environment, with 10,000 images from 100 plants (ornamental plant 

species) in the Beijing Forestry University campus. The ResNet26 architecture was 

selected to test the number of layers consisting of 18, 26, 34, and 50 Layers. The 

experiment found that the ResNet26 architecture using SGD optimizer was fast in 

training with an accuracy of 91.78% on the BJFU100 dataset and accuracy of 99.65% 

on the Flavia dataset. 
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2.2.2 Data Augmentation Techniques to Improve Deep Learning 

Performance 

Deep learning needs much information to create effective models and 

to avoid overfitting problems. However, lack of data may become a big issue in the 

case of models [23], [24]. Hence, the idea of generating new data based on existing 

data, which is called data augmentation, was proposed. Taylor and Nitschke [23] 

divided data augmentation into two techniques consisting of 1) geometric techniques: 

flipping, rotating and cropping, and 2) image metric techniques: color jittering, edge 

enhancement, and fancy principal component analysis. According to an experiment on 

the Caltech101 dataset, it was found that recognition of the CNN architecture was 

only 48.13% accurate, but when adding data using data augmentation with cropping, 

it has increased recognition accuracy to 61.95%. Shorten and Khoshgoftaar [24] 

described that data augmentation is divided into two main categories consisting of 1) 

basic image manipulations: kernel filters, geometric transformations, random erasing, 

mixing images, and color space transformations and 2) deep learning approaches: 

adversarial training, neural style transfer and generative adversarial networks (GAN). 

Mikołajczyk and Grochowski [25] compared two techniques of 

creating new datasets, consisting of 1) traditional transformation: shear, zoom in, 

reflection, rotation, contrast, histogram equalization, white balance and sharpen, 

called data augmentation and 2) GAN, which is commonly called data synthesis. 

GAN has the distinctive feature of style transfer, which means creating a synthetic 

image by learning from the original content combined with the new style. Therefore, 

it can create unlimited data in new styles, and the newly created synthetic image will 

look more realistic than the traditional transformation. 

Using data augmentation in plant recognition, Pawara et al. [26] 

presented 7 data augmentation techniques including flip, rotation, blur, contrast, 

scaling, illumination, projective for experimented on the AgrilPlant, Folio, and 

Swedish datasets. The experiment found that data augmentation helped to make the 

CNN techniques more accurate. The new images are increasing 9-25 times and also 

directly increasing learning time. When using new images created by rotation and 

contrast techniques, the CNN techniques obtained 98.6% accuracy compared to 

98.33% without data augmentation. The image data increased 17 times when data 
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augmentation techniques were applied. The data used in training increased from 2,100 

images to 35,700 images. For the Folio dataset, it reported that the accuracy result 

obtained 99.42% when applied illumination technique and compared to 97.63% 

without using data augmentation. The data increased from 445 images to 4,005 

images. Therefore, it can be concluded that data augmentation can increase the 

efficiency of CNN techniques. 

 

2.3  Convolutional Neural Network Architectures 

Convolutional neural network (CNN) architectures are part of deep learning. 

The distinctive feature of CNN architecture is the convolution operation and the 

number of layers in the architecture. For example, the layer of the VGGNet [27] was 

designed to have 16 and 19 layer. The layer of the ResNet [28] is 18, 34, 50, 101, and 

152 layers. Also, the layer of the DenseNet [29] is extended up to 264 layers. 

Importantly, the increase in the number of the layer is effected to increased network 

efficiency. However, the number of parameters is also increased. These architectures 

require devices that can be computed at high  speed,  such  as  the  graphics 

processing unit (GPU),  which  is  not  suitable for smartphones and embedded 

devices [30]. 

This caption aims to study the CNN architectures that can create a small and 

efficient model suitable for smartphones comprising MobileNetV2 [31] and 

NASNetMobile [32]. 

 

2.3.1 MobileNetV2 Architecture 

Howard et al. [33] designed MobileNets architecture, also known as 

MobileNetV1, that is suitable for smartphones and embedded devices. Depthwise 

separable convolutions were proposed, which consisted of depthwise convolution and 

pointwise convolution to reduce the dimension of the number of layers and reduce the 

size of the parameter. Then, add the batch normalization (BN) layer and the rectified 

linear unit (ReLU) after depthwise separable convolutions in every step, as shown in 

Figure 2. 
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Figure 2: MobileNets with the depthwise separable convolutions process, which 

consists of depthwise convolution and pointwise convolution. The batch 

normalization layer and the rectified linear unit are added at the end of every 

convolutional layer [33], [34]. 

 

When using MobileNets to test on the ImageNet dataset, MobileNetV1 

had 4.2M parameters, while popular architectures GoogLeNet and VGG16 

architectures had 6.8M and 138M, respectively. The experiments of the MobileNetV1 

on the ImageNet dataset obtained the accuracy of 70.6% [33] while the GoogLeNet 

obtained the accuracy of 69.8% 

Sandler et al. [31] introduced MobileNetV2 by increasing invert 

residuals, a short connection. Inverted residuals were designed to manage memory 

problems by reducing the amount of tensor stored on memory while processing. 

Inverted residuals are shown in Figure 3. The linear bottlenecks, which is an increase 

in the number of the feature map, such as ResNet [28] increases a feature map from 

64 to 128, 256, and 512, respectively. Figure 3 shows the Linear Bottlenecks process, 

which begins with 24 maps and expanding it to 144 maps and 144 maps, respectively, 

then reducing the number of feature maps to only 24 maps before sending it to the 

next block. Also, the example shows that the feature map has changed up to 6 times. 
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Figure 3: MobileNetV2 with inverted residuals. Process for making 

linear bottlenecks with the increase in feature map from 24 maps to 144 maps and the 

reduction of feature map from 144 maps to 24 maps [31]. 

 

MobileNetV2 architecture can decrease the number of parameters and 

faster in computation time than MobileNetV1. The experiments with MobileNetV2 

obtained an accuracy of 72.0%, which was higher than with MobileNetV1, 

ShuffleNet, and NASNet [31]. 

 

2.3.2 NASNetMobile Architecture 

Zoph and Le [32] designed a neural architecture search network, called 

NASNet architecture, using a recurrent neural network (RNN) and reinforcement 

learning to train to obtain the most accurate parameters from generated architecture. 

Creating a CNN architecture requires a lot of computation time if the content is large, 

such as the ImageNet dataset. Zoph et al. [35] designed the CNN architecture that can 

search the best architecture from a small dataset and transferred the best architecture 

to use to train on the large data, this architecture called learning transferable 

architectures. NASNet architecture can be scaled according to the amount of data. 

Figure 4 shows the scalability by increasing the number of normal cells and reduction 

cells, which can increase normal cells as required (N time), and normal and reduction 

cells can be obtained through a search process using the RNN method. 
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Figure 4 Scalability of NASNet designed for use with (b) CIFAR10 dataset and (c) 

ImageNet dataset and examples of (a) normal cell and (d) reduction cell [32]. 

 

Figure 4 shows an examples of the normal and reduction cells obtained 

by searching with the controller RNN for the appropriate architecture from operation 

as follows: 

• Identity 

• 1 x 7 then 7 x 1 convolution 

• 3 x 3 average pooling 

• 5 x 5 max pooling 

• 1 x 1 convolution 

• 3 x 3 depthwise-separable convolution 

• 7 x 7 depthwise-separable convolution 

• 1 x 3 then 3 x 1 convolution 

• 3 x 3 dilated convolution 

• 3 x 3 max pooling 

• 7 x 7 max pooling 

• 3 x 3 convolution 

• 5 x 5 depthwise-separable convolution 

Controller RNN combines two hidden states to forward to the next 

hidden layer, as shown in Figure 5. 
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Figure 5: Block of convolution cell obtained from searching with RNN [32]. 

2.4 Dataset 

In this research, the accuracy of deep learning was experimented on two 

datasets of leaf diseases, consisting of the leaf disease dataset and iCassava 2019 

dataset. 

 

2.4.1 Leaf Disease Dataset 

The leaf disease dataset is a collection of images of plant diseases, 

taking into account only the leaves of plants. Some images were collected from 

websites, while others were collected using a smartphone to take images of diseased 

leaves. As some plant diseases have similar symptoms, e.g. Whitefly-Transmitted 

(Figure 6(k)) and woolly aphid (Figure 6(l)) infestation the disearse may be wrongly 

identified, by inexperienced examinors. Then, all the leaf images in the dataset were 

screened by plant disease experts. From the screening process, a total of 608 plant leaf 

images were used, divided into 13 classes, as detailed in Table 1. The plant leaf 

images were cropped to show only affected areas and adjusted to be 224 x 224 pixels, 

as shown in Figure 6.  
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Figure 6: Sample images from leaf disease dataset, which consists of 13 classes 

consisting of (a) mosaic disease, (b) yellow leaf spot disease, (c) rust diseases, (d) 

narrow brown spot disease, (e) brown spot disease, (f) ringspot disease, (g) plant 

nutrient deficiencies, (h) leaf scald disease, (i) powdery mildew disease, (j) leaf miner, 

(k) whitefly-transmitted, (l) woolly aphid, and (m) healthy. 

 

Table 1 Details of the leaf disease dataset (consists of 13 types; 12 types of plant 

diseases and one type of healthy) and the number of images of leaf diseases as each 

type of plant disease. 

Types of Plants  No.  Types of Plants  No. 

Mosaic Disease 44  Leaf Scald Disease 40 

Yellow Leaf Spot Disease 40  Powdery Mildew Disease 47 

Rust Disease 64  Leaf Miner 43 

Narrow Brown Spot Disease 45  Whitefly-Transmitted 51 

Brown Spot Disease 42  Woolly Aphid 49 

Ringspot Disease 43  Healthy 42 

Plant Nutrient Deficiencies 58    
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2.4.2 iCassava2019 Dataset 

The iCassava 2019 dataset was presented at the sixth workshop on 

fine-grained visual-categorization (FGVC6 workshop) at the conference on computer 

vision and pattern recognition (CVPR 2019). This dataset contained images of 5 

different diseases of cassava leaves, comprising 4 types of diseased cassava leaves 

and one type of normal leaf collected from Uganda. Farmers took images and sent 

them to The National Crops Resources Research Institute (NaCRRI) and AI lab in 

Makerere University, Kampala [36] for experts to sort the cassava leaves. The 

iCassava 2019 dataset includes 9,436 annotated images and 12,595 unlabeled images. 

In this research, however, I selected 5,656 annotated images published on the Kaggle 

website that contained four disease types and one healthy type, as shown in Table 2, 

and five types of cassava leaf images are shown in Figure 7. 

 

Table 2 Details of the iCassava 2019 dataset (consists of 5 types; 4 types of plant 

diseases and one healthy type) and the number of plant leaf images of each type. 

Types of Plants        No. of Images 

Cassava Brown Streak Disease (CBSD) 1,443 

Cassava Mosaic Disease (CMD) 2,658 

Cassava Bacteria Blight (CBB) 466 

Cassava Green Mite (CGM) 773 

Healthy 316 

 

 



 

 

 

 

 
18 

 
 

Figure 7 Examples of five types of iCassava 2019 dataset used in the experiment, 

consisting of (a) cassava brown streak disease, (b) cassava mosaic disease, (c) cassava 

bacterial blight, (d) cassava green mite, and (e) Healthy. 

 

 

2.5  Experimental Result 

This research studied two small convolutional neural network (CNN) 

architectures, consisting of MobileNetV2 and NASNetMobile, with the aim of 

identifying the best models to develop into smartphone applications. Data 

augmentation, which includes brightness, shift, rotation, zoom, cutout, and mixup was 

experimented with two datasets: 1) leaf disease dataset with a total of 608 images of 

diseased plant leaves, divided into 13 classes and 2) iCassava 2019 dataset with a total 

of 5,656 images, divided into five classes. In the experiment, the images were resized 

to 224x224 pixels before training with CNNs using TensorFlow's platform. The 

experiment was running on the Linux operating system with an Intel (R) Core-i5 

computer, 2320 CPU @ 3.00GHz, 12GB RAM, GeForce GTX 1070Ti GPU. 

 

(a) 

    
(b) 

    
(c) 

    
(d)  

    
(e) 
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2.5.1 Experiments on Training Technique and Data Augmentation 

To test the hypothesis that training technique and data augmentation 

allowed CNN architecture to learn from limited data and increase the accuracy of 

recognition. First, I selected MobileNetV2 and trained the architecture using the fine-

tuning technique [37]. Second, to demonstrate the performance of the training 

technique, I experimented with three training techniques; online, offline, and mixed 

training. Finally, the data augmentation, called rotation technique, was chosen with a 

random parameter between 0-170. Three training and data augmentation methods are 

as follows: 

1) Offline training and data augmentation; This method generates new 

images in the pre-processing data scheme. The original image can create unlimited 

number of new images [24]. For example, from 100 original images, each of them can 

generate three new images. In total, the number of new images will increase to 400 

images ((100 x 3) + 100). Therefore, the disadvantage of offline training technique is 

an increasing training time. 

 2) Online training and data augmentation; In this method, I combine 

online training and data augmentation to generate a new image in every training 

epoch. Therefore, this method can reduce training time. For example, if there are 100 

input images to be trained by CNN architecture with 200 epochs, it is equivalent to 

sending 20,000 images (200x100) for training.  

 3) Mixed training and data augmentation; This method is a mixture of 

offline and online training techniques. First, in the pre-processing, I use a data 

augmentation technique to generate new images. So, this method increases the 

number of training images. Second, to allow the CNN architecture to learn more 

diverse data, new images are regenerated in every epoch during training CNN 

architecture to create the best model.  

 In this experiment, I evaluate the MobileNetV2 architecture on the 

leaf disease dataset. Data training was carried out using data augmentation, called the 

rotation technique, with a random parameter. The leaf disease dataset has 13 classes 

and contains 608 images, including 487 (80%) training images and 121 (20%) test 

images.  
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Table 3 shows the results of different training techniques and data 

augmentation on the leaf disease dataset. The results show that offline training and 

data augmentation method when randomly generating 15 new images from one 

original image significantly outperforms the other training techniques. The accuracy 

obtained from the offline training technique and data augmentation is 76.15%. 

However, it generated 7,792 training images in the pre-processing data scheme and 

took 15h 17min in training. The worst performance was obtained while training the 

CNN architecture without data augmentation, and the accuracy decreased to 63.08%. 

 As can be seen from the result in Table 3, it can be concluded that data 

augmentation has a direct effect on increasing recognition accuracy. Hence, I choose 

the offline training and data augmentation (15-image) technique in the following 

experiments. 

 

Table 3 Results from three training techniques and data augmentation using the 

rotation technique. The results are computed using MobilenetV2 architecture on leaf 

disease dataset. 

 

Training and Data Augmentation 

Techniques 

Training 

Time 

Training 

Samples 

Accuracies 

Offline Training + without Data 

Augmentation 

1h 3 min 487 63.08 

Online Training + Data Augmentation 1h 31min 487 74.62 

Offline Training + Data Augmentation 

(3-image) 

3h 54min 1,948 70.00 

Offline Training + Data Augmentation 

(5-image) 

5h 48min 2,922 72.31 

Offline Training + Data Augmentation 

(7-image) 

7h 46min 3,896 72.31 

Offline Training + Data Augmentation 

(9-image) 

13h 26min 4,870 74.62 

Offline Training + Data 

Augmentation (15-image) 

15h 17min 7,792 76.15 

Mixed Training + Data Augmentation 

(15-image) 

21h 33min 7,792 74.62 
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2.5.2 Experiments on Leaf Disease Dataset 

In this section, to compare the performance of CNN architectures on leaf 

disease recognition, using MobileNetV2 and NASNetMobile architectures on the leaf 

disease dataset. The objective was to compare these two learning methods and show that 

transfer learning shows a better result than training data from scratch on the leaf disease 

dataset. Moreover, for testing the performance of data augmentation, I selected the basic 

image manipulations, which consist of seven techniques: rotation, brightness, width shift, 

height shift, zoom, cutout, and mixup. The new images are then generated according to 

the random parameters, as shown in Table 4. The example of the images obtained from 

data augmentation is shown in Figure 8. 

 

 
Figure 8 Examples of the (a) leaf disease images and samples of data augmentation 

images using (b) rotation, (c) brightness, (d) shift, (e) zoom,  

(f) rotation+shift, (g) rotation+zoom, (h) shift+zoom, (i) rotation+shift+zoom,  

(j) cutout, and (k) mixup techniques. 
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Table 4 Data augmentation techniques and parameters used in the experiment. 

 

Data Augmentation Techniques Parameters 

Rotation  [-170,170] 

Brightness [1, 5] 

Width shift [-0.2, +0.2] 

Height shift [-0.2, +0.2] 

Zoom [0.5, 1.5] 

Fill mode Reflect 

Cutout 0.5 

Mixup 0.4 

 

 

Table 5 MobileNetV2 and NASNetMobile architectures on the leaf disease dataset 

using different data augmentation techniques. 

 
Data 

Augmentation 

methods 

MobileNetV2 NASNetMobile 

Time Scratch Fine-Tuning Time Scratch Fine-Tuning 

Original image 2h 12m 63.08 93.08 4h 50m 68.08 92.31 

Brightness  

20h 15m 

65.39 90.77 

1d 

11h 30m 

66.92 89.23 

Shift  74.62 90.77 75.39 93.08 

Rotation  77.69 94.62 83.08 93.85 

Zoom  77.69 95.39 64.62 93.01 

Shift + Zoom 82.31 93.08 84.62 92.31 

Rotation + Zoom 79.23 93.85 76.92 93.08 

Rotation + Shift 79.23 95.39 77.69 96.15 

Rotation + Shift + 

Zoom 

77.69 90.77 81.54 95.39 

Cutout 64.06 93.75 77.34 93.75 

Mixup 61.71 89.84 67.18 92.18 

 

Table 5 presents accuracy results and execution times for recognition 

using the leaf disease dataset. The results show that using the fine-tuning method always 

performs better than training from scratch (around 15-30%). Additionally, I examine the 

individual effect of each data augmentation Technique. The results of these comparisons 

show that the zoom technique is the best data augmentation, followed by the rotation 

technique. The highest recognition accuracy of 96.15% is obtained when combining the 

rotation and the shift techniques as the data augmentation and training with 

NASNetMobile architecture. On the other hand, it can be concluded that the brightness 

technique is an inappropriate data augmentation on the leaf disease dataset because this 
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technique eliminates important information from an image. When comparing model size 

between two CNN architectures, the size of the model obtained by training with 

MobileNetV2 was 18MB, while NASNetMobile doubled the model size to 36MB. 

 

2.5.3 Experiments on iCassava 2019 Dataset 

In this experiment, I used 10-fold cross-validation in the training 

scheme. The standard deviation and accuracy were reported. I selected the data 

augmentation techniques; zoom, rotation+shift, and rotation+shift+zoom based on 

high accuracy results according to the experimental results from Table 5. The 

examples of the images generated from data augmentation techniques are shown in 

Figure 9. I performed two CNN architectures; MobileNetV2 and NASNetMobile, 

using the fine-tuning model with specific parameters; Epoch = 2000, Batch Size = 64, 

Learning Rate = 0.001, and Optimizer = Stochastic Gradient Descent (SGD) 

algorithm.  

 

 
 

Figure 9 Examples of the iCassava 2019 dataset and samples of data augmentation 

images. (a) Original, (b) zoom, (c) rotation+shift, and  

(d) rotation+shift+zoom images. 
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Table 6 A Comparison of the performance of the MobileNetV2 and NASNetMobile 

architectures on the iCassava 2019 dataset. 

 

Data Augmentation 

methods 

MobileNetV2 NASNetMobile 

Model 

Size 

Model 

Parameters 
Time 10-cv Test 

Model 

Size 

Model 

Parameters 
Time 10-cv Test 

Original 

18 

MB 
2.26 m 

12h 

28 

min 

84.98 

± 

1.75 

81.33 

36 

MB 
4.27 m 

23h 
26m 

78.09 

± 

2.75 

74.65 

Zoom 

4d 

20h 

87.35 
± 

0.14 

80.11 

9d 

22h 

86.95 
± 

0.14 

79.75 

Rotation+Shift 88.55 
± 

1.83 

83.27 87.65 
± 

0.56 

83.98 

Rotation+Shift+Zoom 88.94 

± 
2.39 

83.62 88.05 

± 
1.12 

84.51 

 

In Table 6 I show the experimented results with the MobileNetV2 and 

NASNetMobile on the iCassava 2019 dataset. It can be seen from Table 6 that 

NASNetMobile architecture with combining rotation, shift, and zoom techniques is the 

best CNN architecture on the test set. The NASNetMobile outperforms the MobileNetV2 

with around 1%. On the other hand, the MobileNetV2 obtained a slightly better result of 

around 0.9% than the NASNetMobile when testing on 10-fold cross-validation. 

As for the computation time, it was found that the MobileNetV2 

architecture was 2.25 times faster than the NASNetMobile architecture. Also, the model 

size of the MobileNetV2 is smaller than the NASNetMobile. 

The average confusion matrices on 10-fold cross-validation are shown in 

Figure 10. The data augmentation technique is decreased misclassified. For recognition 

performance, the incorrect classification from CGM to CMD class is decreased from 19 

to 11 images. Furthermore, the CMD class classifies as the CGM class decreased from 13 

images to only 4 images. The results of the incorrect classification images are shown in 

Figure 11. 
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Figure 10 Confusion matrix of NASNetMobile architecture on the iCassava 2019 

dataset. (a) The result of original data (b), and data augmentation using rotation, shift, 

and zoom techniques 
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Figure 11 Examples of incorrect classification on the iCassava 2019 dataset. (a) The 

images of the CMD class that are classified as CGM class. (b) The images of the 

CGM class that are classified as CMD class. 

 

2.6  Conclusion 

This research studied two deep convolutional neural networks (CNNs) proposed 

to create an efficient architecture and a small model that are suitable for smartphones and 

embedded devices and can be applied in a plant disease recognition system. In the 

experiment, I performed the CNN architectures on two plant disease datasets, consisting 

of the leaf disease and iCassava 2019 datasets. First, to find the best framework, I 

experimented with training techniques that allow CNN architectures to learn new data 

from various augmentation techniques. I evaluated the performance of the CNN 

architectures using several parameters. The best framework was the combination of the 

offline training technique and data augmentation techniques: rotation, shift, and zoom. On 

the contrary, the brightness technique that generated a plant leaf image by adding high-

intensity values affected the plant leaf disease images by changing the white spots and the 

disease spots on the plant leaves. Hence, it is inappropriate for plant leaf disease 

recognition. Second, I propose to use two CNN architectures, called MobileNetV2 and 

NasNetMobile architectures, for plant leaf disease recognition. I are interested in a 

training scheme: fine-tuning and training from scratch, which obtains high recognition 

and requires less computation time. As a result, I found that the fine-tuning obtained 

better accuracy than training from scratch and decreased computation time. 

Consequently, MobileNetV2 architecture obtains a better result when the data 

augmentation technique is not applied. On the other hand, the NasNetMobile outperforms 

the MobileNetV2 when applied data augmentation. 

   

   
(a)

        
(b)
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In future work, I will concentrate on improving the performance of plant leaf 

disease recognition. I will study and apply other data augmentation techniques such as 

AutoAugment [38] and neural style transfer [39]. 
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Chapter 3  

Stacking Ensemble of Lightweight Convolutional Neural 

Networks 

 

The high-grade quality of agricultural goods can be affected by diseases. 

Therefore, farmers need to quickly stop the spread of diseases. This study proposes a 

stacking ensemble of lightweight learning convolutional neural network (CNN) 

framework to enhance the recognition accuracy of plant leaf disease images. In the 

proposed framework, I first planned four lightweight CNN architectures 

(InceptionResNetV2, NASNetMobile, MobileNetV2, and EfficientNetB1) to train and 

create robust CNN models from images of plant leaf diseases. The experimental results 

showed that the EfficientNetB1 outperformed other CNN models. I then created the 

stacking ensemble learning by stacking the output probabilities of each CNN model and 

provided as output to train to create the second model using the machine learning 

classifier. In this step, I experimented with five classifiers that were logistic regression, 

support vector machine, K-nearest neighbors, random forest, and long short-term memory 

network. I found that the random forest method achieved a more accurate performance. 

As a result, I considered that all machine learning techniques could be involved in 

stacking ensemble learning. 

 

3.1  Introduction 

Plant diseases are a significant problem affecting the quality and quantity of 

agricultural products for consumption, distribution, and export. If the farmer cannot 

identify the plant disease in time, it will affect productivity and plant quality [1]. In 

general, farmers in underdeveloped countries may not have advanced devices to 

detect the plant diseases. However, the farmers rely on visually diagnosis by other 

experienced farmers. Diagnosis of the plant leaf disease by experts may be expensive 

and require analysis in a laboratory. Sometimes, it takes much time to analyze 

allowing the plant disease to spread all over the area [2]. 

More recently, the advances in computer vision techniques have increased 

efficiency in monitoring and recognition in the agricultural domain [10], such as by 
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detecting the plant disease, recognizing the types of the disease, and counting the 

number plants. Further, deep learning methods are used in a large number of 

agricultural applications. These approaches allow farmers to work faster and also save 

energy while doing agriculture tasks. Militante et al. [10] proposed computer vision 

and deep learning techniques for detecting and diagnosing diseases in plants. The 

proposed systems can take plant images using a camera and recognize diverse plant 

disease types. Zhong & Zhao [1] studied the significance of the deep learning method 

based on convolutional neural network (CNN) architecture to identify the diseases 

that appeared on the apple leaves. 

The deep learning methods were performed to improve the recognition of 

plant leaf disease images. However, using only a single deep learning model may not 

be sufficient to increase the accuracy performance of the plant leaf recognition 

systems. Furthermore, using ensemble learning with multiple deep learning models 

can reduce the variance of the recognition errors and improve plant leaf recognition 

systems [4,5]. For example, Khanramaki et al. [42] proposed the ensemble CNNs to 

recognize three common citrus pests; citrus leafminer, sooty mold, and Pulvinaria. For 

the single deep learning model, it achieved an accuracy of 96.05% with the Resnet50 

architecture. As a result, the ensemble learning models provided an accuracy of 

99.04%. 

Contribution. This caption aims to improve the accuracy performance of the deep 

learning method for plant leaf disease recognition. I proposed a stacking ensemble of 

deep CNNs to evaluate three plant leaf disease datasets; PlantDoc, Crop-PlantDoc and 

iCassava2019. In the first process, I proposed to use four CNN architectures; 

InceptionResNetV2, NASNetMobile, MobileNetV2, and EfficientNetB1, to train on the 

plant leaf disease images accordingly to obtain the fittest CNN model that applies in the 

meta-learner process. In the second process, in the meta-learner process, I applied the 

output probabilities obtained from the fittest CNN models as inputs of a classifier. I 

employed five classifiers consisting of logistic regression (LR), support vector machine 

(SVM), K-nearest neighbors (KNN), random forest (RF), and long short-term memory 

(LSTM) network. Finally, the proposed stacking ensemble was integrated with the best 

CNN model from the first process and the classifier from the second process to recognize 

and evaluate the plant leaf disease images. 
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Outline of the caption. This caption is organized in the following way. Section 2 

presents the proposed stacking ensemble of convolutional neural networks. The 

experimental settings and results are explained in Section 3. The conclusion is presented 

in Section 4. 

 

3.2  Related work 

Ensemble learning methods have been proposed in many applications. Mahmoud 

& Yaroshchak [40] proposed a bagging ensemble to classify diabetic retinopathy images 

containing 2,781 images. First, the training set was randomly selected for three subsets. 

Second, the subsets were sent to learning using three different CNN architectures. For the 

ensemble learning method, finally, the weighted average was used. The result showed 

that the bagging ensemble with three InceptionV3 models obtained an accuracy of 87.2%. 

In [43], the stacked CNN was proposed to diagnose COVID-19 disease from X-ray 

Images. Two CNN models, including the fine-tuning of VGG19 and CovNet30, were 

proposed to learn from the chest X-ray images. The outputs of the CNN models were 

stacked and logistic regression classifier was applied to classify three classes of COVID-

19, consisting of COVID-19, pneumonia, and normal. It was performed with an accuracy 

of 92.47% on the chest X-ray images of the COVID-19 dataset.  

Ju et al. [41] proposed a super learner that was based on the ensemble learning 

method. The super learner method achieved the best prediction accuracy on the test set of 

the CIFAR-10 dataset compared to other ensemble methods. In this method, the CNN 

models (including network in network, GoogLeNet, VGG Network, and Residual 

network), called base learners, were trained from the training set with mini-batch size. 

The outputs of each CNN network were then combined and followed by convolution with 

the size of 1 × 1. The convolution layer was trained using the validation to avoid 

overfitting. Further, the output of the super learner method was the score vector.  

In addition, Kim et al. [44] invented an automatic defect classification on the 

TFT-LCD panel using the stacking ensemble method. In this method; first, the sliding 

window was slide through the TFT-LCD panel and then sent to the particular area to 

extract the deep features using distinct nine deep models. Second, the neural network was 

proposed as a weak learner that learns from the deep features transferred from the deep 

models. Third, for the stacking ensemble, the prediction scores of each learner were 
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decided using the ensemble learning method; majority vote and score average. Finally, 

the outputs of the final prediction were four types of defects. 

For the plant recognition using the ensemble learning method, Darwish et al. [2] 

proposed to use the particle swarm optimization (PSO) algorithm to optimize 

hyperparameters of the VGG16 and VGG19 networks. In this method, first, the optimal 

VGG networks were used to extract the deep features from the plant disease images. It 

froze the last convolution layer of the VGG networks and combined them. Second, the 

new convolution layers, such as flatten, dropout, batch normalization, and dense, were 

added to combined networks. Finally, average ensemble learning was used to predict the 

diseases of plant leaf images.  

Chompookham & Surinta [45] invented ensemble CNN architectures to improve 

plant leaf classification performance. In this method, five CNN architectures were trained 

on the plant leaf images to create robust CNN models. After that, three best CNNs models 

were then combined, the output probabilities of each CNN model were assigned to 

classify using the ensemble methods; unweighted majority vote, unweighted average, and 

weighted average. The best ensemble method used in this experiment was the weighted 

average method. It outperformed all the ensemble methods on three plant leaf datasets; 

mulberry, tomato, and corn. 

 

3.3  Proposed Stacking Ensemble of Convolutional Neural 

Networks 

This section introduces the stacking ensemble of CNNs to recognize the plant leaf 

disease images, as shown in Figure 12.  

In the first level. I find the baseline CNN models from various CNN models; 

InceptionResNetV2, NASNetMobile, MobileNetV2, and EfficientNetB1. Second, I stack 

CNN models and train on the plant leaf disease dataset. Subsequently, the output 

probabilities of each CNN model are used as the input of the machine learning technique.  

In the second level. The machine learning techniques; LR, SVM, KNN, RF, and 

LSTM, are proposed to train from the output probability of the CNN models and obtain 

the final prediction, called the meta-learner method.  
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Figure 12 Illustration of the proposed stacking ensemble of lightweight CNNs 

 

3.3.1 Convolutional Neural Network (CNN) Architectures 

InceptionResNetV2. Szegedy et al. [46] proposed a new network 

architectures that contained the concept of Inception architecture and residual Inception 

blocks, called InceptionResNetV2. The Inception networks were designed as a tuning 

network based on InceptionV4, and they were allowed to change the number of filters in 

the several layers. The Inception block was designed to add the filter-expansion layer for 

the residual Inception blocks. Hence a 1 × 1 convolution layer without activation 

function was used for scaling up the filter dimension. 

NASNetMobile. Zoph et al. [32] invented a neural architecture search 

network (NASNet) to address the expensive computation time while training on the large 

dataset. First, the NASNet architecture was proposed to search for an optimal architecture 

building block on a small dataset using reinforcement learning. Second, the building 

blocks were transferred to learn on a large dataset. The NASNet architecture consisted of 

two cells; a normal cell and a reduction cell. It was easy to build the NASNet because the 

normal and reduction cells were stacked and repeated many times. The last layer was the 

normal cell, followed by the softmax function. In addition, to create the NASNetMobile 

model, the size of the normal and reduction cells and the number of filters were 

decreased. The parameters of the NASNetMobile are smaller than the NASNet 

approximately nine times. 

MobileNetV2. MobileNetV2 was designed by Sandler et al. [47] in 2018. 

It was the extended version of the MobileNetV1. MobileNetV2 contained three main 

layers; depthwise separable convolutions, linear bottlenecks, and inverted residuals. 

These layers performed to reduce the number of parameters and computation time when 
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compared with MobileNetV1. In addition, MobileNetV2 was trained using the ReLU6 

activation function, allowing it to learn complex patterns in the input data. 

EfficientNetB1. EfficientNet was proposed by Tan & Le [48]. It involved 

scaling the network using four methods; width, depth, resolution, and compound scaling. 

It was comfortable to scale up a baseline CNN to any purpose resource limitations. Our 

experiment proposed using EfficientNetB1 to classify the plant leaf datasets because it 

had parameters with 7.8M. The parameters of EfficientNet-B1 were fewer than the 

DenseNet-169, Xception, Inception-v3, and even ResNet-50.  

3.3.2 Meta-Learner Method 

In our proposed method, the stacking ensemble of CNNs contained two 

levels; training with CNN models and with machine learning. The second level is called 

the meta-learner method. It usually trains the machine learning model using the output 

probabilities (p) from the first level and predicts the final output (ŷ). In our framework, 

the output probabilities of the CNN models were computed using the softmax function. 

 

3.4  Dataset 

In this research, the accuracy of deep learning was experimented on three 

datasets of leaf diseases, consisting of the PlantDoc dataset, Crop-PlantDoc dataset 

and iCassava 2019 dataset. 

3.4.1 PlantDoc dataset 

The PlantDoc dataset contained 2,567 images from 13 plant species 

collected from the internet. It included 27 classes of plant leaf disease and of healthy leaf 

[49]. Examples of the PlantDoc dataset are shown in Figure 13 
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Figure 13 Illustration of PlantDoc dataset 

 

3.4.2 Crop-PlantDoc dataset 

The Crop-PlantDoc dataset is the extended version of the PlantDoc 

dataset. Singh et al. [49] also provided the ground truth of all images intending to crop 

all leaves, as shown in Figure 14. After cropping all the leaves, the Crop-PlantDoc 

dataset contained 8,883 images. 

 

Figure 14 Illustration of Crop-PlantDoc dataset 
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3.4.3 iCassava2019 dataset 

The iCassava2019 dataset was published on the Kaggle website. It 

contained 5,656 images of five cassava leaf states, including four types of disease and 

one healthy type, as shown in Figure 15. All cassava leaf disease images were taken 

from farmers in Uganda and verified by the experts of the National Crops Resources 

Research Institute (NaCRRI) and AI lab in Makerere University, Kampala [36]. 

 

Figure 15 Illustration of iCassava2019 dataset 

 

3.5  Experimental Setting and Results 

In this paper, I divided the experiment into two parts to identify the best 

convolutional neural network (CNN) model and classifier to develop into the stacking 

ensemble of the CNN framework. In the first part, I mainly concentrated on the 

lightweight convolutional neural networks (CNNs). I then experimented and compared 

four CNN models; InceptionResNetV2, NASNetMobile, MobileNetV2, and 

EfficientNetB1. I applied the transfer learning method that employed the pre-trained 

model of four CNN models. The CNN models were trained with the following 

parameters; 100 epochs, batch size = 16, learning rate = 0.01, and stochastic gradient 

descent (SGD) optimizer. 

(a) 

    

(b) 
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In the second part, I examined the experiments of the ensemble learning method 

and the meta-learning method. For the ensemble learning method, two ensemble methods 

were studied; unweighted majority vote and unweighted average. In addition, in the meta-

learning method, four machine learning techniques were proposed, including logistic 

regression (LR), support vector machine (SVM), K-nearest neighbors (KNN), random 

forest (RF), and long short-term memory (LSTM) network. 

The plant leaf disease datasets were split into training, validation, and test. The 

ratio of PlantDoc and Crop-PlantDoc were 60%-20%-20% and iCassava2018 with the 

ratio of 80%-10%-10%. 

In the experimental setting, I used the TensorFlow library as a deep learning 

framework running on Ubuntu operating system version 18. All experiments were 

evaluated with Intel(R) Core-i5, 2320 CPU @ 3.00GHz, 16GB RAM, and GPU NVIDIA 

GeForce GT 1060Ti. 

3.5.1 Experiments on lightweight convolutional neural networks 

In this experiment, the pre-trained models of four CNNs consisting of 

InceptionResNetV2, NASNetMobile, MobileNetV2, and EfficientNetB1, were trained 

on the plant leaf disease datasets. The data augmentation techniques [50], including 

rotation, shift, zoom, and horizontal flip, were combined in this study. In order to 

determine the average accuracy and standard deviation on the validation set, I 

randomly selected the training and validation tests and evaluated them ten times.  

In Table 7, I show the experimental results with the data augmentation 

techniques and lightweight CNN models. The experiments indicated that the most 

significant performance on plant leaf disease datasets was with the EfficientNetB1 

model. It outperformed on both validation and test sets. In addition, the 

InceptionResNetV2 model showed the second-best performance on the Crop-

PlantDoc and iCassava2019 datasets. It also showed significant performance when 

compared with MobileNetV2 and NASNetMobile models. 
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Table 7 Performance evaluation of the lightweight CNNs and data augmentation 

techniques on plant leaf disease datasets 

CNN 

Architectures 

PlantDoc Crop-PlantDoc iCassava2019 

Validation 

(%) 

Test 

(%) 

Validation 

(%) 

Test 

(%) 

Validation 

(%) 

Test 

(%) 

EfficientNetB1 68.33±1.95 67.70 85.19±0.96 86.21 87.01±0.82 88.25 

InceptionResNetV2 63.15±2.74 57.98 78.20±3.55 81.37 86.40±0.83 87.28 

MobileNetV2 61.19±2.25 58.56 74.51±1.08 74.96 82.49±1.43 84.45 

NASNetMobile 60.33±2.29 57.59 79.02±0.69 76.48 80.72±2.57 84.10 

 

3.5.2 Experiments on ensemble learning methods 

In this experiment, to find the optimal numbers of the model, I 

examined the performance of ensemble CNNs from two to ten models. For the 

ensemble learning method, I classified the output using an unweighted majority vote 

and unweighted average methods. 

Table 8 Performances of the ensemble learning methods and lightweight CNNs  

CNN 

Architectures 

Ensemble 

Methods 

Evaluation Metrics Plant 

Doc 

Crop- 

PlantDoc 

iCassava 

2019 

EfficientNetB1 Unweighted  

Majority Vote 

Accuracy (%) 70.04 86.21 91.34 

Testing time (sec.) 0.12 0.20 0.71 

No. of CNN models 2 8 10 

Unweighted  

average 

Accuracy (%) 70.82 90.55 91.61 

Testing time (sec.) 0.13 0.20 0.71 

No. of CNN models 2 8 10 

MobileNetV2 Unweighted  

Majority Vote 

Accuracy (%) 66.73 85.20 88.34 

Testing time (sec.) 0.29 0.17 0.34 

No. of CNN models 7 9 8 

Unweighted  

average 

Accuracy (%) 67.15 85.20 88.87 

Testing time (sec.) 0.41 0.17 0.38 

No. of CNN models 10 9 9 

NASNetMobile Unweighted  

Majority Vote 
Accuracy (%) 68.68 88.35 8781 

Testing time (sec.) 1.29 0.52 1.56 

No. of CNN models 8 9 9 

Unweighted  

average 

Accuracy (%) 68.68 88.69 88.07 

Testing time (sec.) 1.45 0.58 1.56 

No. of CNN models 9 10 9 

InceptionResNetV2 Unweighted  

Majority Vote 
Accuracy (%) 68.87 80.19 90.28 

Testing time (sec.) 1.20 0.46 1.94 

No. of CNN models 7 2 9 

Unweighted  

average 

Accuracy (%) 69.46 80.30 90.64 

Testing time (sec.) 1.20 0.46 1.94 

No. of CNN models 7 2 9 
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Table 8 provides accurate results, testing times, and numbers of CNN 

models for recognition on three plant leaf disease datasets. The experimental results 

show that the ensemble CNNs with both unweighted majority vote and unweighted 

average methods performed consistently better than single CNN. Furthermore, when I 

focused on the ensemble learning methods, the unweighted average method slightly 

outperformed the unweighted majority vote. Consequently, the EfficientNetB1 still 

significantly outperformed other CNNs on all datasets. Surprisingly, the ensemble 

CNNs combined with two EfficientNetB1 models achieved an accuracy of 70.82% on 

the PlantDoc dataset. It increased the accuracy of one EfficientNetB1 model by 

approximately 2%. 

3.5.3 Experiments on stacking ensemble learning method 

In this experiment, the stacked output probabilities of CNN models 

were trained using the machine learning methods; logistic regression (LR), support 

vector machine (SVM), K-nearest neighbors (KNN), random forest (RF), and long 

short-term memory (LSTM) network. First, I fine-tuned the hyperparameters of each 

classifier. The hyperparameters applied to each classifier were as follows. SVM, C=1, 

gamma=0.1, kernel=RBF; KNN, K=19, distance value=Euclidean, and 

weight=uniform; RF, estimators=800, max depth=30, min samples leaf = 4, min 

samples split=10, min features=auto, and bootstrap=true; LSTM, 1 layer with 100 

neurons, batch size=64, optimizer=Adam, epochs=200. I examined the performance 

of each classifier with a combination of two to ten CNN models. 
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Table 9 Performances of the meta-learner methods trained the model using the output 

probabilities from the lightweight CNNs on (A) PlantDoc, (B) Crop-PlantDoc, and 

(C) iCassava2019 datasets. 

(A) 

CNN Architectures Evaluation 

Metrics 

Meta-learner Methods 

LR SVM KNN RF LSTM 

EfficientNetB1 Accuracy (%) 71.21 71.40 71.21 70.04 68.87 

 Testing time (sec.) 0.66 0.66 0.13 0.20 0.20 

 No. of models 10 10 2 3 3 

MobileNetV2 Accuracy (%) 68.87 67.90 67.90 68.68 63.81 

 Testing time (sec.) 0.33 0.37 0.33 0.33 0.16 

 No. of models 8 9 8 8 4 

NASNetMobile Accuracy (%) 68.09 69.07 68.29 68.09 62.84 

 Testing time (sec.) 0.97 0.81 1.45 0.65 1.13 

 No. of models 6 5 9 4 7 

InceptionResNetV2 Accuracy (%) 70.82 71.01 71.21 72.18 69.65 

 Testing time (sec.) 1.71 1.54 1.37 1.20 1.20 

 No. of models 10 9 8 7 7 

(B) 

CNN Architectures Evaluation 

Metrics 

Meta-learner Methods 

LR SVM KNN RF LSTM 

EfficientNetB1 Accuracy (%) 90.71 90.60 90.21 90.71 90.43 

 Testing time (sec.) 0.17 0.22 0.20 0.17 0.15 

 No. of CNN 

models 

7 9 8 7 6 

MobileNetV2 Accuracy (%) 85.37 84.97 85.93 85.37 81.77 

 Testing time (sec.) 0.17 0.17 0.17 0.17 0.09 

 No. of CNN 

models 

9 9 9 9 5 

NASNetMobile Accuracy (%) 89.03 89.25 88.75 88.75 85.65 

 Testing time (sec.) 0.58 0.58 0.46 0.52 0.23 

 No. of CNN 

models 

10 10 8 9 4 

InceptionResNetV2 Accuracy (%) 83.12 82.72 82.95 84.36 81.54 

 Testing time (sec.) 0.27 0.27 0.66 0.66 0.27 

 No. of CNN 

models 

4 4 10 10 4 
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 (C) 

CNN Architectures Evaluation 

Metrics 

Meta-learner Methods 

LR SVM KNN RF LSTM 

EfficientNetB1 Accuracy (%) 91.61 91.87 91.52 91.70 91.52 

 Testing time (sec.) 0.71 0.64 0.71 0.64 0.71 

 No. of CNN 

models 

10 9 10 9 10 

MobileNetV2 Accuracy (%) 89.22 88.78 88.96 88.96 88.52 

 Testing time (sec.) 0.42 0.42 0.34 0.34 0.42 

 No. of CNN 

models 

10 10 8 8 10 

NASNetMobile Accuracy (%) 87.81 87.46 87.99 87.63 87.81 

 Testing time (sec.) 1.56 1.73 1.39 1.56 1.56 

 No. of CNN 

models 

9 10 8 9 9 

InceptionResNetV2 Accuracy (%) 90.19 90.55 90.55 90.11 90.64 

 Testing time (sec.) 1.77 1.77 1.96 1.37 1.96 

 No. of CNN 

models 

9 9 10 7 10 

 

 

 

 

 

 

 

 

 

 

 

Table 9 shows the experimental results of the stacking ensemble 

learning method. Notably, EfficientNetB1  could be combined with all machine 

learning techniques and achieved high accuracy. The experiments show that the 

EfficientNetB1  outperformed other CNN architectures on two plant leaf disease 

datasets; Crop-PlantDoc and iCassava2 0 1 9 . Consequently, the InceptionResNetV2 , 

when combined with the random forest method, achieved the highest accuracy on the 

PlantDoc dataset. However, the MobileNetV2  was the best CNN architecture in fast 

prediction if the computation time is considered. Further, the EfficientNetB1 provided 

the second fastest prediction time. 
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I also compared the experimental results of the ensemble learning 

method with the stacking ensemble learning method. I observed that the stacking 

ensemble learning method slightly outperformed the ensemble learning method on all 

plant leaf disease datasets. However, the ensemble learning method performed faster 

than the stacking ensemble learning method. This was due to the stacking ensemble 

learning method being sent the output probabilities to predict the output with the 

machine learning technique, while the ensemble learning method was computed with 

average the output probabilities. 

I compared the experimental results with the previous studies. For the 

plantDoc and Crop-plantDoc datasets, Singh et al. [49] achieved an accuracy of 

29.73% and 70.53% on the PlantDoc and Crop-PlantDoc datasets. Our stacking 

ensemble of CNN performed better than Singh et al. [49] with an accuracy of 72.18% 

and 90.71% on the PlantDoc and Crop-PlantDoc datasets. Furthermore, for the 

iCassava2019 dataset, our experimental result presents greater accuracy than the 

accuracy obtained from Enkvetchakul & Surinta [15]. The results reported in 

Enkvetchakul & Surinta [15] achieved 84.51% accuracy. In comparison, our proposed 

method achieved an accuracy of 91.87%. 

 

3.6  Conclusions 

This paper has proposed a stacking ensemble of deep convolutional neural 

networks (CNNs) to recognize plant leaf disease images. First, I chose four lightweight 

CNNs, including InceptionResNetV2, NASNetMobile, MobileNetV2, and 

EfficientNetB1, to compare the accuracy results. The experiments show that the 

EfficeientNetB1 significantly outperforms other CNN models on all plant leaf disease 

datasets. I also demonstrated the impact of the ensemble learning method and the stacking 

ensemble learning method. Second, two types of ensemble learning, including 

unweighted majority vote and unweighted average methods, were proposed to recognize 

the output probabilities of the CNN models. Ensemble learning with the unweighted 

average method combined with EfficientNetB1 achieved the best accuracy performance 

on the three datasets. Third, I proposed to use five machine learning classifiers, consisting 

of logistic regression (LR), support vector machine (SVM), K-nearest neighbors (KNN), 

random forest (RF), and long short-term memory (LSTM) network, to create a model 
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from the output probabilities of the CNN models. I found that EfficientNetB1 still 

outperformed all CNN models on Crop-PlantDoc and iCassava2019 datasets. It was the 

only InceptionResNetV2 that achieved better performance on the PlantDoc dataset. In the 

best of our experiments, the proposed stacking ensemble of the CNN framework was 

finally combined with EfficientNetB1, which was the lightweight model and random 

forest for the classifier. For the meta-learner method, all machine learning methods could 

further improve plant leaf disease recognition performance. However, with the increasing 

number of models used in ensemble learning, the time spent learning and testing 

increases with the number of models. 

In future work to improve plant leaf disease recognition performance, I will 

focus on experiments with the other CNN frameworks, such as snapshot ensemble 

CNN and 1D-CNN. I will study other data augmentation techniques in order to 

increase the training data. 
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Chapter 4  

Deep learning neural networks are trained using the stochastic gradient descent 

optimization algorithm.  The learning rate may be the most important hyperparameter. 

The learning rate is a hyperparameter that controls how much the model changes in 

response to an estimated error every time the model's weight is updated.  Choosing a 

learning rate can be challenging, as too small a value can result in a time-consuming 

training process, while extreme values can result in learning inappropriate weight sets too 

quickly, or the training process being unstable. Therefore this research will investigate the 

effects of the learning rate schedules rates on model performance.  In this research, I 

proposed the new learning rate schedule, called equal learning rate range ( ELRR)  and 

step decay equal learning rate range (SD-ELRR), which is presented and compared with 

two baseline learning rate schedules:  time-based decay and step decay, then using three 

CNNs architectures: EfficientnetB1, MobileNetV2, and NASNetMobile. The CNNs were 

tested on two plant leaf disease datasets; Plant Pathology and Cropped-PlantDoc 

Datasets.  The results show that the ELRR and SD-ELRR equations improved the 

efficiency of plant leaf disease recognition significantly better than the basic equations in 

the entire plant disease dataset. 

4.1  Introduction 

Agriculture plays an important role in the global economy. But the major problem 

that affects agriculture is plant disease. Both production for consumption, distribution and 

export. Therefore, plant disease identification is very useful for farmers to prevent. and 

treat plant diseases which can help reduce economic losses. But with the disease 

observation by the farmers themselves takes a long time. Or seeking advice from a 

specialist would be quite expensive. and takes time to process thus automatically 

identifying plant diseases. and the diagnosis of plant diseases Therefore, it is good for 

agricultural productivity and help to increase productivity more as well 

Nowadays, various methods are used in classification and plant leaf disease 

recognition, the most common of which is deep learning, which is becoming one of the 

essential tools for rapidly identifying images [51]. To use in-depth learning methods for 

detecting, diagnosing, and classifying leaf diseases, Too et al.[52]  proposed deep 

learning architecture such as VGG 16, Inception V4, ResNet with 50, 101, and 152 
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layers, and DenseNets with 121 layers to recognize plant leaf diseases by learning with 

plantVillage datasets consisting of 38 classes of plant leaves from 14 plants, composed of 

both diseased and healthy plant leaves. Militante et al.[10] led a computer vision work 

developed by Deep Learning to detect and diagnose leaf diseases of maize, grapes, 

potatoes, sugarcane, and tomatoes in another study Zhong and Zhao.[1] led the Deep 

Model. Learning to recognize apple leaf disease By updating the DenseNet-121 module, 

Luna et al.[53]  Using a transfer learning model, a Convolutional Neural Network (CNN) 

to identify tomato leaf disease. In another study, Srdjan et al.[19] used CNN to recognize 

13 plant diseases, distinguishing plant leaves from the environment. 

Neural network learning is essential to optimizing the model. The important thing 

concerning neural network learning is hyperparameters; for example, the learning rate, 

momentum, and activation function. The most critical variable is the learning rate [54]. If 

the learning rate is low, learning will proceed slowly because it adjusts the weights in the 

network very little. Therefore, the neural network's learning has reduced the learning rate 

during the learning process. which can be done by using learning rate schedules or 

adaptive learning rate [55]. Another problem with model learning is the number of epochs 

used to learn. If the number of epochs is too defined, it will take a long time to learn, and 

there may be overfitting problems, but if a small number of epochs occur, it may not get 

enough effective models (underfitting) [56].  The method used to solve the learning 

problem of the model is by stopping learning if the model's performance does not 

increase. This method is called early stopping, where early stopping checks the model's 

performance during learning. If the model's performance does not improve, it will stop 

learning immediately. This prevents overfitting problems and adopting early stopping 

helps stop learning before the set anniversary, thus reducing the learning time 

considerably [57]. 

In addition, deep learning has also been used to extract deep features to classify 

images using convolutional and pooling layers to extract features and then combine the 

features obtained by CNN 2 CNN (fusion) to learn the attributes. learning in this way can 

help improve performance [58]. In addition, there is a method that combines several 

models to improve the prediction performance called ensemble learning It combines deep 

learning models with ensemble learning to predict outcomes better. 
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Contribution. This research presents the optimization of learning rate schedules in 

deep learning to increase efficiency in plant leaf disease recognition, and uses early 

stopping to determine the optimal time to use in plant leaf disease recognition. Finally, I 

enhanced the recognition efficiency by fusion and ensemble learning to evaluate two 

plant leaf disease datasets, Cropped-PlantDoc and Plant Pathology. As a first step, I used 

three CNN architectures, EfficientnetB1, MobileNetV2, and NASNetMobile, using a 

method to optimize recognition by adjusting learning rate schedules during learning with 

two basic equations; time-based decay and step decay and two self-improved equations 

are called equal learning rate range (ELRR) and step decay-equal learning rate range (SD-

ELRR). 

 Step 2.  Perform the same process as the first step but use the early stopping 

method to help stop learning to compare time together with the performance of the model, 

and then the final step selects the best CNN from two basic equations and two self-made 

equations for Deep Fusion by deep feature extraction from both CNNs. In addition, the 

CNN mentioned above has been used for ensemble learning in 3 methods:  unweighted 

majority vote, unweighted average, and weighted average.  Finally, I compared the 

performance achieved by the fundamental equations with the equations created and the 

fusion efficiency with ensemble learning. 

 

4.2  Related Work 

In this study, research presented the utilization of deep learning for plant disease 

recognition, which developed deep learning techniques by learning rate schedule, early 

stopping, fusion, ensemble as follows: 

4.2.1  Plant Leaf Disease Recognition/Classification 

 The development of deep learning has led to a growing research interest 

in image classification technology, which allows images to be categorized and the search 

for plant diseases. For example, Srdjan et al. [19] have presented an approach to using 

deep learning with CaffeNet to recognize 15 plant diseases, The data used was images 

downloaded from the Internet, cropping only the leafy parts and removing images with 

resolutions less than 500 pixels. Finally, a total of 33,469 images were obtained, divided 

into 30,880 images for training and 2,589 images for testing, with the performance of the 

models developed at 96.3%. In addition, Too et al.[52] presented a deep convolutional 
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neural network for plant disease image classification, using deep learning architectures 

including VGG 16, Inception V4, ResNet with 50, 101, and 152 layers, and DenseNets 

with 121 layers. The experiment used the plantVillage dataset that contains 38 classes of 

leaf images from 14 different plant species, including diseased plants and healthy plant 

leaves. DenseNets experiments with the smallest number of parameters but more accurate 

than the other models at 99.75%. Atila et al. [59] have presented EfficientNet's deep 

learning architecture in the identification of plant leaf diseases and compared the 

performance of this model to other deep learning models such as AlexNet, VGG16, 

ResNet50, and Inception V3, testing with plantVillage datasets in deep learning model 

learned with transfer learning methods. According to experiments, efficientNet-B5 and 

EfficientNet-B4 models had the highest accuracy compared to other deep learning models 

at 98.42% and 99.39%, respectively. 

4.2.2  Learning Rate Schedule  

Current research discusses the optimization of deep neural networks, 

focusing on how learning rate affects the behavior of stochastic optimization. For 

example, Zhiyuan and Sanjeev. [60] argued that deep learning performs better at different 

learning rates. Research has shown results in weighting for decay and momentum. The 

training model uses SGD at there was momentum and an exponentially increasing 

learning rate schedule. Zhen et al. [55] stated that the learning rate is a crucial 

hyperparameter that affects the learning of the model. There are several learning rate 

schedules, for example; linear decay, cosine decay, exponential decay, and inverse square 

root decay. This study used an adaptive learning rate schedule. Later, Wangpeng et al. 

[61] presented the learning rate exponential decay sine wave, a technique for SGD. This 

method improves the learning speed of the neural network because it uses fewer epochs 

than the step-decay learning rate and cyclical learning rate 

 

4.2.3  Early stopping  

Early stopping is a method used to solve the learning problems of the 

model. Learning is stopped if model efficiency is not increased [62]. Chi et al.[63] used a 

feed-forward neural network (FNN) to learn about acoustic sources in an ocean 

waveguide. The method known as fitting-based early stopping (FEAST) was used to 

evaluate error when the error value was the lowest and there was no sign of further 
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decline. The learning halt is performed by experimenting with this method to optimize the 

accuracy of the FNN in the test data. In addition, Zhang et al.[64] emphasized that the 

number of learning epochs is essential for the model's validity and designed two different 

early stopping criteria to help select the most suitable range to stop learning. Mahsereci et 

al.[65] presented a new way to stop learning. The traditional method one breaks down the 

training and validation sets and uses the monitoring kit to evaluate the model's 

performance to stop learning. As a result, model performance decreases. This new 

method will use fast-to-compute local statistics of the computed gradients instead of using 

the validation set to stop learning. This increases the training data and improves model 

performance. 

4.2.4  Fusion  

Zhao et al. [66] designed a fusion feature learning network to identify 

people from pedestrian images. Instead of using fusion from a single pooling operation, 

this design used fusion from max pooling and average pooling, which, according to the 

experiments, obtained models with 81.80% better identification performance. In addition, 

Li et al. [67] presented Deep Learning models to extract features from images and feature 

fusion to classify hyperspectral images (HSI) using 2D-CNN to extract features This was 

unlike conventional feature extraction using 1D-CNN or other 1D methods, where 

experiments showed that deep feature fusion was more effective compared to the spectral 

and local spatial feature extraction, feature fusion based, optimized for small-scale 

training data, and global spatial feature extraction.  Chaib et al.[68] described the optical 

geometry group network (VGG-Net) model used for deep feature extraction to extract the 

characteristics of a very high-resolution (VHR) image. It selects from fully connected 

layers and then combines the attributes (feature fusion). Experimentally, the proposed 

approach performed better than the state-of-the-art approaches. 

4.2.5  Ensemble  

 A single model to predict results may not be enough to deliver good 

results. Ensemble learning is combining multiple models for better results. In addition, 

ensemble learning reduces the variance error of predictions [69] Ju et al. [41] presented 

four collective learning methods; unweighted average, majority vote, optimal bayes, and 

super learner, combined with deep convolutional neural networks. The neural networks 

consisted of Neural Networks, GoogLeNet, VGG, and ResNet; the test was performed 
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with the CIFAR10 dataset composed of 45,000 training sets, 5,000 validation sets, and 

10,000 test sets. Results showed that collective learning with a super leaner method 

delivered the best performance with up to 95.02% accuracy. 

 

4.3  Research Method 

4.3.1 Convolutional neural networks architecture  

4.3.1.1 MobileNetV2 Sandler et al. [47] presented MobileNetV2 based 

on MobileNetV1 and works well on mobile devices. The MobileNetV2 architecture 

consists of the initial full convolution layer with 32 filters, followed by 19 residual 

bottleneck layers. Within the residual block, there are three layers; expansion convolution 

layer, depthwise convolution layer, and projection convolution layer, resulting in a 

reduced size that is smaller than MobileNetV1 but more efficient. 

4.3.1.2 NASNetMobile is another architecture that works well on mobile 

devices. Zoph et al. [32] have presented a CNN architecture-based search network 

architecture (NASNet: Neural Architecture Search Network). Using Recurrent Neural 

Network (RNN) and reinforcement learning, NASNet searches for a building block 

consisting of normal cells and appropriate reduction cells. It first searches for the best 

cells on a small dataset like CIFAR-10 and then transfers it to a larger dataset like 

ImageNet. NASNetMobile uses the NASNet architecture to scale down the model by 

reducing the number of a normal cells, resulting in a smaller model suitable for use with 

mobile devices or embedded devices. 

4.3.1.3 EfficientnetB1 was presented by Tan & Le [48] and is one of the 

models from the EfficientNet architecture, a convolutional neural network that uses a 

compound coefficient method of compound scaling all three dimensions of depth, width, 

and resolution to enlarge. It makes available models of various sizes, including 

EfficientNetB0 – EfficientNetB7 sorted from the smallest to the largest size. 

EfficientNets can transfer learning well. It also had validity values on CIFAR-100 

(91.7%) and the Flowers dataset (98.8%). 

4.3.2 Baseline learning rate schedule 

Learning rate is one hyperparameter used in network learning that 

optimizes the model. Learning rate schedules can reduce the learning rate during network 

learning. Some of the popular learning rate schedules are:  
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4.3.2.1 Time-based decay learning rate 

The time-based decay learning rate schedule is the simplest form 

of the learning rate, and it takes the form of equation [70] as follows (1): 

 

 𝑙𝑟𝑛 =  
𝑙𝑟0

1+𝑑𝑛
 (1) 

 

where 𝑛 is the iteration step (epoch), 𝑙𝑟0 is the initial learning rate, 

and 𝑑 is the decay rate. 

Based on the equation, the learning rate is reduced gradually with 

every cycle. The learning rate can be initialized in the variable 𝑙𝑟0, where 𝑛 is the number 

of epochs starting from 1, and the rate of decline for each cycle can be set at variable 𝑑.   

In this experiment, the 𝑙𝑟0variables were substituted as follows 

[0.1, 0.01, 0.001, 0.0001] and the variable 𝑑 [0.1, 0.01, 0.001, 0.0001] to find the values 

that yield the most efficient model, using MobileNetV2 to training and testing with the 

Plant Pathology Dataset. The experiments revealed the importance of the variables that 

made the model the most efficient: 𝑙𝑟0= 0.01 and 𝑑 = 0.0001. In each cycle, the learning 

rate was adjusted in increments of 0.0001, as shown in Figure 16 (a). to be used for 

further testing on other CNNs. 

4.3.2.2 Step decay learning rate 

 Step decay learning rate is a popular and widely used learning rate 

schedule [71].  The step decay learning rate uses a fixed learning rate in a specified 

number of cycles and then gradually reduces the learning rate [60]. The form of equation 

[70] is as follows (2): 

 

 𝑙𝑟𝑛 =  𝑙𝑟0𝑑
𝑓𝑙𝑜𝑜𝑟(

𝑛−1

𝑟
)

   (2) 

 

where 𝑛 is the iteration step (epoch), 𝑙𝑟0 is the initial learning rate, 

𝑑 is the decay rate (which is set to a real number between 0 and 1), 𝑟 is the drop rate, and 

𝑓𝑙𝑜𝑜𝑟 is a function that is used to return the largest integer value that is less than or equal 

to a number.  
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 In this experiment, I defined the variables 𝑑 = 0.5 and 𝑟 = 10. The 

result was that the learning rate was halved with every ten epochs of training the model, 

shown in Figure 16 (b). 

4.3.3 New learning rate schedule 

4.3.3.1 Equal learning rate range (ELRR)  

ELRR starts with the highest learning rate and then decreases the 

learning rate, decreasing steadily by a predetermined number of epochs to the lowest 

learning rate. The form of the equation (4) is: 

 

 𝑙𝑟𝑛 =  𝑙𝑟𝑚𝑎𝑥 − (𝑛 − 1)(
𝑙𝑟𝑚𝑎𝑥−𝑙𝑟𝑚𝑖𝑛

𝑛𝑚𝑎𝑥−1
)  (4) 

 

 

 where 𝑛 is the iteration step (epoch), 𝑛𝑚𝑎𝑥 is the maximum 

epoch, 𝑙𝑟𝑚𝑎𝑥 is the maximum learning rate, and 𝑙𝑟𝑚𝑖𝑛 is the minimum learning rate. 

The equation calculates the learning rate decline interval and rate 

constant from the maximum to the lowest value. In this experiment, we tried to find the 

best range for this equation. and the next equation by defining the range of maximum 

values and the minimum values are (0.1,0.01), (0.1,0.001), (0.1,0.0001), (0.01,0.001), 

(0.01,0.0001), and (0.001,0.0001). The best performance range was (0.01,0.0001), as 

shown in Figure 16 (a). This range was chosen in the experiment of this equation and the 

next equation. 

4.3.3.2  Step decay equal learning rate range (SD-ELRR) 

 The SD-ELRR equation applies the step decay learning rate 

equation by incorporating a method of determining the learning rate reduction range from 

the ELRR equation and adding it to the step decay equation. The SD-ELRR equation 

provides a constant learning rate in a given number of epochs before being downgraded, 

with the learning rate decreasing steadily at a specified interval, with the following 

patterns (5): 

 𝑙𝑟𝑛 =  𝑙𝑟𝑚𝑎𝑥 − 𝑓𝑙𝑜𝑜𝑟(
𝑛−1

𝑟
)(

𝑙𝑟𝑚𝑎𝑥−𝑙𝑟𝑚𝑖𝑛

𝑐𝑒𝑖𝑙(
𝑛𝑚𝑎𝑥

𝑟
)−1

)  (5) 
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 where 𝑛 is the iteration step (epoch), 𝑛𝑚𝑎𝑥 is the maximum 

epoch, 𝑙𝑟𝑚𝑎𝑥 is the maximum learning rate, 𝑙𝑟𝑚𝑖𝑛 is the minimum learning rate, 𝑟 is the 

drop rate , 𝑓𝑙𝑜𝑜𝑟 is a function that is used to return the largest integer value that is less 

than or equal to a number, and 𝑐𝑒𝑖𝑙 is a function that is used to return the smallest integer 

value that is bigger than or equal to a number. 

 In this experiment, I defined variable 𝑟 = 1 0 , meaning that the 

learning rate dropped steadily every ten cycles, as shown in Figure 16 (b). 

 

  
(a) (b) 

 

Figure 16 Learning rate schedule: (a) time-based decay and equal learning rate range 

(ELRR) and (b) step decay and step decay equal learning rate range (SD-ELRR) 

 

4.3.4 Early stopping 

Early stopping is an effective meta-algorithm that works with the training 

process, and which monitors the performance of models in every epoch of training and 

uses the performance obtained by the validation set as a condition to stop training [63]. 

Learning stops after performance or loss does not increase within a specified number of 

cycles (patience), as shown in Figure 17. This significantly reduced the learning curve 

[72]. 
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Figure 17 Early stopping based on the metric loss 

 

4.3.5 Fusion 

  Deep fusion experiments were performed by taking the best 

model of the original equation and the best model of the new equation, two of each 

model, to feature fusion by eliminating the fully connected layer of the model, then 

feature fusion is imported to the softmax layer, as shown in Figure 18. This experiment is 

a feature fusion obtained from EfficientnetB1 and MobileNetV2 with the final layer of 

both models are global average pooling layer.

 

 

Figure 18 proposed deep feature fusion from the combination of features provided by 

EfficientnetB1 and MobileNetV2 with the Plant Pathology Dataset. 

 

 

Best epoch 

Last epoch 

Patience 
Loss 

Epochs 0 
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4.3.6 Ensemble 

4.3.6.1 Vote ensemble [45] is based on the predictions of many models. 

Models are created in the same or different ways with the same data set, selecting the 

highest probability as a vote, then combining the vote, and the final prediction chooses to 

predict the class with a total vote. The vote ensemble method is calculated by equation 

(6): 

 

 𝑦̂ = 
1

𝑛
∑ 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑦𝑖

𝑛
𝑖=1   (6) 

 

  

where 𝑎𝑟𝑔 𝑚𝑎𝑥 is the highest probability value of weight vector 𝑦𝑖, and 

𝑛 is the number of ensemble CNN models. 

4.3.6.2 Average Ensemble [73] takes all the likelihood values derived 

from CNN models' predictions and calculates each class by selecting the most average 

class answer. The average ensemble method provides better accuracy because all classes 

of each model are considered. The average ensemble method is given by equation (7): 

 

 𝑦̂ = 
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1      (7) 

 

where 𝑦𝑖 is weight vector, and n is the number of ensemble CNN models. 

4.3.6.3 Weighted Averaging Ensemble differs from the first two ways. 

Each model has equal rights, but is weighted. Averaging Ensemble gives priority 

weight to one or more models. The predicted result of each class is multiplied by the 

weighted value and then calculated for the mean and selects the class with the highest 

average [40] 

 

4.4  Dataset and preprocessing 

The research used plant leaf images from the Cropped-PlantDoc and Plant 

Pathology datasets. 

4.4.1 Cropped-PlantDoc dataset 

 PlantDoc [49] is a dataset that collects plant leaf images from the Internet. 

The landing of approximately 20,900 images of plant leaves is obtained, then sorts them 
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out, selects images that are clear images of the disease and eliminates duplicate images 

which are then grouped by category and examined by experts on each plant disease. 

Finally, there was a dataset of 2,567 plant leaf images from 13 plant species, including 27 

types  of diseased and healthy plant leaves. Cropped-PlantDoc [49] is a series of images 

that take plant leaf images from the PlantDoc dataset and cut only the part of the leaves. 

This resulted in new data with 8,883 images of plant leaves, shown as shown in Figure 19 

and an example image shown in Figure 20. 

 
 

Figure 19 Statistics of Cropped-PlantDoc Dataset 
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Apple Scab 

        

Blueberry 

Healthy 

     

Strawberry 

Healthy 

      

Tomato 

Septoria 

Leaf Spot 
    

PlantDoc Dataset Cropped-PlantDoc Dataset 

Figure 20 example images from the PlantDoc and Cropped-PlantDoc dataset. [49] 

 

4.4.2 Plant Pathology dataset 

All leaf images in the Plant Pathology dataset were collected from Shri 

Mata Vaishno Devi University, Katra, and were photographed in a closed environment. 

Then the images of the entire dataset were divided into 22 classes; 4503 images (diseased 

and healthy leaves) are shown in Figure 21, with an example picture shown in Figure 22 

[74]. 
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Figure 21 Statistics of Plant Pathology Dataset  

 

     

     

 

Figure 22 example images from the Plant Pathology Dataset 

 

4.5 Experimental Results and Discussion 

 This study looked at three Architecture CNNs consisting of EfficientnetB1, 

MobileNetV2, and NASNetMobile which were tested on two datasets, the Cropped-

PlantDoc and the Plant Pathology Dataset. The experimental data were randomly divided 

into 20% test sets for performance testing. Then, the remaining 80% of the images were 

used as a training set using the K-fold cross-validation method, setting K=5, and resized 

image to a size of 224x224 pixels before being learned by EfficientnetB1, MobileNetV2, 

and NASNetMobile, and testing the performance of CNN by requiring fine-tuning data to 

be trained. The parameters used to train were Epoch = 100, Batch Size = 16, and the 
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Optimizer = Stochastic Gradient Descent (SGD) algorithm. The TensorFlow Platform 

was used as an experiment running (Run) on a Linux Operating System using an Intel(R) 

Core-i5 computer, 2320 CPU @ 3.00GHz, 16GB RAM, GeForce GTX 1060Ti GPU. 

4.5.1 Learning Rate Schedule  

This experiment tested the effectiveness of CNN in three architectures; 

EfficientnetB1, MobileNetV2, and NASNetMobile, using four different learning rate 

schedule methods; time-based decay, Step decay, ELRR, and SD-ELRR. The results are 

shown in Table 10. 

 

Table 10 Performances of the learning rate schedule methods 

Datasets 
CNN 

Architectures 

Training 

time, 

Testing 

Time/image 

Time-based 

decay 
Step decay ELRR SD-ELRR 

5-CV 
Test 

(%) 
5-CV 

Test 

(%) 
5-CV 

Test 

(%) 
5-CV 

Test 

(%) 

Plant 

Pathology 

MobileNetV2 
1h 5min, 

0.13s 

92.61 ± 

1.51 
97.34 

93.06 ± 

2.53 
98.11 

97.89 ± 

0.60 
98.34 

97.58 ± 

0.29 
98.78 

NASNetMobile 
2h 35min, 

0.18s 

95.25 ± 

2.26 
97.78 

87.86 ± 

6.12 
98.34 

97.97 ± 

0.32 
97.78 

97.78 ± 

0.38 
97.45 

EfficientnetB1 
2h 10min, 

0.151s 

98.14 ± 

0.43 
98.11 

97.69 ± 

0.35 
98.37 

95.25 ± 

2.26 
98.00 

98.53 ± 

0.31 
97.89 

Cropped-

PlantDoc 

MobileNetV2 
1h 55min, 

0.130s 

71.57 ± 

0.73 
73.72 

67.72 ± 

1.28 
73.49 

72.65 ± 

0.23 
73.04 

72.35 ± 

1.06 
72.65 

NASNetMobile 
4h 30min, 

0.194s 

64.59 ± 

2.34 
79.85 

66.25 ± 

0.52 
80.47 

78.26 ± 

1.20 
77.38 

76.83 ± 

1.37 
80.30 

EfficientnetB1 
4h 10min, 

0.163s 

67.21 ± 

1.54 
80.02 

71.20 ± 

1.46 
79.68 

80.28 ± 

1.17 
80.59 

79.97 ± 

1.27 
81.82 

 

Table 10 shows that the results of the experiment with the learning rate 

schedule showed that MobileNetV2, which uses the SD-ELRR equation with plant 

pathology datasets, is the most effective compared to other CNNs and other equations. 

MobileNetV2 also takes less time to learn than other CNNs. As for the Cropped-

PlantDoc dataset, the SD-ELRR equation still enables the highest performance values 

when used with EfficientnetB1. The improved accuracy of the new maybe because it can 

define the range of the learning rate schedule. 

I have selected the best CNN of each learning rate schedule and compared 

it with receiver operating characteristics (ROC), as shown in Figure 23, which shows that 

learning efficient EfficientnetB1 models using time-based decay equations is less 

effective than other models. 
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Figure 23 Illustration of the ROC curve for CNN models. The highlighted area is 

zoomed in at the upper left area of the curve. 

 

4.5.2 One-Way ANOVA  

 Based on the results of the above experiments, the researchers wanted to 

determine if the five equations of each data set were significantly different statistically. 

The researchers used the Oneway ANOVA (analysis of variance) method, which 

compares the parameters of two or more samples and has homogeneity of variance, in 

which the model accuracy in each of the two data sets is used in the calculations.   

 The researcher used the validity of the test kit. The results obtained from 

5-fold cross-validation in each equation were averaged (X̅) and analyzed using one-way 

ANOVA. The results of data analysis comparing the difference in accuracy found that the 

five groups of equations were significantly different at the 0.05 level, so the differences 

were tested individually (Multiple Comparisons) and comparison results are shown in 

table 11. 

Table 11 shows statistical values comparing differences in accuracy values classified by 

a group of equations on a pair of Plant Pathology and Cropped-PlantDoc datasets. 

Dataset 
Equation   Time-based decay Step decay ELRR SD-ELRR 

  𝐗̅ 95.33 92.87 98.11 97.96 

Plant 

Pathology 

Time-based decay 95.33 
 

2.46 -2.78* -2.63* 

Step decay 92.87 -2.46 
 

-5.24* -5.09* 

ELRR 98.11 2.78* 5.24* 
 

0.15 

SD-ELRR 97.96 2.63* 5.09* -0.15 
 

  𝐗̅ 68.38 68.48 77.28 76.76 

Cropped-

PlantDoc 

Time-based decay 68.38 
 

-0.1 -8.9* -8.38* 

Step decay 68.48 0.1 
 

-8.8* -8.28* 

ELRR 77.28 8.9* 8.8* 
 

0.52 

SD-ELRR 76.76 8.38* 8.28* -0.52 
 

 
* The mean difference is significant at the 0.05 level. 
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Table 11 compares the difference in the mean accuracy of the equations 

by pairs on the Plant Pathology and Cropped-PlantDoc datasets. It was found that the 

results obtained from the pairwise comparison for the baseline equations were not 

statistically significantly different from each other. However, the new equations that the 

researcher designed and the base equations were significantly different at the 0.05 level.   

4.5.3 Learning Rate Schedule with Early Stopping  

From the experiment in Section 5.2, the researcher added early stopping of 

learning by determining the loss in validation sets. If the loss does not decrease within the 

last ten learning epochs (patience = 10) learning will stop. The experimental results are 

shown in Table 12 

 

Table 12 Performance of the learning rate schedule methods with early stopping on Plant 

pathology dataset and Cropped-PlantDoc 

Dataset 
Learning rate 

schedule methods 

Evaluation Metric 

Accuracy (%) / Epoch stopping / Training time 

MobileNetV2 NASNetMobile EfficientnetB1 

Plant 

Pathology 

Time-based decay 97.00 / 35 / 24 min 97.45 / 55 / 1h 30min 98.22 / 16 / 23min 

Step decay 97.89 / 52 / 33min 97.11 / 44 / 1h 11min 96.45 / 14 / 13min 

ELRR 97.67 / 54 / 30min 98.00 / 70 / 1h 9min 97.34 / 21 / 29min 

SD-ELRR 98.45 / 54 / 28min 96.89 / 41 / 55min 96.89 / 22 / 27min 

Cropped-

PlantDoc 

Time-based decay 71.41 / 50 / 58min 73.21 / 32 / 1h 27min 77.27 / 15 / 37min 

Step decay 70.40 / 27 / 32min 79.18 / 32 / 1h 27min 79.91 / 14 / 26min 

ELRR 71.75 / 52 / 51min 79.01 / 58 / 1h 49min 77.60 / 13 / 32min 

SD-ELRR 72.26 / 40 / 46min 78.00 / 58 / 2h 39min 78.90 / 19 / 49min 

   

From Table 12, the adoption of early stopping techniques significantly 

reduces the time it takes to learn. But it does not improve the accuracy of most models. 

The decrease in accuracy was not much lower than the previous one at 0.2 – 1.2 %, and in 

the Plant pathology dataset, MobileNetV2, which uses the SD-ELRR equation, remains 

the most effective compared to other CNNs, stopping learning in epoch 54 and taking 

only 28 min, shown in Figure 7(a). The Cropped-PlantDoc dataset sees efficientnetB1 

using the step decay equation as efficiently as possible and also achieves more accuracy 

requiring 79.68% of 100 cycles to learn, rising to 79.91%, stopping learning in round 14 

and taking only 26 min to train, which is six times less, as shown in Figure 24 
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(a) 

  
(b) 

 

Figure 24 Compared training and valid loss without early stopping and with early 

stopping of the learning rate schedule: (a) SD-ELRR methods use MobileNetV2 on Plant 

pathology dataset and (b) Step decay methods use EfficientnetB1 Cropped-PlantDoc 

dataset 

 

Figure 24 shows that the loss of the training set and validation set will 

gradually decrease. After an increase in the number of epochs, the validation loss begins 

to stabilize and begins to tend to increase, which is the beginning of the overfit occurrence 

of learning, in which early stopping immediately stops learning when the validation loss 

is lowered to the lowest level and starts to stabilize to 10 epochs. In addition to learning 

with the early stopping technique, the problem of local minima can arise because the 

model can perform better after the specified number of cycles has passed. 

4.5.4 Fusion  

Following on from the experiment in Section 5.2, the investigator used the 

two best models of the original equation and the new equation of the two datasets. In the 

first dataset, the Plant Pathology Dataset chose EfficientnetB1 and NASNetMobile using 

Step decay and MobileNetV2 equations using the SD-ELRR equation, and 
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EfficientnetB1 using the SD-ELRR equation. The Crop-PlantDoc Dataset selected 

EfficientnetB1 using the Time-based decay equation with NASNetMobile using the step 

decay equation and EfficientnetB1 and NASNetMobile using the SD-ELRR equation. 

Finally, feature fusion, in which experimental results were obtained from each pair of 

models with both datasets was as shown in Table 13. 

 

Table 13 Performances of the deep fusion on Plant Pathology Dataset 

Dataset Fusion Training time Test (%) 

Plant Pathology 

EfficientnetB1 (Step decay) + NASNetMobile (Step decay) 5h 27min 98.22 

EfficientnetB1 (ELRR) + MobileNetV2 (SD-ELRR) 4h 10min 98.56 

Cropped-

PlantDoc 

EfficientnetB1 (Time-based decay) + NASNetMobile (step 

decay) 

11h 41min 80.47 

EfficientnetB1 (SD-ELRR) + NASNetMobile (SD-ELRR) 11h 53min 82.44 

 
4.5.5 Ensemble 

Like the Fusion experiment, this exeriment used the two best models of 

the original equation and the new equation of the two datasets. But this experiment used 

the model to predict the test set results, and the probabilistic results from the two models 

were used for ensemble learning by three methods; Unweighted Majority Vote, 

Unweighted average, and Weighted average. The results of the experiments with both 

data sets are as shown in Table 14. 

Table 14 Performances of the ensemble learning methods on Plant Pathology and 

Cropped-PlantDoc Dataset 

Dataset CNN Architectures 
Training 

time 

Unweighted 

Majority 

Vote 

Unweighted 

average 

Weighted 

average 

Plant 

Pathology 

EfficientnetB1 (Step decay) + 

NASNetMobile (Step decay) 
4h 45min 98.33 98.45 33 

EfficientnetB1 (ELRR) + 

MobileNetV2 (SD-ELRR) 
3h 15min 98.54 98.67 34 

Cropped-

PlantDoc 

EfficientnetB1 (Time-based decay) + 

NASNetMobile (step decay) 
4h 40min 83.46 83.34 54 

EfficientnetB1 (SD-ELRR) + 

NASNetMobile (SD-ELRR) 
4h 41min 83.85 84 50 
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4.5.6 Comparison of experimental 

Comparison of experimental results between proposed methods and 

from other Cropped-PlantDoc papers as shown in Table 15. 

Table 15 performance evaluation of the CNNs on Cropped-PlantDoc 

CNN Architectures Training 

Time 

Test 

ACC 

VGG16 [49] N/A 60.41 

InceptionResNet V2 [49] N/A 70.53 

Inception V3 [75] N/A 77.08 

MobileNetV2 (Time-based decay) 1h 55min 73.72 

NASNetMobile (Step decay) 4h 30min 80.47 

EfficientnetB1 (SD-ELRR) 4h 10min 81.82 

Deep Fusion  

EfficientnetB1 (SD-ELRR) + NASNetMobile (SD-

ELRR) 

11h 53min 82.44 

Ensemble learning Unweighted average method 

EfficientnetB1 (SD-ELRR) + NASNetMobile (SD-

ELRR) 

4h 41min 84 

 

4.5.7 Gradient-weighted Class Activation Mapping (Grad-CAM) 

 To understand the prediction of the effects of artificial intelligence and to 

gain confidence in the model used for predictions, the researcher then used the Grad-

CAM method to visualize with a heatmap what the model actually saw, such as diseased 

and healthy leaves,. The model correctly considered the leaf part, as shown in Figure 25, 

making it possible to trust the predictive results of the model generated. 

In addition, the researchers showed a Confusion Matrix of EfficientnetB1 

using the SD-ELRR equation shown in Figure 2 6  (a) compared to the confusion matrix 

obtained by ensemble learning in an unweighted average ensemble learning method using 

the EfficientnetB1 (SD-ELRR) model in combination with NASNetMobile (SD-ELRR) in 

experiments with the Cropped-PlantDoc Dataset as shown in Figure 2 6  (b), where it is 

evident that unweighted average ensemble learning had the tremendous increase in 

accuracy.   
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(a) 

   

   
(b) 

 

Figure 25 Grad-CAM generated with (a) Plant Pathology dataset using MobileNetV2 

and (b) Cropped-PlantDoc dataset using EfficientnetB1. 
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(a) (b) 

Figure 26 Confusion matrix of (a) EfficientnetB1 using the SD-ELRR equation 

compared to (b) ensemble learning using an unweighted average method using a 

model of EfficientnetB1  (SD-ELRR) in combination with NASNetMobile (SD-

ELRR) on Cropped-PlantDoc dataset 

 

 

4.6 Conclusion 

In this study, we compared how plant leaf disease is recognized, testing with two 

sets of plant pathology data was tested, including Plant Pathology and Cropped-PlantDoc 

Datasets, to demonstrate the recognition efficiency of CNN. The experiment was divided 

into three parts: - 1) Deep CNN testing on three architectures, EfficientnetB1, 

MobileNetV2, and NASNetMobile, which uses the method of adjusting learning rate 

schedules during learning with two basic equations; constant learning rate, time-based 

decay, and step decay, and two self-enhanced equations, ELRR and SD-ELRR, to 

compare the results of each equation. The experiments, showed that the ELRR and SD-

ELRR equations improved the efficiency of plant leaf disease recognition significantly 

better than the basic equations in the entire plant disease dataset. 2) A repeat of the 

experiment in step 1, only this time using the early stopping method to stop training. It 

looked at the validation loss. If the validation loss did not decrease within ten epochs, it 

stopped training. This experiment showed that implementing early stopping even reduces 

learning time. 3) The performance of two best CNN models for deep fusion and ensemble 

learning was compared. The experiment results concluded that ensemble learning was 

more efficient than deep fusion. 
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Chapter 5  

Discussion 

 

 In this thesis, I have demonstrated that the proposed algorithms are very efficient for 

improving plant leaf image recognition. I contributed three main types of research; data 

augmentation, ensemble learning, and learning rate schedule, using deep learning techniques. I 

will now briefly discuss the challenges of plant leaf image recognition. 

For the data augmentation task, I have experimented with training techniques; online, 

offline, and mixed training techniques. I selected the basic image manipulations, which consist 

of seven techniques: rotation, brightness, width shift, height shift, zoom, cutout, and mixup., I 

found that the combination of rotation, shift, and zoom techniques significantly increased the 

performance of the CNN architectures. 

For the ensemble learning task, I used four lightweight CNN architectures; 

InceptionResNetV2, NASNetMobile, MobileNetV2, and EfficientNetB1 to train and create 

robust CNN models from images of plants leaf diseases. I examined the performance of 

ensemble CNNs from two to ten models. For the ensemble learning method, I classified the 

output using an unweighted majority vote and unweighted average methods. For the stacking 

ensemble learning method, the stacked output probabilities of CNN models were trained using 

the machine learning methods; logistic regression (LR), support vector machine (SVM), K-

nearest neighbors (KNN), random forest (RF), and long short-term memory (LSTM) network. I 

examined the performance of each classifier with a combination of two to ten CNN models. 

For the optimized the model with learning rate schedules, I designed and used new 

equations. It can help significantly increase the efficiency of predictions, which is a part of the 

learning solution of the model. Using early stopping techniques to stop learning before the 

specified number of epochs has been reached can significantly reduce the time it takes to learn 

the model. The accuracy is not much different from the original. Finally, combining the features 

obtained by CNN 2 CNN to train the resulting attributes (deep fusion) can help increase 

learning efficiency. However, compared to the ensemble learning unweighted average method, 

it produces better results without the effort of improving or learning more like the deep fusion 

method 
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5.1  Answers to the Research Questions 

Objective 1. I aimed to investigate deep learning that can be used in plant leaf disease 

recognition. I also enhanced the performance of the deep learning method when combining data 

augmentation techniques and training techniques 

Research Question 1. Generally, convolutional neural networks take a large amount of 

data to learn to build an effective model. To avoid overfitting, most of the time, data collection 

problems are encountered. Therefore, there is an idea to create new data based on the existing 

data, called Data Augmentation. There are several methods of doing his such as Rotation, 

Brightness, Shift, Zoom, Cutout, and Mixup. Data Augmentation techniques can be divided 

into three processes: Online, Offline, and Mixed. In addition, can using convolutional neural 

networks in combination with learning techniques and data augmentation help increase the 

efficiency of plant leaf image recognition performance? 

Answering RQ1. This thesis used the architecture of convolutional neural networks 

(CNNs) to create smaller models, including MobileNetV2 and NASNetMobile, and perform 

scratch and transfer learning for training speed and recognition accuracy with the aim of having 

an efficient and small model for use in applications on a smartphone. 

The performance of the deep learning method was improved when combining data 

augmentation techniques and training techniques. In this thesis, the image manipulation 

techniques consisting of width and height shift, rotation, zoom, brightness, cutout , and mixup 

are used. I also tested three training techniques using offline, online, and mixed methods. 

Moreover, I examine the proposed deep learning method on two sets of plant leaf 

disease data; the leaf disease and iCassava 2019 datasets. I found that the NASNetMobile 

architecture outperforms the MobileNetV2 architecture on the two plant leaf disease datasets 

when applying offline training techniques and data augmentation, including rotation, shift, and 

zoom. 

 

Objective 2. I aim to improve the accuracy performance of the deep learning method 

for plant leaf disease recognition using ensemble learning methods. 

Research Question 2. Ensemble learning is a combination of different models, and 

independent of several models together to increase the efficiency of the model. They are divided 

into unweighted majority vote, unweighted average, and stacking ensemble. Therefore, can I 

use convolutional neural networks combined with ensemble learning to increase the efficiency 
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of plant leaf image recognition? Is Stacking Ensemble suitable for improving plant leaf image 

recognition? Because of stacking the output probabilities of each CNN model and providing as 

output to train to create the second model using the machine learning classifier, do the number 

of models used in collective learning and the classification method make the Stacking Ensemble 

method more efficient? 

Aswering RQ2. This thesis used a stacking ensemble of deep CNNs to evaluate plant 

leaf disease datasets; PlantDoc, Crop-PlantDoc, and iCassava2019. I used four CNN 

architectures, InceptionResNetV2, NASNetMobile, MobileNetV2, and EfficientNetB1, to train 

on the plant leaf disease images accordingly to obtain the fittest CNN model that applies in the 

meta-learner process. In the meta-learner process, I applied the output probabilities obtained 

from the fittest CNN models as inputs of a classifier. I employed five classifiers consisting of 

logistic regression (LR), support vector machine (SVM), K-nearest neighbors (KNN), random 

forest (RF), and long short-term memory (LSTM) network. Stacking ensemble was integrated 

with the best CNN model from the first process and the classifier from the second process to 

recognize and evaluate the plant leaf disease images. 

Objective 3. I proposed to use the new learning rate schedule to improve the 

performance of the plant leaf disease classification. 

Research Question 3. The thing related to neural network learning is hyperparameters, 

For example, the learning rate, momentum, and activation function. The most critical variable is 

the learning rate. Therefore, can I use the learning rate schedules when training deep learning 

neural networks to improve plant leaf image recognition? I created a new equation to compare it 

with the original equation to see which gives better performance. 

Answering RQ3. I proposed the new learning rate schedules, called equal learning rate 

range (ELRR)  and step decay equal learning rate range (SD-ELRR). These were presented and 

compared with two baseline learning rate schedules; time-based decay and step decay, then 

using three CNNs architectures: EfficientnetB1, MobileNetV2, and NASNetMobile. The 

CNNs were tested on two plant leaf disease datasets: Plant Pathology and Cropped-PlantDoc 

Datasets. The results showed that the ELRR and SD-ELRR equations improved the efficiency 

of plant leaf disease recognition significantly better than the basic equations in the entire plant 

disease dataset. 
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5.2  Future work 

Several future direction are suggested for researchers interested in inventing better plant 

leaf recognition systems in plant leaf images using deep learning techniques. I divide the future 

work toward three tasks; data augmentation, ensemble learning, and learning rate schedules. 

For data augmentation techniques, I will concentrate on improving the performance of 

plant leaf disease recognition. I will study and apply other data augmentation techniques such as 

AutoAugment and neural style transfer. 

In recent years, for ensemble learning techniques, various deep learning architectures 

for plant leaf images have been popular and have been applied to improve plant leaf disease 

recognition performance. I will focus on experiments with the other CNN frameworks, such as 

snapshot ensemble CNN and 1D-CNN. 

The learning rate is a crucial hyperparameter that affects the learning of the model. I 

will experiment with other hyperparameters to tune CNN, such as Dropout, Momentum or 

Activation function. 
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