

Spatial Analysis of Dengue Infection Using Geographic Information Systems in Dili, Timor Leste

A Thesis Submitted in Partial Fulfillment of Requirements for degree of Master of Science in Tropical Health Innovation (Internation Program) June 2023

Copyright of Mahasarakham University

Spatial Analysis of Dengue Infection Using Geographic Information Systems in Dili,

The examining committee has unanimously approved this Thesis, submitted by Mr. Zito Viegas, as a partial fulfillment of the requirements for the Master of Science Tropical Health Innovation (Internation Program) at Mahasarakham University

Examining Committee

Chairman Ph.D.)

Advisor
(Asst. Prof. Choosak Nithikathkul , Ph.D.)

Committee
(Asst. Prof. Ratikorn
Chatchanayeunyong, Ph.D.)
(Jongkonnee Thanasai, Ph.D.)
Committee

Committee
(Asst. Prof. Rapeeporn Chamchong , Ph.D.)

Mahasarakham University has granted approval to accept this Thesis as a partial fulfillment of the requirements for the Master of Science Tropical Health Innovation (Internation Program)

(Asst. Prof. Dr. Teabpaluck
Sirithanawuthichai, M.D.)
(Assoc. Prof. Krit Chaimoon, Ph.D.)
Dean of Graduate School
Dean of The Faculty of Medicine
$\begin{array}{ll}\text { AUTHOR } & \text { Zito Viegas } \\ \text { ADVISORS } & \text { Assistant Professor Choosak Nithikathkul , Ph.D. }\end{array}$

DEGREE	Master of Science	MAJOR	Tropical Health
		Innovation (Internation	
		Program)	

Spatial Analysis of Dengue Infection Using Geographic
Information Systems in Dili, Timor Leste

ABSTRACT
Dengue is an acute arthropod virus infection transmitted mainly by the Aedes $s p$. mosquito. It is the most common arbovirus disease globally and mainly occurs in the tropics and subtropical regions of the world, with an estimated burden of 390 million cases annually. Dili municipality is the capital of Timor Leste; it is an endemic area for the dengue infection outbreak. Therefore, the aim of this study is to develop appropriate models for the identification of areas with the dengue risk factors assessed in Dili municipality by applying the Geographic Information System (GIS) as a tool for a spatial data collection system with integrated attribute data or nonspatial data to study factors influencing this municipality (Capital). There were two categories of data collected: primary data on the knowledge, attitude, and practice (KAP) of housewives regarding dengue prevention and control and mosquito larvae density surveys (container index (CI)); and secondary data on the number of dengue cases from January 2016 to August 2022, household numbers, residential areas, natural water resources, and improper drainage areas to analyze the relationship with dengue infection patients. The data were analyzed using Pearson correlations and descriptive statistics with stepwise multiple regression. According to the GIS model of dengue infection risk assessment, it was discovered that 9% of the total areas were very high-risk areas, 17.75% were high-risk areas, 10.30% were moderate-risk areas, and 62.96% were low-risk areas. At an administrative post (sub-district) level, including Dom Aleixo, Cristo Rei, Vera Cruz, Nain Feto, Metinaro, and Atauro, it was found that Dom Aleixo was only a very high-risk area covering $33.12 \mathrm{~km}^{2}$. At the village level, seven villages were at very high risk, eight villages were at high risk, thirteen villages were at moderate risk, and eight other villages were at low risk. The factors influencing the household number were shown. After applying the GIS to dengue infection risk assessment, it was demonstrated that the GIS was an effective tool for dengue infection surveillance.

Keyword : Dengue Spatial analysis GIS Timor Leste.

ACKNOWLEDGEMENTS

I would like to give deep thanks to the almighty God, Jesus Christ (Isaiah 55:8), for strengthening my heart and enlightening my mind in carrying out this study.

I wish to express my heartfelt gratitude to Asst. Prof. Dr. Choosak Nithikathkul, Ph.D., my thesis advisor, for his invaluable advice, which inspired and aided in the completion of this study and took care of me during all my time in Thailand at Mahasarakham University. Moreover, he mostly treated me as a son rather than a student during all the various stages of my studies, with unconditional support, such as during the COVID-19 phenomenon in my own country, Timor Leste, where he made an effort to create the conditions and never made me lose the opportunity to join the class, including several international teleconferences, until my first departure and arrival time in Thailand. Therefore, sincerely, I would like to emphasize the biggest thing that I have ever known: he is "one of the best internationalists, an expert in negotiating, motivating, astuteness, responsibility, and integrity."

Furthermore, the author also sincerely thanks Asst.Prof. Thammanoon Raveepong, Rajabhat Mahasarakham University, Thailand, for his helpful suggestions. I would not have achieved this far, and this thesis would not have been completed, without all the support that I have always received from them.

I would also like to thank the members of the thesis examination committee. Dr. Jongkonnee Thanasai, Ph.D., Assoc. Prof. Wannapa Ishida, Ph.D., Asst.Prof. Ratikorn Chatchanayeunyong, Ph.D., and Asst.Prof. Rapeeporn Chamchong, Ph.D., for their helpful suggestions and corrections on my thesis writing format.

A special thanks and great appreciation for the support from the Thailand International Postgraduate Programme (TIPP) and the Thailand International Cooperation Agency (TICA). At present, TICA's main task is to coordinate Thailand's development cooperation as well as various economic, social, and technical assistance and training courses with countries and international organizations around the world. My country, Timor-Leste, is one of the beneficiaries of this cooperation. As a result of this cooperation, I have received financial support during all of my studies.

Ministry of Foreign Affairs, Kingdom of Thailand; M.Sc. in Tropical Health Innovation Program, Faculty of Medicine, Mahasarakham University (MSU) As an
international program, it provides me with the space and time to study at this wonderful university.

My thanks to the Department of Health Statistics Information (HIS/EIS), under the Ministry of Health (MOH), Timor-Leste, and the Department of Street, Bredge, and Flood Control, under the Ministry of Public Work (MPW/MOP), for supporting the secondary data in progressing my thesis. In addition, I would like to express my sincere thanks to my research team in Timor-Leste and to all my families.

TABLE OF CONTENTS

Page
ABSTRACT. D
ACKNOWLEDGEMENTS E
TABLE OF CONTENTS G
LIST OF TABLE J
LIST OF FIGURE K
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Objectives 4
1.3 Research Questions 4
1.4 Research Contributions 4
1.5 Definition and Key Terms 5
1.6 Acronyms and Abbreviations 5
CHAPTER 2 LITERATURE REVIEW 6
2.1 Search strategy 6
2.2 Inclusion criteria 6
2.3 About the study design used 13
2.4 The Geographic Information System (GIS) data used 13
2.5 Dengue data used. 14
2.6 Data related to the knowledge, Attitude and Practice (KAP) towards dengue.. 14
2.7 Climate and Environment 15
2.8 Population data, Household number, Residential area, Natural water resources and Demographic. 15
2.9 The difference between this study and the preview studies reviewed. 16
CHAPTER 3 MATERIALS AND METHODS 17
3.1 Study design and setting 17
3.1.1 Primary data including: 17
3.1.1.1 Knowledge, Attitude and Practice (KAP) 17
3.1.1.2. The container index data is positive for larvae (CI) 19
3.1.2 Secondary data including: 22
3.2 Determining related factors in the Dengue infections Causation 22
3.3 Analysis data 23
3.3.1 The creation of a GIS model of dengue infection and risk assessment in Dili municipality 23
3.3.2 The study factors influencing of Dili municipality 25
3.4 Ethics Statements 28
CHAPTER 4 29
4.1 Related Factors in the Dengue Infection Causation for the Created GIS Model 29
4.1.1 Primary data 29
4.1.2 Secondary data 31
4.2 Related Factors in the Dengue Infection Causation for the Created GIS Model 34
4.3 Geographic Information System (GIS) Model of Dengue Infection and Risk Factors Assessment in Dili Municipality 36
4.3.1 Dengue infection risk assessment at a Municipality level 36
4.3.2 Dengue infection risk assessment at an administrative post (Subdistrict) level. 38
4.3.3 Dengue infection risk assessment at a village (Suco) level 38
4.4 Factors influencing of Dili Municipality 39
CHAPTER 5 41
DISCUSSION 41
CHAPTER 6 45
CONCLUSIONS 45
REFERENCES 46
REFERENCES 56
Appendix 57
Appendix 1 58
Appendix 2 59
Appendix 3 60
Appendix 4 61
Appendix 5 65
Appendix 6 70
Appendix 7 72
Appendix 8 93
Appendix 9 99
Appendix 10 102
BIOGRAPHY 103

LIST OF TABLE

Page
Table 1 Characteristic of studies on Geographic Information Systems (GIS) for dengue surveillance. 7
Table 2 Determining related factors for dengue infection risk assessed in Dili municipality 24
Table 3 The process of dividing every variable into three types 24
Table 4 Random data from 28 to 84 (Random between in Excel) in 6 administrative Post of Dili municipality 25
Table 5 Risk factors degree assessed in each administrative post 25
Table 6. Characteristics of study participants ($\mathrm{n}=389$ Housewives) 30
Table 7. Containers surveyed result in each administrative post level, Dili municipality 31
Table 8. The secondary data on dengue and risk factors assessed in Dili municipality at each administrative post (subdistric) 33
Table 9 Related factors in the Dengue infection causation and statistics for measuring Dengue patient number relation. 34
Table 10. Determining related factors for Dengue infection risk assessment in Dili Municipality. 35
Table 11. Dengue infection degree of risk at an administrative post (subdistrict) level. 38
Table 12. Regression Correlation Coefficient Analysis of factors related to dengueinfection in the Dili municipality ($\mathrm{n}=6$ administrative posts).40
Table 13. Mosquito larval surveys in containers in each of the six administrative postsin Dili Municipality.58

LIST OF FIGURE

Page
Figure 1 Review flow charts 6
Figure 2. Risk area in six administrative post of Dili municipality selected for the study 20
Figure 3. Geographic Information System (GIS) model of dengue infection with risk factors assessed in Dili municipality 37
Figure 4. Degrees of Dengue risk in villages 38

CHAPTER 1 INTRODUCTION

1.1 Background

Dengue is an acute arthropod virus infection transmitted mainly by the Aedes $s p$. mosquito and is the most common arbovirus disease globally, mainly occurring in the tropics and subtropical regions of the world [1]. According to the World Health Organization (WHO), dengue fever has an estimated burden of 390 million cases annually, approximately 2.5 billion people worldwide are at risk of contracting dengue fever by living in endemic areas, and there are 21,000 deaths per year [2]-[4].

With 16% of these infections, Africa is one of the most affected regions [5]. Further, in Latin American countries from 2010 to 2019, more than 16 million cases were reported across the Americas, and about 10 million cases, or approximately 62%, were reported only in Brazil [1], [6]. Additionally, in the WHO Southeast Asia Region (SEA), 1.3 billion people live in dengue-endemic areas in 10 countries, which accounts for more than half of the global burden. Further, five countries (India, Indonesia, Myanmar, Sri Lanka, and Thailand) are among the 30 most dengueendemic countries in the world [2], [7]. In Indonesia, an estimated 600,000 cases of dengue fever are reported each year, with approximately 180,000 resulting in hospitalization [8]. In India, the annual incidence of dengue fever is estimated to be around $7.5-32.5$ million, and it is one of the leading causes of hospitalization and death [9].

The worldwide spread of dengue is a complex issue that may be accelerated by several factors, such as climate change, the geographical, environmental, and sociodemographic conditions of the city, including the poor knowledge, attitude, and practice (KAP) of the population in dengue prevention and control, the expansion of the reach of its main vector (the Aedes mosquito), inefficient vector control, rapid and unplanned urbanization, the movement of people for trade, tourism, or because of natural disasters, and vulnerability in public health and vector control programs are all key factors in the occurrence of dengue [7], [10]-[14].

Timor-Leste is one of the countries in the Southeast Asia (SEA) Region [15], after separating from Indonesia in 1999, the first severe dengue outbreak was reported from January to May 2005, with a total of 1,067 reported cases and 39 deaths, with a case fatality rate (CFR) of 3.6% [16]. Further, in the last two and a half years, according to the Department of Communicable Disease Control (CDC), Ministry of Health (MoH) of Timor Leste, there were 1,451 reported cases of dengue infections and 10 deaths with a case fatality rate (CFR) of 0.7% in 2020; 901 cases and 11 deaths (CFR 1.2\%) in 2021; and 4,985 cases and 56 deaths (CFR 1.1\%) from January to May 2022 [17].

The majority of the cases lived in the most populous municipality of Timor Leste, Dili, the capital. It was the municipality that reported the highest number of dengue infections among the other 12 municipalities since the start of the outbreak, which was reported from January to May 2005 through 2022 and represented more than 50 percent of the national total number of cases each year [16], [18]. Further, the case fatality rate has increased annually in the capital city of Timor Leste and coincides with the limited health care capacity in the country and poor access to health care, and because of the COVID-19 pandemic [17]. Therefore, as the number of patients and
mortality rates continue to increase every year, dengue remains a major public health problem in Timor Leste, particularly in Dili, the capital city, which is a dengue endemic area, and it is more concerning to have an intervention seriously considered by studying and identifying dengue risk factors.

Geographic Information of Dengue cases in Timor Leste

Regarding dengue prevention and control in Timor Leste, it is implemented using the guidelines outlined in the Bi-regional Dengue Strategy (2008-2015) (WHO South-East Asia and Western Pacific regions) [19]. This involves a multi-pronged approach based on case management through early detection and diagnosis; vector control via spraying; source reduction activities in the community, including distributing larvicides, fumigating with malathion (A mosquito adulticide) in residential quarters, and mobilizing communities and volunteers to clean up water containers; and environmental education on prevention and surveillance [11], [20].

Dengue is mostly diagnosed based on clinical findings. While current guidelines recommend the use of rapid diagnostic tests (RDTs), they are not widely used. Further, the Ministry of Health of Timor Leste is leading the outbreak response activities in the field; the Community Health Center (CHC) is handling the treatment of dengue patients and referral services; and other non-governmental organizations are also reported in the field, such as the World Health Organization (WHO), Red Cross and Red Crescent Movement partners, and academia, which provide support and assistance by deploying volunteers and actively participating in the operation [18], [21]. However, even though many efforts have been established in Timor Leste, dengue remains a problem that draws attention from the public health sector, and globally, there is no specific antiviral treatment for the dengue virus, and the use of the vaccine recently introduced is limited [22]. Furthermore, in a global environment, both local and global change scenarios affect physical phenomena and health informatics issues, which change from personal to global in reach. Health records on outbreaks of tropical diseases and non-communicable diseases among all national and international health organizations still require new technological approaches to create prevention and control of care, and integrating multidisciplinary networks is still considered very important [23]-[29]. Timor Leste, which is localized in a tropical climate area with most tropical diseases reported, including dengue endemics [11], [16], [30], [31], certainly needs to adapt to the technological developments that are occurring at this time, particularly in the public health sector in vector control measures, including the vitally important study of the risk factors influencing dengue infection and making a strategy for effectively controlling dengue infection in Timor Leste, especially in the capital city.

Afterward, previously related to Geographic Information Systems (GIS), a spatial epidemiological study of dengue incidence in Timor Leste has identified positive associations between dengue incidence and temperature, precipitation, and demographic factors. However, there was little focus at the municipal administrative level as well as the administrative post (subdistrict) and village on identifying risk factors based on the severity of the dengue risk factors assessed [11]. Therefore, the aim of this study is to develop appropriate models for the identification of areas with the dengue risk factors assessed in Dili municipality by applying the Geographic Information System (GIS) as a tool for a spatial data collection system with integrated attribute data or non-spatial data [32].

The data is stored in a database and can be modified and analyzed by overanalyzing, which is a technique for loading information. Aside from that, geographic information systems (GIS) are an effective tool for presenting disease incidence, disease factor analysis, and designating risk areas for dengue infection control and prevention [8], [33], particularly in the Dili municipality. In addition, correlated with the result of this study, the researcher is expected to assist the government's communicable disease control (CDC) department under the ministry of health (MoH) in Timor Leste in formulating policies, strategies, and dengue surveillance plans and can contribute to efficient epidemic control and prevention in an area.

1.2 Objectives

1.2.1 To identify specific dengue infection risk factors in Dili, Timor Leste.
1.2.2 To apply the Geographic Information System (GIS) as a tool for a spatial data collection system with integrated attribute data or non-spatial data to study factors influencing Dili municipality (Capital).

1.3 Research Questions

1.3.1 What kind of data will be used in the research and who are the key people or related organizations that will be contacted?
1.3.2 What are the determining related factors in the dengue infection's causation?
1.3.3 How do we collect and manage the data?
1.3.4 How do we create a Geographic Information System (GIS) model of dengue infection and risk factor assessment in the study area?
1.3.5 How do we determine the most dengue infection-influencing factor in the study area?

1.4 Research Contributions

1.4.1 The contribution to the Dili municipality selected in this study under the Ministry of Health in Timor Leste is mainly to the Department of Infectious Disease Control (CDC), particularly the Health Work of Dili municipality (HWDM/SSMD), Timor Leste, to assist policymakers with more effective strategies for dengue infection prevention and control in each area identified.
1.4.2 Other sectors in the study area related to the risk factors identified which contributed to increasing the number of dengue cases, such as geographical conditions, environmental factors, sociodemographic conditions, unplanned urbanization, poor knowledge, attitude, and practice of the population in dengue prevention and control, and so on (under the Ministry of State Administration, Ministry of Agriculture, Ministry of Public Works, and ministry of education).
1.4.3 Local power units (schools, churches, markets, airports, ports, and tourism sections) serve as warnings and information for visitors and the community in general to be careful in areas that have determined risk factors for dengue infection, as well as areas that are highly at risk of suffering from dengue disease, to contribute to the reduction of its spread.
1.4.4 Local authorities on how to organize their community in collaboration to prevent and control dengue infections in their area, respectively.
1.4.5 Other researchers as well as the reference to their further study and can be implemented in other areas.

1.5 Definition and Key Terms

Geographic information systems (GIS), is a computer-based system, consisting of hardware and software that facilitate the capture, retrieve, management, manipulation, analysis, and display the spatially geo-referenced data (Aronoff, 1989) [34], [35].

Spatial analysis is "In broad terms one might define spatial analysis as the quantitative study of phenomena that are located in space." (Bailey et al. 1995, p. 7)
"A general ability to manipulate spatial data into different forms and extract additional meaning as a result." (Bailey 1994, p. 15)

1.6 Acronyms and Abbreviations

QGIS/GIS: Quantum Geographic Information System
WHO/PAHO: World Health Organization / Pan American Health Organization SEA: Southeast Asia Region
CFR: Case Fatality Rate
DENV (1,2,3 \& 4): Dengue Virus
COVID-19: Corona Virus Disease 2019.
RDT: Rapid Diagnostic Test
CDC: Communicable Disease Control
MoH.TL: The Ministry of Health of Timor Leste
KAP: Knowledge, Attitude, and Practice
DF: Dengue Fiver
DHF: Dengue Hemorrhagic Fiver
DSS: Dengue Shock Syndrome
SPSS: Statistical Program for Social Science
ANN: Average Nearest Neighbor

CHAPTER 2

LITERATURE REVIEW

In order to employ concepts, theories, analysis types, and innovations that are most suitable for this research about the related factors in dengue infection causation. In this study, we obtained the literature from several previews study reviews and fallow the strategy searching as follows:

2.1 Search strategy

This review consisted of an online literature search published in English using Google scholar, PubMed/ MEDLINE (https://pubmed.ncbi.nlm.nih.gov), and BMC (https://www.biomedcentral.com). A searchable database with combinations of key terms "Geographic Information System", "GIS", Risk factors, surveillance, spatial, Dengue infections (DF, DHF, and DSS) is contained in the title and abstract. The Journal article chosen is publications during 2017-2021. Article journal filtering is done by looking at the title, keywords, and abstract as appropriate, next is the full text which met the inclusion criteria included in the analysis.

2.2 Inclusion criteria

The criteria include the following:

1. The article should explain the use of GIS in Dengue infection risk assessment and surveillance
2. Articles should use epidemiological study designs such as spatial, temporal, and descriptive studies.
3. Should use the data of dengue fever (DF), dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS).
4. Research took only research published during the years 2017-2021

Figure 1 Review flow charts
The initial search of Google Scholar, PubMed (https://pubmed.ncbi.nlm.nih.gov), and BMC (https://www.biomedcentral.com) resulted in 438 articles. Review titles and keywords that do not include 365 articles, leaving 73 articles. Then they were identified based on full text produced in 57 articles. Of these, 35 articles met the inclusion criteria based on relevant abstracts. The methodology and the main findings of 35 articles are summarized in (Table 1).
Table 1 Characteristic of studies on Geographic Information Systems (GIS) for dengue surveillance

increasing disease transmission.

| No. | Autor (s) | Study area | Model used | Findings |
| :--- | :---: | :---: | :---: | :---: | :---: |

2.3 About the study design used

Almost all of the studies used retrospective analytic studies, but there was one study that used a prospective cohort study [36]. Most studies use secondary data of dengue cases with periods ranging from 5 months to 16 years. There are ten sets of data on dengue cases used for more than five years and the remaining 25 studies use the data for less than five years. GIS was used in the review of these literature reviews, among which the Point Density method, Empirical Bayesian Kriging method, Moran's I, Kilduff's, Average Nearest neighbor (ANN), Spatiotemporal cluster analysis, Ecological niche models, LISA brittle-Ord, Predictive models (MAXENT), Person's Correlations statistic with SPSS program, and hot spots. The modeling and the risk map of dengue represented the dengue fever cases. In addition to the frequency distribution, it is also seen by age group, population, gender, demographics, climate, and environment.

2.4 The Geographic Information System (GIS) data used

A Geographic Information System (GIS) is a computer-based system that enables the capture, retrieval, management, manipulation, analysis, and display of spatially geo-referenced data [65]. GIS integrates spatial and other kinds of information within a single system; it offers a consistent framework for analyzing geographical data. GIS makes connections between activities based on geographic proximity. Looking at data geographically can often suggest new insights and explanations, and the linkages between spatial and non-spatial data are often unrecognized without GIS [66].

Regarding the preview study, it shows that almost all of the studies are conducted using spatial data. According to research by Liu et al.,(2017) global spatial autocorrelation analysis and local indicators of spatial association (LISA) were used to analyze the overall and localized spatial clustering patterns of dengue incidence in 2005-2017 using ArcGIS (version 10.3) [38]. In research by Gananalatha et al.,(2017) the temporal and spatial outbreak of geographical aspects of the dengue epidemic in the Matara district, Indonesia were analyzed using Arc GIS 10.1, which is used for software mapping [12]. The study by Wangdi et al., (2018) In Timor Leste, where Arc GIS software was used to generate maps of the spatial distribution of the posterior means of the unstructured and structured random effects, it was identified that dengue in Timor Leste has positive associations with temperature, precipitation, and demographic factors [11]. Furthermore, a descriptive study was carried out by Sulistyawati et al.,(2019), in Sleman district, Indonesia using a GIS program with spatial data to provide a spatial-temporal mapping of dengue cases, the data was grounded in subdistrict level mapping of dengue using GIS and was helpful in understanding the disease presence and dynamic disease over time [39], Additionally, according to the research by Arifin et al., (2018), they used Geographic Information System modeling through spatial analysis to obtain the pattern of dengue hemorrhagic fever (DHF) transmission and identify the spread (transmission) of dengue hemorrhagic fever [40].

2.5 Dengue data used

Almost all studies used secondary data of dengue cases from related organizations as well as daily, monthly, and annual reports of diagnosed dengue cases collected from the Dengue Disease Surveillance database of the city health office, and several studies used dengue data according to the severity of the dengue cases such as dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS) based on symptoms and laboratory results (number of hemoglobin, leukocyte, Thrombocyte, hematocrit, and rapid diagnostic tests (RDTs). The study by Faridah et al., (2021) used data collected from monthly reports of diagnosed dengue cases from 16 hospitals in Bandung, Indonesia. The reports were obtained from the Dengue Disease Surveillance database of the city health office for the period January 2014 to December 2016 and used confirmed dengue hemorrhagic fever (DHF) cases only [8].

The study by Respati et al.,(2017) showed that the study used secondary data of dengue cases from 2009 to 2014. Dengue Hemorrhagic Fever (DHF) cases were reported to the Bandung City District Health Office [43]. The study by Huang et al. (2018) showed that dengue fever (DF) has been classified as a notifiable infectious disease category 2 in Taiwan, and suspected cases must be reported within 24 hours of clinical diagnosis. Suspected dengue cases are confirmed by the Taiwan Centers for Disease Control (CDC) based on the positive results of a serological test (IgM Enzyme-Linked Immunosorbent Assay), nucleotide sequence, or viral isolation [44].

The study of Ganguly et al.,(2018) used dengue data according to seroepidemiologic secondary data. The data used for the study has been collected from the Health Department of the Kolkata Municipal Corporation (KMC) for the calendaryears of 2014 and 2015 in respect of the city of Kolkata [45]. In China, the research by Liu et al., used the dengue data by the Chinese Center for Disease Control and Prevention and extracted identified daily Dengue Fever (DF) data from the China Information System for Disease Control and Prevention from 2005 to 2017. The collected information about individual dengue cases included the onset and confirmation date, case category, onset location, clinically diagnosed and laboratory confirmed cases. Based on the source of infection, imported cases were defined as cases that were more likely from outside of the resident area in the 15 days before illness onset and were excluded [38]. The research by Wangdi et al., (2018) in TimorLeste by using the secondary data of dengue cases was provided by the Ministry of Health, Timor-Leste and consisted of patient records containing 4546 notifications, classified as Dengue Fever (DF), suspected dengue cases, Dengue Hemorrhagic Fever (DHF), and Dengue Shock Syndrome (DSS) from January 2005 to December 2013. However, after data cleaning, only 3206 cases were matched and assigned to current recognized villages of residence (The spatial unit of analysis) [11].

2.6 Data related to the knowledge, Attitude and Practice (KAP) towards dengue

Regarding dengue prevention and control, knowledge, attitude, and practice (KAP) of the population is one of the key factors in the occurrence of dengue infection, which is a disease caused by a virus transmitted by Aedes mosquitoes, especially $A e$. aegypti. Thus, the population and source of the Aedes mosquito are closely related to this disease. In accordance with the significantly increased dengue incidence in Ace Province, a cross-sectional study by Harapan et al., (2018) reported that, out of 609
participants, 55% had poor knowledge regarding dengue and 68% had poor attitudes and poor dengue preventive practices [14]. Further Despite the rapid spread of DENV in Nepal, Dhimal et al., (2014) discovered that 88 percent of 589 individuals interviewed had poor knowledge of Dengue Fever (DF) and 63 percent had poor practices in dengue prevention and control, despite 83% having a positive attitude [67]. And In Jamaica, a cross-sectional study by Alobuia et al., (2015) found that, out of 361 participants, 87% had poor knowledge of dengue prevention and control and 78% had poor practice; however, 78% had a good attitude, confirming that a good KAP in dengue prevention and control is necessary to decrease dengue infection [68].

Therefore, the knowledge, attitude, and practice of the population in dengue prevention and control in an area are considered important dengue risk factors to discuss.

2.7 Climate and Environment

Almost all of the studies link the spread of dengue infection with climate conditions. According to research by Gananalatha et al., (2017) in the Matara District, Sri Lanka, the high dengue vector distribution within three years occurred primarily during the rainy season [12]. In Timor Leste, dengue cases were also positively associated with temperature and rainfall [11]. However, for the area in Samut Songkhram, Thailand, climatic factors studied are not associated with dengue because this area has a proper drainage system [32]. and then Containers are one of the main risk factors in the contribution to the existence of hosts, viruses, and vectors and the transmission of dengue infection in an area, and it is caused by the environmental conditions that are favorable for vector breeding sites. It is mostly found in areas close to human habitation. According to a study by Kahamba et al., (2020) in Tanzania, a potential breeding ground (containers) for Aedes in several cities is containers used for daily life, such as drums, jars, bathtubs, and buckets, including used tires, discarded containers, and flowerpots; coconut harvesting; the associated tree-holes; and so on. And the survey results showed that of 1515 and 1933 aquatic habitats examined in the dry and rainy seasons, 286 and 283 contained Aedes immatures (container index, CI: 18.9-14.6\%). In the 2315 and 2832 houses visited in the dry and rainy seasons, 114 and 186 houses had at least one Aedes-positive habitat, respectively (House index, HI: 4.9-6.6\%) [37].

2.8 Population data, Household number, Residential area, Natural water resources and Demographic

To illustrate the risk of dengue infection, most studies use population distribution, density, household number, and data on elevation, temperature, average humidity, and environment. Secondary data was taken primarily from government health agencies such as health departments and community health centers. Several studies have found that sociodemographic factors such as meteorological and environmental factors (temperature, land cover, natural water resources and annual average precipitation), demographic structure, and urbanization all have an impact on dengue virus spread [38], [69], [70]. Rapid population growth creates densely populated areas, including high household numbers and large residential areas, increasing the potential for dengue virus transmission [32], [39]. It also supported research by Arifin et al.,
(2018) who stated that the dengue distribution is influenced by unplanned settlements such as the number of buildings, population density, land-use patterns of settlement, and population mobility, which are difficult to predict [40].

2.9 The difference between this study and the preview studies reviewed.

This study is different from those previous studies above, as can be seen from the subject. Aside from that, what distinguishes this study from others is the method of data collection; in this study, both primary and secondary data will be used, and then the dengue data used in this study will be collected from the Department of Health Information Statistics (HIS/EIS) under the Ministry of Health, Timor Leste as a whole, which is not based on the severity of the disease (DF, DHS, or DSS), as well as the gender and age group of the patients.

Then, the housewives will be the respondents in this study for knowledge, attitude, and practice (KAP) in dengue prevention and control because one of the factors associated with living in a dengue hot spot household was occupation (being a domestic worker or housewife) [71]. Further, housewives spend more time at home than men, taking care of their kids and homes. Therefore, they bear a great deal of responsibility for having knowledge, attitude, and practice in dengue prevention and control; further, scores for these variables (knowledge, attitude, and practice) will be summed as well and considered one of the variables discussed in this study [72].

After determining the sample size (household number) for the survey, the data on container index (CI) positivity with mosquito larvae was collected. In this study, we just used the data from the container index (CI) with mosquito larvae as a variable [73], [74]. However, consider that larval density can be identified from the container index (CI), house index (HI), and Breteau index (BI) in an area performing vector control [37], [75], [76]. Further, there was no way to bring the survey results to the laboratory to identify the larvae according to the type of mosquito due to a lack of support funds.

In addition, regarding the dengue risk factors that have been identified based on the preliminary literature review related to this project, the data on dengue risk factors will be obtained from relevant organizations. The first step will be to analyze the correlation between dengue case numbers and the risk factors assessed before being input into the geographic information system (GIS) program database in order to demonstrate the areas for dengue risk factors assessed.

CHAPTER 3 MATERIALS AND METHODS

3.1 Study design and setting

A cross-sectional and observational study was conducted in the Dili municipality, which is located in the northern region of Timor Leste and has a surface area of 368.12 square kilometers (km^{2}), Dili had a total population of 277,279 in 6 administrative posts (subdistricts) and 32 villages [77]. The study was conducted at six administrative posts. In this study, we will use the primary and secondary data and divide them into two groups of variables: dependent variables and independent variables. Afterward the data were analyzed by Pearson correlation statistic model to analyze the significance correlations between dependent and independent variables, and, in addition, by applying the GIS model to show the area according to the severity of dengue risk factors assessed on the map, stepwise applying the multicollinearity statistic model to determine the dengue infection risk factor more influenced in Dili municipality, as follows:

3.1.1 Primary data including:

3.1.1.1 Knowledge, Attitude and Practice (KAP)

a. Sampling and sample size

So far, no data related to the KAP towards dengue in Dili has been available. Therefore, to calculate a representative sample size for the Dili population $(277,279)$ [77], [78] we assumed that more than 50% of participants would have poor KAP regarding dengue incidence in Timor Leste, which is the most reported in Dili municipality among twelve other municipalities, as well as one of the most important risk factors in the causation of increased dengue incidence in Dili municipality, therefore to analyze by using Pearson correlation statistic models in the SPSS program. With a 5\% margin of error and a 95\% confidence level, 384 participants (Housewives) were required to achieve the minimum recommended sample size.

Therefore, in this variable, we follow the process to collect the population and sample to distribute the questioners by applying the formula of (Krejcie \& Morgan) with a 5\% margin of error and a 95% confidence level [79], such as follows:

$\mathrm{N}=$ population size
$\mathrm{n}=$ sample size
$e=$ acceptable sampling error (0.05)
$\mathrm{P}=$ Proportion of population (0.5)
$\mathrm{X}^{2}=$ Chi-square (3.841)

$$
\mathrm{n}=\frac{3.841 \times 277,279 \times 0.5 \times 0.5}{(0.05)^{2} \times(277,279-1)+3.841 \times 0.5(1-0.5)}
$$

$\mathrm{n}=\sim 383$ Samples
Because this study will be conducted in each of the 6 administrative posts (subdistricts) at the Dili municipality where there are similar sociodemographic conditions [80], [81]. The number above will be divided into 6 such as:

$$
n=\frac{383}{6}
$$

$n=\sim 63.83333 \ldots$ (64)
Therefore, the minimum number of participants (housewives) from each study site was 64 . To reduce the study design effect and obtain more robust statistical power in this study, the percentage of total respondents will be increased by 10%; additionally, a minimum of 70 participants from each study site were required, for a total of 420 respondents [14].

Regarding knowledge, attitude, and practice (KAP) in dengue prevention and control, namely knowledge about symptoms and signs of dengue, and about DENV transmission, Attitude: defined as a respondent's opinions about dengue prevention, awareness, daily care, and socio-cultural perspective, Practice: defined as a respondent's practice towards dengue prevention, such as action taken to avoid dengue occurrence. This domain contains 30 items of "Yes/No" with "know and don't know" categories in each question. The medium of interview was in the Austronesian Language (Tetun / Austronesian) since it is the mother tongue of the respondents. Further, the questionnaire items were adopted from a previous study in Indonesia [14], Due to Timor Leste being a neighboring country and having a similar sociodemographic condition, furthermore, each item of the questionnaire was adopted with the protocol of dengue prevention and control in Timor Leste [19] and was evaluated and approved in the native language (Tetun / Austronesian) by two specialists in a research center under the National Health Institution (NHI/INS) of Timor Leste (Appendix 4 and 5.b.).

Those are 10 questions about knowledge; 10 questions about attitude; and 10 questions about practice (Appendix 4). Correct answers received one point; incorrect or no answers received zero points. The score was given based on good knowledge, attitude, and practice (KAP) and none for poor knowledge, attitude, and practice (KAP). Data from the knowledge, attitude, and practice (KAP) domains was summed into a percentage score to treat the variable as continuous data. And these adapted from previous studies were used to measure this domain [14], [82] by adopting Guttman scales [72] such as:

The number of choices $(\mathrm{C})=2$
The number of questions $(\mathrm{Q})=30$
The determination of scoring on the objective
The lowest $(\mathrm{L})=0$ (wrong or no answer)

The highest $(\mathrm{H})=1$ (correct answer)
The lowest score count $=(\mathrm{L} \times \mathrm{Q})=0 \times 30=0(0 \%)$
The highest score count $=(\mathrm{H} \times \mathrm{Q})=1 \times 30=30(100 \%)$
Range (R)=Maximum Score - Minimum Score
$\mathrm{R}=100 \%-0 \%=100 \%$
Category $(\mathrm{K})=2($ Good KAP and Poor KAP)
Interval (I) $=$ Range $(\mathrm{R}) \div$ Category (K)
Interval $(\mathrm{I})=100 \% \div 2=50 \%$
Scoring criteria=(H-I) $=100 \%-50 \%=50 \%$
The limit $=$ Good KAP: $>50 \%$ and Poor KAP: $\leq 50 \%$
In this variable, only the frequency number of poor KAP (Poor KAP: <50\%) in each of the six administrative posts will be analyzed in Pearson's correlation statistic model with the number of dengue cases by using the SPSS program.

Material needed:

1. Print out questionnaires on 4 pages for every volunteer.
2. The eraser-equipped pencils
3. A laptop or PC with an active internet connection (to input the data into the database)

b. Study instrument:

To facilitate the interviews, a set of validated and pretested questionnaires were evaluated and approved in the native language (Tetun / Austronesian) by two specialists in a research center under the National Health Institution (NHI/INS) of Timor Leste (Appendix 5.a - 5.b.), consisting questions related to Knowledge Attitude and Practice (KAP) regarding dengue fever prevention and control [14], [19] was used. Before the questionnaire was used in the study, it was tested for internal consistency among 40 participants in two administrative posts (Dom Aleixo and Cristo Rei). The data from these participants were not included in the final analysis. A minimum of Cronbach's Alpha of 0.7 was considered to reflect acceptable internal reliability [14], [83].

3.1.1.2. The container index data is positive for larvae (CI)

The discovery of containers as potential breeding sites for mosquitoes, including Aedes sp. provides a chance for an increase in dengue cases [73], [74]. Therefore, used this data collection conduct during rainy season in Timor Leste (NovemberFebruary) [84], [85] for container survey, all artificial indoor and outdoor containers [37], [75], [86]. Every house was inspected to determine the presence or absence of mosquito larvae.

The positions of the houses in the six administrative posts (sub-district) were selected randomly in each village (suco) at higher risk for mosquito breeding sites, such as the residences nearby the river, stream, and lakes. This is followed by the preview studies [37], [75], were mapped using a Digital Elevation Model (DEM) from USGS Earth Explorer. Also, the data, including river, stream, lake, and administrative post (subdistrict) names, as well as the potential area for mosquito breading sites and containers, were mapped and imported into Geographic Information Systems (GIS) software for further construction (Arc Map 10.8) (Figure 2).

Figure 2. Risk area in six administrative post of Dili municipality selected for the study.

In this variable, using the World Health Organization check list of recognized containers (WHO, 2003) [86], each inspected container was classified as either a recognized container or an unrecognized container (Appendix 1, Table 13). Furthermore, we follow the process to collect the population and sample to distribute the check list by applying the formula of Krejcie \& Morgan with a 5\% margin of error and a 95% confidence level [79], such as follows:

Population: 39,310 (Total Household in Dili municipality) [78]
Sample: $\mathrm{n}=\frac{\mathrm{X}^{2} \mathrm{NP}(1-\mathrm{P})}{\mathrm{e}^{2}(\mathrm{~N}-1)+\mathrm{X}^{2} \mathrm{P}(1-\mathrm{P})}$
Where:
$\mathrm{N}=$ Population size
$\mathrm{n}=$ Sample size
$\mathrm{e}=$ Acceptable sampling error (0.05)
$\mathrm{P}=$ Proportion of population (0.5)
$\mathrm{X}^{2}=$ Chi-square (3.841)

$$
\mathrm{n}=\frac{3.841 \times 39,310 \times 0.5 \times 0.5}{(0.05)^{2} \times(39,310-1)+3.841 \times 0.5 \times 0.5}
$$

$$
\mathrm{n}=\sim 380 \text { samples (households) }
$$

Because this study will be conducted in each of the 6 administrative posts (subdistricts) at the Dili municipality where there are similar sociodemographic conditions [80], [81]. The number above will be divided into 6 such as:

$$
\begin{array}{r}
n=\frac{380}{6} \\
\begin{array}{c}
n=63.33 \\
n=\sim 64
\end{array}
\end{array}
$$

Therefore, the minimum number of participants (households) from each study site was 64 households. Further, to reduce the study design effect and obtain more robust statistical power in this study, the percentage of total households will be increased by 10%; additionally, a minimum of 70 households from each study site were required, for a total of 420 households.

Material needed:

1. A flashlight will be used for dark-colored containers where mosquito larvae are harder to see,
2. The checklist has 1 page per household for every 70 households in each of the 6 administrative posts (subdistrict), with a total of 420 pages printed out,
3. The eraser-equipped pencils,
4. A laptop or PC with an active internet connection.

Processes:

1. An inspection of all potential artificial container-breeding sites of mosquitoes was performed in each household.
2. Every room of each household will be searched systematically for containers.
3. All artificial containers were inspected for the presence of mosquito larvae through gross examination with unaided eyes.
4. Fill out the checklist of container guidelines (WHO, 2003), (Appendix 1).
5. Input the data into the database.

For each type of container were computed using the following formula [86]:

$$
\mathbf{C I}=\frac{\text { Number of positive artificial containers }}{\text { Total number of Container inspected }} \times 100
$$

3.1.2 Secondary data including:

Collected from related organizations. The secondary data included the number of dengue infection patients from January, 2016 to August, 2022, and other data for analysis as follows:

1. The Health Statistic Information (HSI/EIS) department, Ministry of Health Timor Leste (MoH.TL), provided data on the number of dengue infection patients in each administrative post (subdistrict) of Dili municipality from January 2016 to August, 2022.
2. The data on total population and surface in each administrative post (subdistrict) of Dili municipality comes from the Dili municipality statistical office [87].
3. The Dili Municipal Statistical Office provides data on the number of households in each administrative post (subdistrict).
4. The spatial data on administration at the village and administrative post (subdistrict) levels in Dili municipality comes from the Department of Municipal Administration.
5. Under the Ministry of Public Works, the Department of Roads, Bridges, and Flood Control. The data includes: drainage areas.
6. The spatial data on land use in Dili Municipality comes from the application Google Earth Pro, Free Download (https://earth.google.com/web/search/). The data includes: Natural water resources and Residential areas.

3.2 Determining related factors in the Dengue infections Causation

Determining factors for the Dengue infection risk assessment in the areas of Dili municipality. The factors are as follows:
\square Independent variables;

1. The data of (Poor KAP: $\leq 50 \%$)
2. 9 The container index (CI)
3. The data of the household number
4. The data of residential areas $\left(\mathrm{km}^{2}\right)$
5. The data of improper drainages areas $\left(\mathrm{m}^{2}\right)$
6. The data of natural water resources $\left(\mathrm{m}^{2}\right)$
\square Dependent variable; The number of dengue cases (2016-2022).
According to Harapan et al., (2018), Kahamba et al., (2020), Ridha et al., (2022), Martini et al., (2019), Chaiphongpachara et al., (2017), and Id et al., (2021) research, it was also demonstrated that these factors were relevant to the increase in dengue outbreaks and vulnerability in each area [14], [32], [33], [37], [73], [74].

3.3 Analysis data

3.3.1 The creation of a GIS model of dengue infection and risk assessment in Dili municipality.

a) Analyzing all of the previously mentioned dengue infection risk factors in the Dili municipal areas (six administrative posts).

This research adopted Pearson's correlation Statistic to measure the relationship between 6 independent variables and their dependent variables, which was the number of dengue infection patients in Dili municipality from 2016 to August 2022 with the SPSS program. Afterwards, assessing the risk of the disease with the analyzed factors at a statistical significance of less than 5% (p-value < 0.05).

Where:

$$
\mathrm{r}=\frac{\sum(\mathrm{xi}-\overline{\mathrm{x}})(\mathrm{yi}-\overline{\mathrm{y}})}{\sqrt{\sum(\mathrm{xi}-\overline{\mathrm{x}})^{2} \sum(\mathrm{yi}-\overline{\mathrm{y}})^{2}}}
$$

$r=$ Pearson correlation coefficient
xi $=$ Variable samples
$\mathrm{yi}=\mathrm{y}$ variable samples
$\overline{\mathrm{x}}=$ mean of values in x variable
$\bar{y}=$ mean of values in y variable
b) After determining which of the independent variables (dengue risk factors) is significantly correlated with the dependent variable (dengue case number), fill in the variables' blank boxes below. Further, the weighted score (W) is the serial number of each variable according to the significance statistic correlated with the dependent variables (dengue case number), and then to determine the three types (Table 2) of every variable in the blank box below by using the process of formula frequency distribution, which will be the interval width equal to the range divided by the number of intervals. It was scored, adopting a preview study [32], on a scale ranging (fr) from 1-3 (Table 3).

Table 2 Determining related factors for dengue infection risk assessed in Dili municipality

Table 3 The process of dividing every variable into three types

c) Building the Geographic Information System models of the Dengue infection and disease risk assessment after analyzing the related factors in the dengue infection causation with the QGIS system. The process to determine the grade of risk factors assessed (Table 2)

$$
\text { Max. (Score): } 21+18+15+12+9+6+3=84
$$

Min. (Score): $7+6+5+4+3+2+1=28$

Using the Overlay Analysis of GIS to analyze the obtained scores and assess risks of the Dengue infection in each post administrative (subdistrict) of Dili municipality. Dividing risk degrees into four colors including, dark red, red, yellow, and green and setting the score level of the very high risk at ≥ 72, the level of the high risk at 58 71 , the level of the moderate risk at $44-57$, and the level of the low risk at ≤ 43 respectively (Table $4 \& 5$). To create a frequency distribution, the interval width equaled to range divided by the number of intervals. Afterwards, analyzing the Dengue infection risks at four administrative levels: Municipality, Administrative Post (Subdistrict), and village (Suco).

Table 4 Random data from 28 to 84 (Random between in Excel) in 6 administrative Post of Dili municipality.

Random data from 28 to 84 (Random Between)					
60	79	35	n	Number of Data	6
30	63	80	Max.	Maximum score data	80
			Min.	Minimum score data	30
		Range (R)	Max.-Min.	50	
		Class (C)	$1+(3.322 \times$ Log n)	4	
		Interval (I)	(R) $\div(\mathrm{C})$	14	

Table 5 Risk factors degree assessed in each administrative post

Class Interval (CI)	Risk degree $(f r)$	Color in the GIS Map
≤ 43	Low risk	
$44-57$	Moderate risk	
$58-71$	High risk	
≥ 72	Very high risk	

3.3.2 The study factors influencing of Dili municipality

Stepwise multiple regression was selected as the method for studying the dengue infection factors influencing the increase of dengue cases. First of all, we determined whether there was multicollinearity among the 6 gathered factors of independent variables. After that, we employed stepwise multiple regressions to analyze the independent factors at a p-value of 0.05 .

To find out how much influence the existing independent variables have on the dependent variable (Dengue) partially or simultaneously and what percentage of the influence of these independent variables we will conduct several hypothesis tests, namely the \mathbf{t} test, the \mathbf{F} test and how much is the value of \mathbf{R} square. simultaneous in this study, we use several formulas in the SPSS program that have been used in a previous study [32], such as follows:

- Primary data:

Hypothesis $1(\mathrm{H} 1)$: There is an effect of Poor KAP: $<50 \%$ (X1) on dengue cases (Y).

Hypothesis $2(\mathrm{H} 2)$: There is an effect of Container Index (CI) with positive larvae (X2) on dengue cases (Y).

Hypothesis 3 (H3): There is an effect of Poor KAP: $<50 \%$ (X1) and CI (X2) simultaneously on dengue cases (Y).

With level of confidence is $95 \%, \alpha=0.05$.
The decision-making basis:
a) t-test

1. If the p -value is less than 0.05 or the \mathbf{t}-test more than the \mathbf{t}-table (Appendix 2), variable X has an effect on variable Y .
2. If the p -value is more than 0.05 or the \mathbf{t}-test is less than the \mathbf{t}-table (Appendix 2), then there is no effect of variable X on variable Y.

The Formula to Calculate \boldsymbol{t} table as follows:

Where:

$$
\mathbf{t} \text { table }=\mathbf{t}\left(\frac{\alpha}{2} ; \mathrm{n}-\mathrm{k}-1\right)=\mathbf{t}\left(\frac{0.05}{2} ; 6-2-1\right), \mathbf{t} \text { table }
$$

$$
=0.025 ; 3(\text { Appendix } 2)=3.162
$$

$\alpha=0.05$ (confidence value)
$\mathrm{n}=$ Total sampel (6 administratives post)
$\mathrm{k}=$ total variable $\mathrm{X}(\mathrm{X} 1$ and X 2$)$
b) $\quad \mathbf{F}$ test

1. If the p -value is less than 0.05 and the F test is less than the F table, the hypothesis is rejected. There were two variables (X1 and X2) that simultaneously affected the variable Y.
2. If the p -value is more than 0.05 and the F test is more than F table. There was no effect of variables X1 and X2 on variable Y simultaneously. The formula to Calculate \mathbf{F} table as follows:

$$
\mathbf{F} \text { table }=\mathbf{F}(\mathrm{k} ; \mathrm{n}-\mathrm{k})=\mathbf{F}(2 ; 6-2)=\mathrm{F}(2 ; 6-2)=\mathbf{F} \text { table }
$$

$$
=2 ; 4(\text { Appendix } 3)=6.94
$$

Where:
$\mathrm{k}=$ total variable X (X1 and X2)
$\mathrm{n}=$ total sample (6 administratives post)

Hypothesis 3 (H3): There is an effect of the household number (X3) on dengue cases (Y).

Hypothesis $4(\mathrm{H} 4)$: There is an effect of residential areas $\left(\mathrm{km}^{2}\right)(\mathrm{X} 4)$ on dengue cases (Y).

Hypothesis 5 (H5): There is an effect of drainage areas with water stagnant (m²) (X5) on dengue cases (Y).

Hypothesis 6 (H6): There is an effect of natural water resources $\left(\mathrm{m}^{2}\right)$ on dengue cases (Y).

With level of confidence is $95 \%, \alpha=0.05$.
The decision-making basis:

c) t test

1. If the $\mathrm{p}-$ value $=<0.05$, or \mathbf{t} count $>\mathbf{t}$ table (Appendix 2), then there is an effect of variable X on variable Y .
2. If the p-value $=>0.05$, or \mathbf{t} count $<\mathbf{t}$ table (Appendix 2), then there is no effect of variable X on variable Y .
The Formula to Calculate t table as follows:
\mathbf{t} table $=\mathbf{t}\left(\frac{\alpha}{2} ; \mathrm{n}-\mathrm{k}-1\right)=\mathbf{t}\left(\frac{0.05}{2} ; 6-4-1\right), \mathbf{t}$ table $=0.025 ; 1($ Appendix 2$)$
Where:
$\alpha=0.05$ (confidence value)
$\mathrm{n}=$ Total sampel (6 administratives post)
$\mathrm{k}=$ total variable X (X3, X4, X5 and X6)
d) \mathbf{F} test
3. If the value of sig. <0.05, or \mathbf{F} count $<\mathbf{F}$ table, then there is an effect of variables ($\mathrm{X} 3, \mathrm{X} 4, \mathrm{X} 5$ and X 6) on variable (Y) simultaneously.
4. If the value of sig. >0.05, or \mathbf{F} count $>\mathbf{F}$ table, then there is no effect of variables (X3, X4, X5 and X6) on variable (Y) simultaneously.
The formula to Calculate \mathbf{F} table as follows:
\mathbf{F} table $=\mathbf{F}(\mathrm{k} ; \mathrm{n}-\mathrm{k})=\mathbf{F}(4 ; 6-2)=\mathrm{F}(4 ; 6-4)=\mathbf{F}$ table $=4 ; 2($ Appendix 3$)$
$=19.2$
Where:
$\mathrm{k}=$ total variable $\mathrm{X}(\mathrm{X} 3, \mathrm{X} 4, \mathrm{X} 5$ and X 6$)$
$\mathrm{n}=$ total sample (6 administratives post)

e) $\quad \mathbf{R}$ square

To determine the coefficients of \mathbf{R} square, just see the table of model summary in the SPSS program.

3.4 Ethics Statements

The primary data were analyzed anonymously, and individuals were coded with unique numeric identifiers. All housewives provided written informed consent or voluntarily accepted the offer from the investigator during these investigations. The study was approved by the Ethics Review Committee for research involving human subjects at Mahasarakham University, Thailand (approval number: 029-387/2023) and the National Health Institution in Timor-Leste. Furthermore, the use of these secondary data on dengue cases was also approved by the chief of the department of Statistics and Health Information (SHI/EIS) under the Ministry of Health Timor Leste, and the data on improper drainage areas was approved by the director of the Ministry of Public Works' Department of Roads, Bridges, and Flood Control.

CHAPTER 4 RESULT

4.1 Related Factors in the Dengue Infection Causation for the Created GIS Model

4.1.1 Primary data

a. Knowledge, Attitude and Practice (KAP)

The internal consistency of the questionnaire was confirmed using 40 interviews with participants from two different study sites (Dom Aleixo and Cristo Rei) that have socio-demographic backgrounds similar to the main study participants [88], [89]. The Cronbach's Alpha coefficient of KAP domain was 0.843 and 0.846 , respectively. Details of questions used to assess the KAP domain and the distribution of correct responses among participants are presented in Additional files (Appendix 6.a and 6.b) respectively.

- Study population characteristics

The data presented in this study was part of the Dili Municipality dengue study, and the characteristics of the research participants, in part, have been described elsewhere [14], [67], [68]. Briefly, for this specific study, 420 healthy housewives were surveyed, and $31(7.38 \%)$ were excluded from the analysis due to missing information. A total of 389 (92.61 \%) inhabitants, who provided data for all sections of the questionnaire, were included in the final analysis (Appendix 7.a - 7. f).

Following the distribution of the questionnaire, 49.36% of the 389 total participants (housewives) had good knowledge, attitude, and practice (KAP), with a score total greater than 50 percent (> 50%). Further, 50.64% had poor knowledge, attitude, and practice (KAP), with a score below or equal 50 percent ($\leq 50 \%$) [72], regarding dengue prevention and control. From the 49.36% good (KAP) respondents, there were $44(11.31 \%)$ respondents found in the Atauro administrative post, followed by the Metinaro administrative post with a total of 36 (9.25\%) respondents and the Nain Feto administrative post with a total of 33 (8.48\%) respondents; further, the Vera Cruz administrative post presented 33 (8.48%) respondents, the Cristo Rei administrative post presented $25(6.43 \%)$ respondents, and the Dom Aleixo administrative post presented $21(5.40 \%)$ (Table 6 \& Appendix 7.a - 7.f).

Furthermore, from the 50.64% poor (KAP) respondents, the most high-poor (KAP) was found in Dom Aleixo's administrative post with 49 (12.60%) respondents, followed by Cristo Rei's administrative post with $43(11.05 \%)$ respondents, further in Vera Cruz's administrative post with 33 (8.48%) respondents, Nain Feto's administrative post with $31(7.97 \%)$ respondents, Metinaro's administrative post with $25(6.43 \%)$ respondents, and Atauro's administrative post with 16 (4.11 \%)(Table 6 \& Appendix 7.a-7.f).

Table 6. Characteristics of study participants ($\mathbf{n}=389$ Housewives)

Administrative Post	Respondent (Housewives)	Good KAP	$\%$	Poor KAP	$\%$
Dom Aleixo	70	21	5.40	49	12.60
Cristo rei	68	25	6.43	43	11.05
Vera Cruz	66	33	8.48	33	8.48
Nain Feto	64	33	8.48	31	7.97
Metinaro	61	36	9.25	25	6.43
Atauro	60	44	11.31	16	4.11
Total	389	192	49.36	197	50.64

b. Containers surveyed with positive mosquito larvae (CI)

Briefly, for this specific study, 420 households were surveyed, and 39 (9.28\%) were excluded from the analysis due to missing information. Further, mosquito larvae were found in 195 (51.18%) of 381 houses artificial containers. 752 (44.29%) of the 1,698 containers of water contain mosquito larvae (Table 7). In Dili municipality, most of the population uses wells and PAM (Abbreviation in Indonesian Language) water provided by the government as water sources. Based on the results of the survey in six administrative posts (sub-districts), buckets are the most commonly used container, but the most positive container was concrete water storage tanks for bathrooms (Appendix 8.1.-8.6.).

Dom Aleixo's administrative posts have two types of water sources: wells and lakes. with nine types of recognized containers and three types of artificial, unrecognized containers examined. Most of the types of containers commonly found are buckets, but most of the larvae-positive containers found were concrete water storage tanks for bathrooms (Appendix 8.1.), and most of the population in the Cristo Rei administrative post used wells and tap water as a source of water. Buckets are the most commonly used containers, followed by concrete water storage tanks for bathrooms (Appendix 8.2.). Concrete water storage tanks for bathrooms are the most larvae-infested containers. Furthermore, most of the population in the Vera Cruz administrative post used PAM water provided by the government and tap water as a source of water. Buckets are the most commonly used containers, followed by concrete water storage tanks for bathrooms. Concrete water storage tanks for bathrooms are the most larvae-infested containers (Appendix 8.3.). However, in Nain Feto's administrative post, most of the population used wells and PAM water provided by the government as a source of water. Buckets are the most commonly used containers, followed by concrete water storage tanks for bathrooms. Concrete water storage tanks for bathrooms are the most larvae-infested containers (Appendix 8.4.). Most of the population in the Metinaro Administrative Post used wells and tap water as sources of water (Appendix 8.5.). Buckets are the most commonly used containers, followed by concrete water storage tanks for bathrooms. While the types of containers that have the most larvae are concrete water storage tanks for bathrooms, most of the population in the Atauro Administrative Post uses wells and tap water as a source of water. Buckets are the most commonly used containers, followed by concrete water storage tanks for bathrooms (Appendix 8.6.). Concrete water storage tanks for
bathrooms are the most larvae-infested containers. Privasy out of the 1,698 containers examined, 400 were discovered in Dom Aleixo, 246 in Cristo Rei, 281 in Vera Cruz, 287 in Nain Feto, 265 in Metinaro, and 219 in Atauro's administrative post (Table 7).

With 195 out of 381 households having artificial containers positive for mosquito larvae. Furthermore, regarding to the formula measured mosquito larvae density (Methodology section) from the $752(44.29 \%$) positive container index with mosquito larvae, there was in Dom Aleixo's admirative post has the highest Container Index (CI) with 17.02 \%, followed by Cristo Rei administrative post with 8.66 \%, Vera Cruz 8.42%, Nain feto administrative post 4.95% Metinaro administrative post 2.71% and Atauro Administrative post presented 2.53% of Container index (Table 7).

Table 7. Containers surveyed result in each administrative post level, Dili municipality.

Administrative Post (Sub- districts) $\mathrm{n}=6$	House Inspected	House found with mosquito larvae	Container Inspected	Positive Container Inspected	Container Index (CI)
Dom Aleixo	64	41	400	289	17.02%
Cristo Rei	64	35	246	147	8.66%
Vera Cruz	64	35	281	143	8.42%
Nain Feto	63	33	287	84	4.95%
Metinaro	63	28	265	46	2.71%
Atauro	63	23	219	43	2.53%
Total	381	195	1698	752	44.29%

4.1.2 Secondary data

Besides the primary data, secondary data were obtained from relevant organizations as part of the Dili municipality dengue study, and it was considered that those were the risk factors that contributed to increased dengue incidence in an area, in part as described elsewhere [32], [38], [40].

The five variables of secondary data obtained from relevant organizations in Dili municipality (Table 8) were dengue cases from 2016 to 2022, and 3,522 (52.1%) of the total 6,761 dengue cases were reported in Dom Aleixo administrative post, and five other administrative posts reported less than half of the total 6,761 dengue cases reported. a while according to the incidence rate per 1000 population there was Metinaro administrative post was most reported with 34.1 cases per 1000 population compare with five other atministrative post.

Regarding the area of housing, the largest residential area was in Dom Aleixo administrative post, with $17.5 \mathrm{~km}^{2}(36.2 \%)$ of the total $48.3 \mathrm{~km}^{2}$ residential area, and the next largest was in Cristo Rei administrative post, with $15.1 \mathrm{~km}^{2}$ (31.3%) of the total $48.3 \mathrm{~km}^{2}$ residential area. And fallowed by four other administrative posts such as Vera Cruz administrative post with $6.5 \mathrm{~km}^{2}(13.5 \%)$, Nain Feto administrative post with $2.6 \mathrm{~km}^{2}$ (5.4%), Metinaro administrative post with $4.4 \mathrm{~km}^{2}$ (9.1%), and Atauro
administrative post with $2.2 \mathrm{~km}^{2}(4.6 \%)$ of the total $48.3 \mathrm{~km}^{2}$ residential area (Table 8) in Dili municipality.

The household number most obtained was in Dom Aleixo administrative post, with $17,499(41.7 \%)$ of the total 39,310 households, followed by Cristo Rei administrative post with 8,149 (24.5%) of the total households in Dili municipality, and less than one-tenth of the households in four other administrative posts (Table 8).

The Natural water resources in this study include rivers, streams that do not have seasons, and lakes that exist in each of the six administrative posts; thus, the Dom Aleixo administrative post had the largest reported area with $3.7 \mathrm{~km}^{2}(45.6 \%)$ of the total $8.2 \mathrm{~km}^{2}$, followed by the Cristo Rei administrative post with $3.1 \mathrm{~km}^{2}(38 \%)$, the Vera Cruz administrative post with $1.1 \mathrm{~km}^{2}$ (13.6\%), and the Nain Feto, Metinaro, and Atauro administrative posts with $0.1 \mathrm{~km}^{2}(1.2 \%)$ (Table 8).

Ditching on national roads, cross-administrative post roads (inter-sub-districts), and community roads in residential areas with poor drainage, such as the risk of puddles and puddles of water due to waste, and other areas still in the construction phase or lifted by the construction company many times, are included in this study's drainage areas. As a result of the data obtained, Dom Aleixo Administrative Post had the largest improper drainage area with $1,450,000 \mathrm{~m}^{2}(44.1 \%)$ of the total $3,286,692$ m^{2} followed by Cristo Rei Administrative Post with $1,215,020 \mathrm{~m}^{2}$ (37.0\%) of the total $3,286,692 \mathrm{~m}^{2}$. And fallowed by four other administrative posts, such as Vera Cruz administrative post with $411,672 \mathrm{~m}^{2}(12.5 \%)$, Nain Feto administrative post with $110,000 \mathrm{~m}^{2}(3.3 \%)$, Metinaro administrative post with $10,000 \mathrm{~m}^{2}(0.3 \%)$, and Atauro administrative posts with $90,000 \mathrm{~m}^{2}(2.7 \%)$ of the total $3,286,692 \mathrm{~m}^{2}$ improper drainage area in Dili Municipality (Table 8).

Based on all the secondary data obtained, it shows that the area with the most significant risk factor assessed in Dili municipality is the Dom Aleixo Administrative Post (subdistrict), where seven villages (Bairro Pite, Bebonuk, Comoro, Fatuhada, Madohi, Manleuana and Kampung Alor) are located, and the Cristo Rei Administrative Post, where eight villages (Ailok, Balibar, Becora, Bidau Santana, Camea, Culu Hun, Hera, and Meti Aut) are located, followed by four other administrative posts (sub-districts) such as Vera Cruz with seven villages (Caicoli, Colmera, Dare, Lahane Ocidental, Mascarenhas, Motael, and Vila Verde), Nain Feto with six villages (Acadiru Hun, Bemori, Bidau Lecidere, Gricenfor, Lahane Oriental, and Santa Cruz), and Atauro with five villages (Beloi, Biqueli, Macadade, Maquili, and Vila Maumeta) and In Metinaro's administrative post, there were three villages (Benunuc/Duyung, Mantelolao, and Sabuli) [80].

[^0]
4.2 Related Factors in the Dengue Infection Causation for the Created GIS Model

As a result, we analyzed a total of six factors related to the disease's causation with the statistical analysis and employed Pearson's correlation coefficient to measure the relationship between independent and dependent variables. The result revealed that six of them were factors relating to the dengue infection outbreak in Dili municipality with a statistical significance of p-value < 0.05 , including the poor Knowledge, Attitude and Practice (KAP) of housewives regarding dengue prevention and control, the mosquito habitat survey such as the Container Index (CI) with positive mosquito larvae, the largeness of residential areas, the household number, the natural water resources, and improper drainage areas, as shown in (Table 9).

Table 9 Related factors in the Dengue infection causation and statistics for measuring Dengue patient number relation.

		Correlations					
		Poor KAP: (≤ 50 \%)	Contain er Index (CI)	Househo ld Number	Residenti al Area/km ${ }^{2}$	Natural Water resourc es (km^{2})	Improp er Draina ge area (m^{2})
Dengue Case	Pearson Correlation Sig. (2tailed) N (Administr ative post)	.873*	.975**	988**	.847*	.858*	.864*
		0.023	0.001	0.000	0.033	0.029	0.026
			6		6	6	6

*. Correlation is significant at the 0.05 level (2-tailed).
**. Correlation is significant at the 0.01 level (2 -tailed).
The number of dengue infection patients was the most important factor causing the spread of the disease. As a result, the researcher analyzed the number of dengue infection patients along with the other six-factors for the created Geographic Information System (GIS) model. Afterwards, seven factors were scored by an adopted preview study with five specialists [32] on a scale ranging from 1-3 for an overlay analysis of Geographic Information System (GIS) as shown in (Table 10).

Table 10. Determining related factors for Dengue infection risk assessment in Dili Municipality.

No.	Variables	Type	Weighted score (W)	Score (S)	Total Score (W x S)
1					

4.3 Geographic Information System (GIS) Model of Dengue Infection and Risk Factors Assessment in Dili Municipality.

4.3.1 Dengue infection risk assessment at a Municipality level

According to the Geographic Information System (GIS) model of dengue infection created with ArcGIS and Overlay Analysis based on related factors such as poor Knowledge, Attitude and Practice (KAP) of housewives regarding dengue prevention and control, mosquito habitat survey such as the Container Index (CI) with positive mosquito larvae, the number of dengue infection patients per thousand inhabitants of each of the six administrative posts (subdistricts), the household number, the largeness of the Residential area, Natural water resources, and Improper drainage areas, as shown in (Fig. 3).

The risk factor assessment in Dili municipality, with a total area of 368.12 square kilometers (km^{2}), was divided into four degrees: very high-risk areas; high-risk areas; moderate-risk areas; low-risk areas, it was found that the very high-risk areas covered 33.12 square kilometers $\left(\mathrm{km}^{2}\right)$, equivalent to 9% of the total areas, and the high-risk areas covered 65.33 square kilometers $\left(\mathrm{km}^{2}\right)$ or 17.75% of the total areas. The moderate-risk areas covered 37.92 square kilometers (km^{2}) or 10.30% of the total area, and the low-risk areas covered 231.75 square kilometers (km^{2}) or 62.96% of the total areas.

Figure 3. Geographic Information System (GIS) model of dengue infection with risk factors assessed in Dili municipality.

4.3.2 Dengue infection risk assessment at an administrative post (Subdistrict) level.

According to the results of dengue infection risk assessment at four degrees in six administrative posts (subdistricts) as shown in the (Table 11), it was found that Dom Aleixo Administrative Post, Dili municipality was the very high-risk area. The highrisk area included Cristo Rei Administrative post (subdistrict). The moderate risk area was Vera Cruz and Nain Feto Administrative posts (subdistrict). The low-risk areas included two Administrative Posts (subdistricts), namely: Metinaro and Atauro administrative posts (Subdistricts).

Table 11. Dengue infection degree of risk at an administrative post (subdistrict) level.

No.	Administrative post (subdistrict)	Point	Degree of Risk
1	Dom Aleixo	84	Very High
2	Cristo Rei	61	High
3	Vera- Cruz	57	Moderate
4	Nain Feto	44	Moderate
5	Metinaro	42	Low
6	Atauro	28	Low

4.3.3 Dengue infection risk assessment at a village (Suco) level

The results of the dengue infection risk assessment at four degrees in 32 villages of Dili Municipality showed that seven villages were at very high risk, where residents reside in Dom Aleixo Administrative Post (Bairro Pite, Bebonuk, Comoro, Fatuhada, Kampung Alor, Madohi, and Manleuana); eight villages were at high risk, where residents reside in Cristo Rei Administrative Post (Ailok, Balibar, Becora, Bidau Santana, Camea, Culu Hun, Hera, and Meti Aut); and thirteen villages were at moderate risk, where residents reside in Vera Cruz (Caicoli, Colmera, Dare, Lahane Ocidental, Mascarenhas, Motael, and Vila Verde) and in Nain Feto Administrative Posts (Acadiru Hun, Bemori, Bidau Lecidere, Gricenfor, Lahane Oriental, and Santa Cruz); and eight other villages were at low risk, where residents reside in Metinaro (Benunuc/Duyung, Mantelolao, and Sabuli) and Atauro administrative posts (Beloi, Biqueli, Macadade, Maquili, and Vila Maumeta) [80], as shown (Fig. 4).

Figure 4. Degrees of Dengue risk in villages

4.4 Factors influencing of Dili Municipality

According to an interpreted result of six independent variables of primary and secondary data from the multiple regression analysis, the major factor influencing the dengue infection patient number in the Dili municipality was household number, as shown in (Table 12). According to the multiple regression analysis, the variation between the household number and the dengue patient number was $97.7 \%\left(\mathrm{R}^{2}=\right.$ 0.977), and the coefficient B was 0.206 . It demonstrated that when other factors were controlled, an increase in the number of households in residential areas per km^{2} caused a 0.26% increase in dengue patient numbers. When taking coefficient (B) changed to beta into account, household number influenced the increase in the number of dengue patients $($ Beta $=0.988)$. In addition, according to the \mathbf{t} test of 12.899 or more than \mathbf{t} table 12.71 (Methodology section secondary data Hypothesis 3) [91], household numbers were related to dengue patient numbers, showing a statistical significance of $\mathrm{p}<0.000$. Household numbers, therefore, could explain the variation in dengue patient numbers. And according to the \mathbf{F}-test of 166.373 , or more than \mathbf{F} table 19.2 [92], household numbers were related to dengue patient numbers, showing a statistical significance of $p<0.000$. Household numbers, therefore, could explain the variation in dengue patient numbers.

Table 12. Regression Correlation Coefficient Analysis of factors related to dengue infection in the Dili municipality ($\mathrm{n}=6$ administrative posts)

Step	Predictor	R	R^{2}	$\begin{gathered} \mathrm{R}^{2} \\ \text { Change } \end{gathered}$	F				
1	Container	.975a	0.951	0.951	77.95				
	Index (CI)								
2	Household Number	0.988	0.977	0.977	166.373				
3	Poor (KAP)	.873a	0.762	0.762	12.839				
4	Improper	.864a	0.747	0.747	11.798				
	Drainage area (m^{2})								
5	Natural Water	.858a	0.736	0.736	11.127				
	resources (km^{2})				10.194				
6	Residential	.847a	- 0.718	0.718					
	Area (km²)		$\square 0.718$						
					t (test)	p-value			
Step	Predictor	B	Error	Beta					
1	Container	225.641	25.557	0.975	8.829	0.001			
	Index (CI)								
2	Household	0.206	0.016	0.988	12.899	0.000			
	Number								
3	Poor (KAP)	91.704	25.593	0.873	3.583	0.023			
4	Improper	0.002	0.001	0.864	3.435	0.026			
	Drainage area (m^{2})								
5	Natural Water	658.595	197.436	0.858	3.336	0.029			
	resources (km^{2})								
6	Residential	160.699	50.333	0.847	3.193	0.033			
Area (km²)									

CHAPTER 5 DISCUSSION

This is the first study to explore the spatial analysis of the dengue risk factor in Dili, Timor-Leste. There was evidence of spatial clustering of dengue risk after accounting for the covariates, suggesting that variability in geographical and environmental conditions and control explain much of the spatial dynamics of the disease. This is similar to findings from studies in other parts of the world [8], [11], [13], [29], [37], [75]. Regarding dengue control and prevention in Timor Leste, many efforts have been made to establish it. However, dengue still remains a concern for the public health sector in Timor Leste, and this is in accordance with Indonesia's status as a dengue-endemic country that has made many efforts to establish it, but dengue still remains a serious public health problem [39].

Dili municipality, as well as the country's Capital, is considered an endemic area, with the most reported dengue cases annually among twelve other municipalities [16], [17]. As a result, in this study, we assessed the spatial analysis of dengue risk factors in Dili municipality using the Geographic Information Systems (GIS) model, Pearson's correlation coefficient, and the multiple regression analysis method to measure the statistical relationship of dengue in Dili municipality after analyzing all related factors and in accordance with the preview studies [14], [32], [37], [74], [93]. It was discovered that a total of six factors related to dengue incidence in Dili municipality, such as the Poor Knowledge Attitude and Practice (KAP) of housewives in dengue prevention and control, the container index (CI) survey, as an indicator of mosquito larvae density and breeding sites, Household numbers; residential areas; improper drainage areas; and natural water resources.

Based on our survey, poor Knowledge, Attitude, and Practice (KAP) of among housewives was associated with a significant number of dengue patients reported in each of the six administrative posts (subdistricts). This poor KAP in dengue prevention and control by housewives will lead to increased dengue incidence in an area. This is consistent with studies by Dhimal et al., (2014), Harapan et al., (2018), and Alobuia et al., (2015), which report that poor knowledge, attitude, and practice in dengue prevention and control are associated with the rapid expansion of dengue [14], [67], [68]. However, this is different from the study by Aziz et al., (2015), which reported that while their knowledge and practice of dengue were good, their attitudes toward the disease needed to be improved [94].

Mosquito larvae densities, or the Container Index (CI), had a significant association with the number of dengue patients reported in each administrative post (subdistrict) in this study; further, the behavior of respondents in each administrative post belonged to the poor category, and the majority of respondents were not routinely eliminating mosquito breeding sites. This is consistent with a study by Martini et al., (2019), Ridha, and Sulasmi (2022), which found that larval density (CI) was associated with Dengue Hemorrhagic Fever (DHF) incidence and that the behavior of respondents in the study area belonged to the category of poor, along with the majority of respondents not routinely doing the elimination of mosquito breeding sites [73], [74]. The potential breeding ground (containers) for mosquito larvae was found in containers used for daily life, such as drums, jars, bathtubs, and buckets, as well as used tires, discarded containers, and flowerpots. These are in accordance with the
preview study's findings [37], [86]. However, aside from the Container Index (CI), larvae density can be identified from the House Index (HI) and Breteau Index (BI) in an area performing vector control [75], [95].

The household number and residential areas were the major and important factors in the increase in Aedes aegypti breeding sites and numbers in this study. The household number with a significant association with dengue cases reported in each administrative post, including all over the Dili municipality, is consistent with studies by Chaiphongpachara et al., (2017) and Rodrigues et al., (2015), reporting that the higher the number of households and the larger the residential area, the more associated it was with an increase in Aedes aegypti breeding sites and dengue cases [32], [96].

The improper drainage area was a significant factor associated with the dengue cases reported in each administrative post (subdistrict) in Dili municipality, and according to the preliminary discussion with the Director of the Department of Roads, Bridges, and Flood Control under the Ministry of Public Work (MPW/MOP) in Timor Leste, the improper drainage areas included the ditching on national roads, crossadministrative post roads (inter-sub-districts), and community roads in residential areas with poor drainage, such as the risk of puddles of water due to waste, and other areas still in the construction phase or lifted by the construction company at many times. This is consistent with studies by Ali et al., (2022) and Charlesworth et al., (2022), which reported that improper drainage systems can contribute to mosquito breeding sites and dengue incidence [97], [98]. Further, a study in Pakistan suggests that aside from the higher drainage density areas, there were low-elevation areas with calm winds and minimum temperatures higher than normal, a rapid increase in unplanned urbanization, and low flow accumulation that favored dengue transmission [99]. However, this result differs from a study in Samut Songkhram, Thailand, by Chaiphongpachara et al., (2017), in which climatic factors studied, including dengue cases, were not associated with dengue because this area has a proper drainage system [32]. Furthermore, in this study, the findings did not include the association between dengue case number and elevation; precipitations included unplanned urbanization (population density) as important risk factors that contribute to increasing dengue transmission and patient number [39], [56], [61], [64], due to Dili municipality's small area and similar sociodemographic conditions; precipitations included elevation among six administrative posts (subdistricts) [80], [81]. However, compared to other municipalities, Dili had a higher population density and unplanned urbanization [77]. Therefore, we considered those to be important factors that favor dengue transmission in the Dili municipality.

The natural water resources were a significant factor associated with the dengue cases reported in each of the six administrative posts (subdistricts) in Dili municipality; there were streams, unseasonable rivers, and lakes nearby the residential area in each of the six administrative posts that contributed to the creation of the mosquito breeding site and dengue incidence. This is consistent with studies by Sheela et al., (2017) and Young et al., (2007), who reported that natural water bodies were creating habitats for variable species of mosquitoes, including Aedes sp., and probably increasing dengue infections in an area [69], [70].

Furthermore, as for the degrees of dengue infection risk in Dili municipality, it was discovered that the very high-risk area covered 9% of the total areas and the high-risk
area covered 17.75% of the total areas. These areas, aside from the more significant risk factors discussed above, including more reported dengue cases compared with four other administrative posts (subdistricts), were mainly urban, including more crowded places such as an international airport, churches, and touristic places (Sao Joa Paulo II and Areia Branca) [78]. This possibly caused a risk of dengue infection development for the tourists, in accordance with Thavara et al., (1996), who studied dengue vector mosquitoes at a tourist attraction [100].

Therefore, the government agencies in Dili municipality, particularly the health work direction in Dili municipality, including other sectors, should accordingly give a main focus to these areas in order to monitor the dengue outbreak among the population, including tourists from the area to other areas.

Further, there were four other administrative posts that were at moderate and low risk; dengue control and prevention are still essential. Because Dili is a small municipality, including the capital city of Timor Leste and the unique international airport function in Timor Leste, this can facilitate population dispersal [87]. This is in accordance with Altassan et al.'s (2019) report that, historically, Saudi Arabia was often the site of dengue outbreak reports; however, Dengue Fever (DF) transmission in Saudi Arabia is also affected by several unique factors, including large numbers of migrant workers and religious pilgrims from other dengue endemic areas across the Middle East, North Africa, and Asia [101].

There are a number of limitations to this study. First, concerning the primary data, such as the container survey, we only conducted it in one phase over a period of time, primarily during the rainy season (November-February) [85], and we did not bring the results to the laboratory to identify the type of mosquito larvae obtained. Secondly, dengue patient data was obtained solely on the basis of administrative post (sub-distinct) levels and not adjusted according to severity, age group, gender, or the average number of dengue patients per year, which are relationship measures, but in this study only the total number of dengue patients during the last seven years was used in the analysis of this study.

Furthermore, the strengths of this study were demonstrated after obtaining the results of applying the Geographic Information System (GIS) to dengue infection risk assessment, it was shown that the geographic information systems (GIS) was an effective tool [66], in assisting government agencies and the Department of Communicable Disease Control (CDC) particularly in Dili Municipality Health Work (HWD/SSMD) office in developing a policy, strategy, and plan for dengue infection surveillance in the Dili municipality, including other sectors, to prioritize areas of action in the study area related to the identified dengue risk factors that contributed to an increase in the number of dengue incidences, such as geographical conditions, environmental factors, and climatic changes (under the ministries of state administration, public works, and education).

In addition, considering this is the first study result of poor Knowledge, Attitude, and Practice (KAP) of housewives in dengue prevention and control due to the scores of the three items we summed as well as one variable in this study, there are several limitations, including the similarity with other variables from this study. However, further study should be conducted as a cross-sectional study focused on the correlation among the population (housewives) in terms of knowledge of dengue symptoms and how to cut off the epidemiologic chain of dengue infection
transmission in the population, the population's attitude toward control and prevention, and the daily practices of the population in dengue control and prevention. Therefore, it could be more effective to facilitate the program manager's making an intervention according to the problem identified [14], [68]. Furthermore, conducted an entomological study according to the address of the patient in villages and subvillages level with the latitude and longitude data of each individual to conduct GIS mapping [102], including implementing two other indicators to measure mosquito larvae density such as the House index (HI) and Breteau index (BI) [37], [86].

Moreover, the results of the mosquito breeding site survey have to be brought to the laboratory to conduct an entomological study on the identification of mosquito species. Furthermore, human population growth (rapid and unplanned urbanization) should be controlled, including the movement of people for trade, tourism, and other relevant risk factors such as natural disasters and vulnerability in public health, particularly in vector control programs, and the dengue case management and hospitalization systems should be improved by adopting every possible innovation.

CHAPTER 6 CONCLUSIONS

The dengue risk factor is very highly assessed in Dili, Timor-Leste, where it occupies 9% and nearly 17.75% of the total area. It is mainly caused by environmental and geographical conditions, which are significant predictors of dengue cases.

The main risk factors associated with dengue cases in Dili municipality, particularly in each of the six administrative posts (subdistricts), were the poor knowledge, attitude, and practice (KAP) of housewives regarding dengue prevention and control; the artificial container (CI); the density of household numbers; the large density of residential areas; improper drainage areas; and natural water resources.

The administrative post with very high dengue risk factors assessed was Dom Aleixo, and high dengue risk factors were assessed at the Cristo Rei administrative post. At the village level, there were seven villages with very high dengue risk factors assessed, including eight villages with high dengue risk factors assessed. Furthermore, the most influential dengue risk factor in the Dili municipality was household number; because other dengue risk factors were held constant, an increase in household number caused a 97.7% increase in dengue infection patient numbers.

Nowadays, the Geographic Information System (GIS) is applied in discovering risk areas of epidemic diseases, including Dengue Hemorrhagic Fever (DHF) globally [103], [104], and is one of the most effective tools for dengue surveillance in an area. This calls for public health actions and other sectors to mitigate future dengue risk factors from environmental and geographical conditions. In addition, the Geographic Information System (GIS) is a very useful tool for Timor-Leste as a young country and as an innovation tool to contribute to dengue surveillance, among other infectious diseases.

Further studies are needed to define if these risk areas are maintained through time, while similar studies can be applied to other neglected tropical diseases such as malaria, tuberculosis, and filariasis, which affect both municipalities in Timor Leste

REFERENCES

[1] R. Feliciano, J. Valter, J. Silva, and A. F. Pastor, "Spatiotemporal dynamics , risk areas and social determinants of dengue in Northeastern Brazil, 2014 2017 : an ecological study," Infect. Dis. Poverty, pp. 1-16, 2020, doi: 10.1186/s40249-020-00772-6.
[2] W. H. Organization, "2020 Dengue," Dengue South-East Asia, vol. 41, no. December, 2020, [Online]. Available: https://www.who.int/publications/i/item/dengue-bulletin-vol41 ? sequence $=1 \&$ isAllowed $=y$
[3] M. G. Guzman, D. J. Gubler, A. Izquierdo, E. Martinez, and S. B. Halstead, "Dengue infection," Nat. Rev. Dis. Prim., vol. 2, pp. 1-26, 2016, doi: 10.1038/nrdp.2016.55.
[4] "Treatment, prevention and control global strategy for dengue prevention and control 2 ".
[5] D. Diallo et al., "Dengue vectors in Africa: A review," Heliyon, vol. 8, no. 5, p. e09459, 2022, doi: 10.1016/j.heliyon.2022.e09459.
[6] Pan American Health Organization, "Epidemiological Update for Dengue, Chikungunya and Zika in 2022," WHO Am., 2023.
[7] S. Sulistyawati and F. Fatmawati, "GIS For Dengue Surveillance : A Systematic Review," no. January, 2020.
[8] L. Faridah et al., 'Spatial and temporal analysis of hospitalized dengue patients in Bandung: demographics and risk," Trop. Med. Health, vol. 49, no. 1, 2021, doi: 10.1186/s41182-021-00329-9.
[9] J. Abhinayaa, S. James, R. Jebaraj, P. N. Vinoth, and M. R. C. P. C. H. Uk, "Incidence of Cardiac Manifestations in Children with Dengue Fever : A Cross- sectional Study,"vol. 12, no. 2, pp. 1-9, doi: 10.5041/RMMJ.10436.
[10] K. Erandi, "Analysis and forecast of dengue incidence in urban Colombo , Sri Lanka, ${ }^{\text {vol. 7, pp. 1-19, } 2021 . ~}$
[11] K. Wangdi, A. C. A. Clements, T. Du, and S. V. Nery, "Spatial and temporal patterns of dengue infections in Timor-Leste , 2005-2013," pp. 1-9, 2018, doi: 10.1186/s13071-017-2588-4.
[12] E. Gananalatha, "An investigation into spatial vulnerable factors for dengue epidemics using GIS in the Matara District in Sri Lanka An investigation into spatial vulnerable factors for dengue epidemics using GIS in the Matara

District in Sri Lanka," no. September, 2017.
[13] M. K. Jat and S. Mala, "Application of GIS and Statistical Modelling for Dengue Fever Surveillance in Delhi , India," no. December, 2016, doi: 10.15224/978-1-63248-114-6-17.
[14] H. Harapan et al., "Knowledge, attitude, and practice regarding dengue virus infection among inhabitants of Aceh, Indonesia: A cross-sectional study," BMC Infect. Dis., vol. 18, no. 1, pp. 1-16, 2018, doi: 10.1186/s12879-018-3006-z.
[15] "Assignment of the Democratic Republic of Timor-Leste to the South-East Asia Region," no. May, p. 2003, 2003.
[16] M. Ito et al., "Molecular and virological analyses of dengue virus responsible for dengue outbreak in East Timor in 2005," Jpn. J. Infect. Dis., vol. 63, no. 3, pp. 181-184, 2010, doi: 10.7883/yoken.63.181.
[17] World Health Organization, "Dengue - Timor-Leste," vol. 1, no. January, pp. 2020-2023, 2022, [Online]. Available:
https://www.who.int/emergencies/disease-outbreak-news/item/dengue---timorleste
[18] IFRC, "Emergency Plan of Action (EPoA) Paraguay Floods A . Situation analysis Description of the disaster," no. 20, pp. 1-16, 2022, [Online]. Available:
https://reliefweb.int/sites/reliefweb.int/files/resources/MDRSY006do.pdf
[19] R. Committee, "Asia-Pacific Dengue Strategic Plan (2008-2015)," Mobilization, no. May, 2008.
[20] G. F. O. R. Diagnosis, "New edition 2009," 2009.
[21] L. Sánchez-González et al., "Dengue Virus Infections among Peace Corps Volunteers in Timor-Leste, 2018-2019,"Am. J. Trop. Med. Hyg., vol. 104, no. 6, pp. 2202-2209, 2021, doi: 10.4269/ajtmh.21-0020.
[22] WWHO, "Dengue vaccine: WHO position paper - September 2018," Who, vol. 93, no. 36, pp. 457-476, 2018, [Online]. Available:
https://www.who.int/immunization/policy/position_papers/who_pp_dengue_20 18_summary.pdf?ua=1
[23] T. Toemjai, P. Thongkrajai, and C. Nithikathkul, "Factors affecting preventive behavior against leptospirosis among the population at risk in Si Sa Ket, Thailand," One Heal., vol. 14, no. December 2021, p. 100399, 2022, doi: 10.1016/j.onehlt.2022.100399.
[24] "343-349-1-PB.pdf."
[25] P. Soncharoen, J. Jongthawin, and C. Nithikathkul, "Influent Factor toward Based Helminth Infections among of Thai-Cambodian Border in Phusing District, Sisaket Province, Thailand," Int. J. Geoinformatics, vol. 18, no. 5, pp. 71-86, 2022, doi: 10.52939/ijg.v18i5.2375.
[26] P. Kanjaras, S. Bumrerraj, R. Seng, S. Noradee, and C. Nithikathkul, "Geospatial Analysis and Modeling of Melioidosis Prevention and Control in Si Sa Ket Province, Thailand," Int. J. Geoinformatics, vol. 19, no. 1, pp. 57-65, 2023, doi: 10.52939/ijg.v19i1.2501.
[27] C. Nithikathkul, A. Trevanich, T. Wongsaroj, C. Wongsawad, and P. Reungsang, "Health informatics model for helminthiasis in Thailand," J. Helminthol., vol. 91, no. 5, pp. 528-533, 2017, doi:
10.1017/S0022149X16000614.
[28] R. Project, "Geographie Information System of Fish-borne Parasitie Zoonoses Metaeerearia from Water Reservoirs under His," vol. 8, no. 3, 2012.
[29] K. Wongpituk, S. Kalayanarooj, and C. Nithikathkul, "Geospatial analysis of DHF surveillance model in Si Sa Ket Province, Thailand using geographic information system," Int. J. Geoinformatics, vol. 16, no. 3, pp. 97-104, 2020.
[30] J. M. Quinn, N. Martins, M. Cunha, M. Higuchi, D. Murphy, and V. Bencko, "Fragile states, infectious disease and health security: The case for timor-leste," J. Hum. Secur., vol. 10, no. 1, pp. 14-31, 2014, doi: 10.12924/johs2014.10010014.
[31] N. Martins, "Transmission Assessment Survey of Neglected Tropical Disease in Timor Leste, 2020-2022," no. May, pp. 2020-2022, 2022, doi:
10.13140/RG.2.2.12957.59369.
[32] T. Chaiphongpachara, S. Pimsuka, W. Saisanan, N. Ayudhaya, and C. Author, "THE APPLICATION OF GEOGRAPHIC INFORMATION SYSTEM IN DENGUE HAEMORRHAGIC FEVER RISK ASSESSMENT IN," vol. 12, no. 30, pp. 53-60, 2017.
[33] T. T. Id, A. C. A. Clements, D. J. Gray, and K. Wangdi, "Dengue risk assessment using multicriteria decision analysis: A case study of Bhutan," pp. 1-17, 2021, doi: 10.1371/journal.pntd. 0009021 .
[34] O. Definitions, "Lecture 3 . What is GIS ? Geographic Information Systems," Inf. Syst., 1997.
[35] D. J. Maguire, "An overview and definition of GIS," Geographical information systems. Vol. 1: principles. pp. 9-20, 1991.
[36] S. Roma, M. A. Herrera-valdez, A. F. Kuri-morales, B. Adams, and P. A. Kurimorales, "Analysis of spatial mobility in subjects from a Dengue endemic urban locality in Morelos," pp. 1-19, 2017, doi: 10.1371/journal.pone.0172313.
[37] N. F. Kahamba et al., "Habitat characteristics and insecticide susceptibility of Aedes aegypti in the Ifakara area, south-eastern Tanzania," Parasites and Vectors, vol. 13, no. 1, pp. 1-15, 2020, doi: 10.1186/s 13071-020-3920-y.
[38] K. Liu et al., "International Journal of Infectious Diseases Spatiotemporal patterns and determinants of dengue at county level in China from 2005 2017," Int. J. Infect. Dis., vol. 77, pp. 96-104, 2018, doi:
10.1016/j.ijid.2018.09.003.
[39] S. Sulistyawati, T. W. Sukesi, and S. A. Mulasari, "Spatiotemporal mapping of dengue cases in Sleman district, Indonesia year 2014-2017," vol. 6, no. 3, pp. 971-975, 2019.
[40] N. F. Arifin, M. S. Adi, and A. Suwondo, "Spatial And Temporal Determinantsfor Dengue Haemorrhagic Fever : A Descriptive Study In Tanjungpinang City, Indonesia Spatial And Temporal Determinantsfor Dengue Haemorrhagic Fever: A Descriptive Study In Tanjungpinang City, Indonesia," no. January, 2018, doi: 10.9790/0853-1610133438.
[41] E. S. Cluster, F. O. R. Dengue, P. In, U. Area, and O. F. Indonesia, "Exploring spatio-temporal cluster for dengue prevention in urban area of indonesia," pp. 176-185.
[42] N. Nagarani et al., "E nvironment A sia," 2017.
[43] T. Respati, A. Raksanagara, H. Djuhaeni, and A. Sofyan, "Spatial Distribution of Dengue Hemorrhagic Fever (DHF) in Urban Setting of Bandung City Distribusi Spasial Kasus Demam Berdarah Dengue di Daerah Urban Kota Bandung," vol. 5, no. 22, pp. 212-218, 2017.
[44] C. Huang et al., "Spatial Clustering of Dengue Fever Incidence and Its Association with Surrounding Greenness," pp. 1-12, doi: 10.3390/ijerph15091869.
[45] K. S. Ganguly, "Spatial Clustering of Dengue Fever: A Baseline Study in the City of Kolkata Spatial Clustering of Dengue Fever: A Baseline Study in the City of Kolkata," no. January, 2018.
[46] Z. I. Velasco-salas et al., "Spatial Analysis of Dengue Seroprevalence and Modeling of Transmission Risk Factors in a Dengue Hyperendemic City of Venezuela," pp. 1-21, 2017, doi: 10.1371/journal.pntd. 0005317.
[47] K. Liu et al., "Dynamic spatiotemporal analysis of indigenous dengue fever at street-level in Guangzhou city , China," pp. 1-15, 2018.
[48] R. A. Id, S. Naish, M. Gatton, H. Bambrick, W. Hu, and S. Tong, "Spatial and temporal analysis of dengue infections in Queensland, Australia : Recent trend and perspectives," pp. 1-13, 2019.
[49] J. Ong, X. Liu, J. Rajarethinam, G. Yap, D. Ho, and L. C. Ng, "A novel entomological index, Aedes aegypti Breeding Percentage, reveals the geographical spread of the dengue vector in Singapore and serves as a spatial risk indicator for dengue," pp. 1-10, 2019.
[50] M. Sanna, J. Wu, Y. Zhu, Z. Yang, and J. Lu, "Spatial and Temporal Characteristics of 2014 Dengue Outbreak in Guangdong, China," Sci. Rep., no. December 2017, pp. 1-10, 2018, doi: 10.1038/s41598-018-19168-6.
[51] M. A. P. Pangilinan, D. P. G. Gonzales, R. N. F. Leong, and F. F. Co, "Spatial Analysis of the Distribution of Reported Dengue Incidence in the National Capital Region , Philippines," vol. 51, no. 2, pp. 126-132, 2017.
[52] R. Lowe et al., "Articles Combined effects of hydrometeorological hazards and urbanisation on dengue risk in Brazil : a spatiotemporal modelling study," Lancet Planet. Heal., vol. 5, no. 4, pp. e209-e219, 2021, doi: 10.1016/S2542-5196(20)30292-8.
[53] E. P. Astuti, P. W. Dhewantara, H. Prasetyowati, M. Ipa, and C. Herawati, "Paediatric dengue infection in Cirebon, Indonesia : a temporal and spatial analysis of notified dengue incidence to inform surveillance," Parasit. Vectors, pp. 1-12, 2019, doi: 10.1186/s13071-019-3446-3.
[54] M. Carabali, A. M. Schmidt, B. N. Restrepo, and J. S. Kaufman, "Spatial and Spatio-temporal Epidemiology A joint spatial marked point process model for dengue and severe dengue in," Spat. Spatiotemporal. Epidemiol., vol. 41, no. February, p. 100495, 2022, doi: 10.1016/j.sste.2022.100495.
[55] P. Luiz, L. De Morais, P. Mayrelle, S. Castanha, U. Ramos, and M. Iii, "Incidence and spatial distribution of cases of dengue, from 2010 to 2019: an ecological study," vol. 138, no. 6, pp. 554-560,2020.
[56] R. Chumpu, N. Khamsemanan, and C. N. Id, "The association between dengue incidences and provincial-level weather variables in Thailand from 2001 to 2014," pp. 1-27, 2019, doi: 10.1371/journal.pone.0226945.
[57] M. Fuentes-vallejo, "Space and space-time distributions of dengue in a hyperendemic urban space : the case of Girardot , Colombia," pp. 1-16, 2017, doi:
10.1186/s12879-017-2610-7.
[58] S. Caso et al., "Geographical distribution, evaluation of risk of dengue and its relationship with the El Niño Southern Oscillation in an endemic region of Peru between 2004 and 2015," BMC Res. Notes, pp. 1-6, 2019, doi: 10.1186/s13104-019-4537-0.
[59] M. Pramanik, P. Singh, G. Kumar, V. P. Ojha, and R. C. Dhiman, "El Niño Southern Oscillation as an early warning tool for dengue outbreak in India," pp. 1-11, 2020.
$[60]$ D. Adyro, M. Bello, A. L. Quílez, and A. T. Prieto, "Relative risk estimation of dengue disease at small spatial scale," Int. J. Health Geogr., pp. 1-15, 2017, doi: 10.1186/s12942-017-0104-x.
[61] P. Sirisena, F. Noordeen, and H. Kurukulasuriya, "Effect of Climatic Factors and Population Density on the Distribution of Dengue in Sri Lanka : A GIS Based Evaluation for Prediction of Outbreaks," 2017, doi: 10.1371/journal.pone. 0166806.
[62] S. Nagar, S. Nagar, and S. Nagar, "GIS-Based analysis of the spatial distribution of dengue disease in Mysuru district and India ," vol. 7, no. 6, pp. 13-26, 2020.
[63] S. Zafar et al., "Development and Comparison of Dengue Vulnerability Indices Using GIS-Based Multi-Criteria Decision Analysis in Lao PDR and Thailand," 2021.
[64] R. A. Adnan, "Dengue risk map using GIS based on socio- environmental and climatic variables in residential area," 2020.
[65] E. Ali, "Geographic Information System (GIS): Definition, Development, Applications \& Components," Academia, no. March, pp. 1-12, 2020.
[66] M. Goodchild, "GIS and Modeling Overview,", GIS, Spat. Anal. Model., pp. 117, 2005.
[67] M. Dhimal et al., "Knowledge, attitude and practice regarding dengue fever among the healthy population of highland and lowland communities in Central Nepal," PLoS One, vol. 9, no. 7, 2014, doi: 10.1371/journal.pone. 0102028.
[68] W. M. Alobuia, C. Missikpode, M. Aung, and P. E. Jolly, "Knowledge, Attitude, and Practices Regarding Vector-borne Diseases in Western Jamaica," Ann. Glob. Heal., vol. 81, no. 5, pp. 654-663, 2015, doi: 10.1016/j.aogh.2015.08.013.
[69] A. M. Sheela, A. Ghermandi, P. Vineetha, R. V. Sheeja, J. Justus, and K.

Ajayakrishna, "Assessment of relation of land use characteristics with vectorborne diseases in tropical areas," Land use policy, vol. 63, pp. 369-380, 2017, doi: 10.1016/j.landusepol.2017.01.047.
[70] E. C. Young, "Mosquitoes of rarotonga, cook Islands: A survey of breeding sites," New Zeal. J. Zool., vol. 34, no. 1, pp. 57-61, 2007, doi: 10.1080/03014220709510064.
[71] M. F. Vincenti-Gonzalez et al., "Spatial Analysis of Dengue Seroprevalence and Modeling of Transmission Risk Factors in a Dengue Hyperendemic City of Venezuela," PLoS Negl. Trop. Dis., vol. 11, no. 1, pp. 1-22, 2017, doi: 10.1371/journal.pntd. 0005317.
[72] V. K. Gothwal, T. A. Wright, E. L. Lamoureux, and K. Pesudovs, "Guttman scale analysis of the distance vision scale," Investig. Ophthalmol. Vis. Sci., vol. 50, no. 9, pp. 4496-4501, 2009, doi: 10.1167/iovs.08-3330.
[73] M. R. Ridha and S. Sulasmi, "Larval survey of the dengue-endemic area in Samarinda: guide to determine risk containers," Int. J. Public Heal. Sci., vol. 11, no. 4, pp. 1176-1183, 2022, doi: 10.11591/ijphs.v11i4.21727.
[74] M. Martini, J. Annisa, L. D. Saraswati, R. Hestiningsih, N. Kusariana, and S. Yuliawati, "Larvae Density and Environmental Condition as Risk Factors to Dengue Incidence in Semarang City, Indonesia," IOP Conf. Ser. Earth Environ. Sci., vol. 380, no. 1, 2019, doi: 10.1088/1755-1315/380/1/012010.
[75] A. Chaikoolvatana, P. Singhasivanon, and P. Haddawy, "Utilization of a geographical information system for surveillance of Aedes aegypti and dengue haemorrhagic fever in north-eastern Thailand," Dengue Bull., vol. 31, no. Figure 1, pp. 75-82, 2007.
[76] N. I. Nofita, Eka, Hasmiwati, Selfi Renita Rusdji, "Analysis of indicators entomology Aedes aegypti in endemic areas of dengue fever in Padang, West sumatra, Indonesia," Int. J. Mosq. Res., vol. 4, no. 2, pp. 57-59, 2017.
[77] E. dos S. Ferreira, "Launch Of The Main Results Of The 2015 Census Of Population And Housing," no. November, 2016.
[78] M. Finansas, "Population and Housing Census 2015 Preliminary Results Timor-Leste," 2015.
[79] J. Penyelidikan, "SAMPLE SIZE ESTIMATION USING KREJCIE AND MORGAN AND COHEN STATISTICAL POWER ANALYSIS: A COMPARISON Chua Lee Chuan Jabatan Penyelidikan," J. Penyelid. IPBL, vol. 7, pp. 78-86, 2006.
[80] D. E. M. Números, E. M. D. E. Dili, D. Números, E. Pereira, and E. Pereira, "Dili em números," 2018.
[81] Ministry of Planning and Strategic, "The Project for Study on Dili Urban Master Plan in the Democratic Republic of Timor-Leste," no. October, 2016.
[82] M. Nasir Abdullah, W. Nor Hazimah Wan Azib, M. Fauzi Mohd Harun, and M. Addin Burhanuddin, "Reliability and Construct Validity of Knowledge, Attitude and Practice on Dengue Fever Prevention Questionnaire," Am. Int. J. Contemp. Res., vol. 3, no. 5, pp. 69-75, 2013, [Online]. Available: www.aijcrnet.com
[83] R. B. Radhakrishna, "Article 25 2-1-2007 Recommended Citation Recommended Citation Radhakrishna," J. Ext., vol. 45, no. 1, p. 25, 2007.
[84] O. A. Marques, "Timor-Leste, Agro-climate outlook / Perspetiva Agroklimatica," no. March, 2020.
[85] CSIRO and SPREP, "'NextGen’ Projections for the Western Tropical Pacific: Current and Future Climate for Kiribati," no. October, 2021.
[86] H. Prasetyowati, M. Ipa, and M. Widawati, "Pre-adult survey to identify the key container habitat of aedes aegypti (L.) in dengue endemic areas of banten province, indonesia," Southeast Asian J. Trop. Med. Public Health, vol. 49, no. 1, pp. 23-31, 2018.
[87] Direção Geral de Estatística Municipio de Dili, "Dili em números," Dili em Números 2016, 2018.
[88] TLDHS, "2) Timor-Leste demographic and health survey 2016.," Timor-Leste Demogr. Heal. Surv. 2016, p. xxx + 565-xxx + 565, 2016, [Online]. Available: https://auth.lib.unc.edu/ezproxy_auth.php?url=http://search.ebscohost.com/logi n.aspx?direct $=$ true \& db $=1 \mathrm{hh} \& \mathrm{AN}=20183190036 \&$ site $=$ ehost live\&scope $=$ site $\% 0$ Ahttps://www.dhsprogram.com/pubs/pdf/FR329/FR329.pdf
[89] V. Maumeta et al., "Esboços Mapa Suco no Aldeia Município Dili," 2019.
[90] D. E. M. Números, D. Números, E. Pereira, and E. Pereira, "Dili em números," 2015.
[91] T. L. Vanpool and R. D. Leonard, "Critical Values for Student' st Distribution .," p. 2005, 2005.
[92] University of Sussex: Student resources, "Table of critical values for the F distribution (for use with ANOVA)," 2005, [Online]. Available: http://users.sussex.ac.uk/~grahamh/RM1web/F-ratio table 2005.pdf
[93] M. A. M. Din, M. G. Shaaban, T. Norlaila, and L. Norariza, "A study of dengue disease data by GIS software in urban areas of petaling jaya selatan," Lect. Notes Geoinf. Cartogr., vol. 0, no. 199039, pp. 206-213, 2007, doi: 10.1007/978-3-540-71318-0_15.
[94] A. Aziz et al.,"A knowledge, attitude and practice (KAP) on dengue among adult population in Felda Sungai Panching Timur, Kuantan, Pahang," vol. 16, no. 2, 2015.
[95] M. A. Gutu et al., "Another dengue fever outbreak in eastern ethiopia-an emerging public health threat," PLoS Negl. Trop. Dis., vol. 15, no. 1, pp. 1-16, 2021, doi: 10.1371/journal.pntd. 0008992.
[96] M. D. M. Rodrigues et al., "Density of Aedes aegypti and Aedes albopictus and its association with number of residents and meteorological variables in the home environment of dengue endemic area, São Paulo, Brazil," Parasites and Vectors, vol. 8, no. 1, pp. 1-10, 2015, doi: 10.1186/s13071-015-0703-y.
[97] A. Ali et al., "A Privacy-Preserved Internet-of-Medical-Things Scheme for Eradication and Control of Dengue Using UAV," Micromachines, vol. 13, no. 10, pp. 1-18, 2022, doi: 10.3390/mil3101702.
[98] S. M. Charlesworth, D. C. Kligerman, M. Blackett, and F. Warwick, "The Potential to Address Disease Vectors in Favelas in Brazil Using Sustainable Drainage Systems: Zika, Drainage and Greywater Management," Int. J. Environ. Res. Public Health, vol. 19, no. 5, 2022, doi: 10.3390/ijerph19052860.
$[99]$ B. Khalid and A. Ghaffar, "Dengue transmission based on urban environmental gradients in different cities of Pakistan," Int. J. Biometeorol., vol. 59, no. 3, pp. 267-283, 2015, doi: 10.1007/s00484-014-0840-6.
[100] U. Thavara et al., "Dengue vector mosquitos at a tourist attraction, Ko Samui, in 1995," Southeast Asian J. Trop. Med. Public Health, vol. 27, no. 1, pp. 160163, 1996.
[101] K. K. Altassan, C. Morin, M. S. Shocket, K. Ebi, and J. Hess, "Dengue fever in Saudi Arabia : A review of environmental and population factors impacting emergence and spread," Travel Med. Infect. Dis., no. June 2018, pp. 1-8, 2019, doi: 10.1016/j.tmaid.2019.04.006.
[102] M. S. Rahman et al., "Mapping the spatial distribution of the dengue vector Aedes aegypti and predicting its abundance in northeastern Thailand using machine-learning approach," One Heal., vol. 13, no. December, 2021, doi: 10.1016/j.onehlt.2021.100358.
[103] D. J. Rogers and S. E. Randolph, "Studying the global distribution of infectious diseases using GIS and RS," Nat. Rev. Microbiol., vol. 1, no. 3, pp. 231-237, 2003, doi: 10.1038/nrmicro776.
[104] S. I. Hay, J. A. Omumbo, M. H. Craig, and R. W. Snow, "Earth observation, geographic information systems and Plasmodium falciparum malaria in subSaharan Africa," Adv. Parasitol., vol. 47, pp. 173-174, 2000, doi:
10.1016/s0065-308x(00)47009-0.

REFERENCES

Appendix 1

Table 13. Mosquito larval surveys in containers in each of the six administrative posts in Dili Municipality.

No.	Type of container	Total number of containers inspected	Number of positive containers
	Recognized containers		
1	Concrete water storage tanks		
2	for bathrooms		
3	Discarded tires		
4	Discarded bottles and tin cans		
5	Metal drums for water storage		
6	Buckets		
7	Plastic containers		
8	Water trays of refrigerators		
9	Pots		
10	Animal water container		
	Unrecognized containers		
1	Water trays of dispenser		
2	Aquarium		
3	Pan		
	Total	3	

(Prasetyowati, Ipa and Widawati, 2018, p. 24) [86]

Appendix 2

Numbers in each row of the table are values on a t-distribution with $(d f)$ degrees of freedom for selected right-tail (greater-than) probabilities (p).

$\mathbf{d f} / \mathbf{p}$	$\mathbf{0 . 4 0}$	$\mathbf{0 . 2 5}$	$\mathbf{0 . 1 0}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 2 5}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 0 5}$	$\mathbf{0 . 0 0 0 5}$
$\mathbf{1}$	0.324920	1.000000	3.077684	6.313752	12.70620	31.82052	63.65674	636.6192
$\mathbf{2}$	0.288675	0.816497	1.885618	2.919986	4.30265	6.96456	9.92484	31.5991
$\mathbf{3}$	0.276671	0.764892	1.637744	2.353363	3.18245	4.54070	5.84091	12.9240
$\mathbf{4}$	0.270722	0.740697	1.533206	2.131847	2.77645	3.74695	4.60409	8.6103
$\mathbf{5}$	0.267181	0.726687	1.475884	2.015048	2.57058	3.36493	4.03214	6.8688
$\mathbf{6}$	0.264835	0.717558	1.439756	1.943180	2.44691	3.14267	3.70743	5.9588
$\mathbf{7}$	0.263167	0.711142	1.414924	1.894579	2.36462	2.99795	3.49948	5.4079
$\mathbf{8}$	0.261921	0.706387	1.396815	1.859548	2.30600	2.89646	3.35539	5.0413
$\mathbf{9}$	0.260955	0.702722	1.383029	1.833113	2.26216	2.82144	3.24984	4.7809
$\mathbf{1 0}$	0.260185	0.699812	1.372184	1.812461	2.22814	2.76377	3.16927	4.5869
$\mathbf{1 1}$	0.259556	0.697445	1.363430	1.795885	2.20099	2.71808	3.10581	4.4370
$\mathbf{1 2}$	0.259033	0.695483	1.356217	1.782288	2.17881	2.68100	3.05454	43178
$\mathbf{1 3}$	0.258591	0.693829	1.350171	1.770933	2.16037	2.65031	3.01228	4.2208
$\mathbf{1 4}$	0.258213	0.692417	1.345030	1.761310	2.14479	2.62449	2.97684	4.1405
$\mathbf{1 5}$	0.257885	0.691197	1.340606	1.753050	2.13145	2.60248	2.94671	4.0728
$\mathbf{1 6}$	0.257599	0.690132	1.336757	1.745884	2.11991	2.58349	2.92078	4.0150
$\mathbf{1 7}$	0.257347	0.689195	1.333379	1.739607	2.10982	2.56693	2.89823	3.9651
$\mathbf{1 8}$	0.257123	0.688364	1.330391	1.734064	2.10092	2.55238	2.87844	3.9216
$\mathbf{1 9}$	0.256923	0.687621	1.327728	1.729133	2.09302	2.53948	2.86093	3.8834
$\mathbf{2 0}$	0.256743	0.686954	1.325341	1.724718	2.08596	2.52798	2.84534	3.8495
$\mathbf{2 1}$	0.256580	0.686352	1.323188	1.720743	2.07961	2.51765	2.83136	3.8193
$\mathbf{2 2}$	0.256432	0.685805	1.321237	1.717144	2.07387	2.50832	2.81876	3.7921
$\mathbf{2 3}$	0.256297	0.685306	1.319460	1.713872	2.06866	2.49987	2.80734	3.7676
$\mathbf{2 4}$	0.256173	0.684850	1.317836	1.710882	2.06390	2.49216	2.79694	3.7454
$\mathbf{2 5}$	0.256060	0.684430	1.316345	1.708141	2.05954	2.48511	2.78744	3.7251
$\mathbf{2 6}$	0.255955	0.684043	1.314972	1.705618	2.05553	2.47863	2.77871	3.7066
$\mathbf{2 7}$	0.255858	0.683685	1.313703	1.703288	2.05183	2.47266	2.77068	3.6896
$\mathbf{2 8}$	0.255768	0.683353	1.312527	1.701131	2.04841	2.46714	2.76326	3.6739
$\mathbf{2 9}$	0.255684	0.683044	1.311434	1.699127	2.04523	2.46202	2.75639	3.6594
$\mathbf{3 0}$	0.255605	0.682756	1.310415	1.697261	2.04227	2.45726	2.75000	3.6460
\boldsymbol{z}	0.253347	0.674490	1.281552	1.644854	1.95996	2.32635	2.57583	3.2905
$\mathbf{C l}$	-	-	80%	90%	95%	98%	99%	99.9%

Appendix 3
Critical values of F for the 0.05 significance level:

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{1}$	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88
$\mathbf{2}$	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.39	19.40
$\mathbf{3}$	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79
$\mathbf{4}$	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96
$\mathbf{5}$	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74
$\mathbf{6}$	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06
$\mathbf{7}$	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64
$\mathbf{8}$	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35
$\mathbf{9}$	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14
$\mathbf{1 0}$	4.97	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98
$\mathbf{1 1}$	4.84	3.98	3.59	3.36	3.20	3.10	3.01	2.95	2.90	2.85
$\mathbf{1 2}$	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75
$\mathbf{1 3}$	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67
$\mathbf{1 4}$	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60
$\mathbf{1 5}$	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54
$\mathbf{1 6}$	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49
$\mathbf{1 7}$	4.45	3.59	3.20	2.97	2.81	2.70	2.61	2.55	2.49	2.45
$\mathbf{1 8}$	4.41	3.56	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41
$\mathbf{1 9}$	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38
$\mathbf{2 0}$	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35
$\mathbf{2 1}$	4.33	3.47	3.07	2.84	2.69	2.57	2.49	2.42	2.37	2.32
$\mathbf{2 2}$	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30
$\mathbf{2 3}$	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.38	2.32	2.28
$\mathbf{2 4}$	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.26
$\mathbf{2 5}$	4.24	3.39	2.99	2.76	2.60	2.49	2.41	2.34	2.28	2.24
$\mathbf{2 6}$	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22
$\mathbf{2 7}$	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20
$\mathbf{2 8}$	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19
$\mathbf{2 9}$	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18
$\mathbf{3 0}$	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.17
$\mathbf{3 1}$	4.16	3.31	2.91	2.68	2.52	2.41	2.32	2.26	2.20	2.15
$\mathbf{3 2}$	4.15	3.30	2.90	2.67	2.51	2.40	2.31	2.24	2.19	2.14
$\mathbf{3 3}$	4.14	3.29	2.89	2.66	2.50	2.39	2.30	2.24	2.18	2.13
$\mathbf{3 4}$	4.13	3.28	2.88	2.65	2.49	2.38	2.29	2.23	2.17	2.12
$\mathbf{3 5}$	4.12	3.27	2.87	2.64	2.49	2.37	2.29	2.22	2.16	2.11

Appendix 4

RESEARCH QUESTIONNAIRE

KNOWLEDGE, ATTITUDE AND BEHAVIOR TOWARD DENGUE INFECTIONS IN THE COMMUNITY OF DILI MUNICIPALITY, POST ADMINISTRATIVE LEVEL

I. KNOWLEDGE

1. Is dengue disease caused by mosquito (Aedes aegypti or Aedes albopictus) bites?
a) Yes
b) No
2. The signs of a person suffering from dengue infection are sudden fever, Headache, joint/bone/muscle pain, Heartburn Red spots on the skin, bleeding gums/nose, coughing up blood, defecating blood, and so on?
a) Yes
b) No
3. Is dengue infection a dangerous disease because it causes death and infects other family members?
a) Yes
b) No
4. does dengue infection spread Through the bite of a mosquito that has previously bitten a fever sufferer bleeding?
a) Yes
b) No
5. the abate powder is use for Killing mosquito larvae?
a) Yes
b) No
6. Do water reservoirs (jars) that are not closed, bathtubs, used cans filled with water, and their kinds constitute the places that have the potential to be a breeding ground for dengue infection mosquitoes?
a) Yes
b) No
7. Do you know the term 2HS (In Tetum language) in the prevention dengue infection?
a) Know which stands for
b) Don't know
8. Are burying or cleaning used items that can hold water (used cans, used bottles, used plastic containers, used tires, etc.) the actions to prevent dengue infection?
a) Yes
b) No
9. Do you think that the ministry of health is program to eradicate dengue infections such as 2HS, Larva supervisor, Fogging (fumigation) Spread of abate powder, Reporting and monitoring residents affected dengue infection is important?
a) Yes
b) No
10. Is knowledge about dengue disease and the transmission of it for a housewife very important?
a) Yes
b) No

II. ATITUDE

1. According to you Mrs. Is prevention of dengue infection a community need that must be done immediately?
a) Yes, (reason)

b) No (reason)
2. In your opinion, the only government or program manager who will be involved in dealing with dengue infections?
a) Yes
b) No (All components of society, including housewives)
3. Do you agree if there is an effort to prevent dengue infection on a regular basis in your neighborhood?
a) Yes (agree)
b) No
4. If an effort is made to prevent dengue disease in the environment you live in, are you willing to actively participate in carrying it out?
a) Yes
b) No
5. Do you think it is necessary to clean or drain the bathtub?
a) Yes
b) No
6. Do you agree with the 2HS efforts promoted by the government?
a) Yes
b) No
7. Do you think it's okay to keep clothes hanging?
a) Yes
b) No
8. In your opinion, is it necessary to control mosquito larvae?
a) Yes
b) No
9. In your opinion, is fogging alone enough and effective in preventing dengue infection?
a) Yes
b) Not
10. In your opinion, is it important to pay attention to your own health, family, and do 2 HS to prevent dengue infection?
a) Yes
b) No
III. PRACTICE
11. Does your family drain and clean the bath/water reservoir at home at least once per week?
a) Yes
b) No
12. Does your family use a water storage/reservoir for daily needs at home with the condition that it be closed after use?
a) Yes
b) No
13. Does your family regularly clean/bury/burn used items that can be a breeding ground for mosquitoes?
a) Yes
b) No
96
14. Does your family use abate in the water reservoir at home more frequently than once every three months?
a) Yes
b) No
15. Does your family cover the windows, vents, or doors with mosquito nets?
a) Yes
b) No
16. Has your family ever monitored mosquito larvae at home?
a) Yes
b) Not

If so, when and how were the results of the examination?
Date month \qquad years. \qquad ..Results.
7. Is your family's practice of storing worn-out clothes strewn about the room?
a) Yes
b) No
8. Does your family use protection against mosquito bites when resting in the morning and evening (e.g., using mosquito repellent lotion/mosquito repellent spray/burning/electrical, using mosquito nets)?
a) Yes
b) No
9. Has your family participated in the prevention or control of dengue fever in the area where you live?
a) Yes (Ever)
b) No (Never)
10. What is your garbage disposal habit; routinely transporting and collecting by cleaning personnel or regularly burning or burying in the environment around the house? a)
b) Yes
c) No (Thrown into the river, thrown around the house or neighbors etc.)

Evaluasaun Ba Quessionare konaba Konhesemento, Attitude no pratica iha Prevensaun no controlo Moras Dengue (Evaluation of Questionaire)							
I	Q $0 \quad$ Dadus Geral (General Data)	SPC. I					
				SPC. II			
		Aceita (Agree)	La aseita (Disagree)	Aceita (Agree)	La aseita (Disagree)		
	Karik iha membru famila ruma sofre moras dengue durante periodu husi fulan janeiru 2016, 2017, 2018, 2019, 2020, 2021, 2022 no agora?						
	karik sim, oinsa ho ninia kondisaun agora?						
II	\bigcirc Konhesementu (Knowledge)						
1	Ita bot hatene konaba moras dengue, saida maka kauza hamosu moras dengue? Sinal no sintoma saida deit maka sei mosu ba ema ida, karik ema ne sofree moras dengue? Tuir ita bot nia hanoin moras Dengue perigu tebes? Tuir ita nia hanoin oinsa moras dengue transmite/ hadaet liu husi saida? Ita bot hatene funsaun husi aimoruk ho naran Abate? Fatin saida deit maka diak ba susuk moras dengue ninia atu moris ba? Ita bot hatene susuk Moras dengue ninia bele tata ou afecta se ?						
2							
3							
4							
5							
6							
7							

b. Approved Result for Questionaries Evaluation

Appendix 6

a. The first reliability questioners test (10 questions per item) $(n=20$ housewives)

No. Resp	Total Score Knowledge (X1)	Total Score Attitude (X2)	Total Score Practice (X3)
1	9	8	8
2	10	9	9
3	10	9	9
4	4	3	3
5	6	8	5
6	8	6	5
7	7	7	4
8	9	5	4
9	5	6	2
10	8	6	5
11	7	7	4
12	9	9	8
13	4	5	2
14	7	5	4
15	8	8	7
16	8	6	5
17	7	8	6
18	6	4	2
19	6	9	6
20	8	5	4

Reliability Statistics

Cronbach's
Alpha N of Items

| .883 |
| :--- | :--- |

Item-Total Statistics

Item-Total Statistics				
	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
K (Knowledge)	11.75	14.724	.701	.897
A (Attitude)	12.40	13.937	.737	.867
P (Practice)	13.95	9.734	.922	.694

b. The second reliability questioners Test (10 questions per item) ($n=20$ Housewives)

Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
K (Knowledge)	11.85	14.345	.722	.888
A (Attitude)	12.40	13.937	.747	.867
P (Practice)	14.05	9.734	.905	.725

a.

The data (KAP survey: $\mathrm{n}=70$ housewives) of Dom Aleixo Administrative Post

The data (KAP survey: $\mathrm{n}=68$ housewives) of Cristo Rei Administrative Post

2

The data (KAP survey: $\mathrm{n}=66$ housewives) of Vera Cruz Administrative Post
ن

The data (KAP survey: $\mathrm{n}=64$ housewives) of Nain Feto Administrative Post

Timestamp	Name Age		Knowledge											Attitude											Practice												
			a		b	c	d	e	f	g	h		j				c	d	e	f	g		h			b	b	c	e		f	g			j	TotalScore	
3/11/2023			0	0	1	0	1		0	1	0) 1	0		1	0	0	1	1	0	1	0	00) 1	0	01	10	0	0	0	0	1	0	0	1	12	40.0
12:52:23																																					
$\begin{gathered} 3 / 11 / 2023 \\ 12 \cdot 54 \cdot 45 \end{gathered}$	\#	19	0	0	0	0	0		0	0	0	1	1			0	0	1	0	0	1	0	00	0		11	10	- 0	0	0	0	1	0	0	1	8	26.7
3/11/2023	,	38			1	0	1		0	1	0) 1	0		1	0	1	1	1	1	1	1	10	- 1		11	11	0			1	0	1	0	0	19	63.3
12:58:09																																					
3/11/2023	\#	33		0	1	1	1		1	0	0) 1	1		1	0	1	0	0	0	0	1	10	0		10	00	0			0	0	1	0	0	12	40.0
13:01:22																																					
$\begin{gathered} 3 / 11 / 2023 \\ 13: 04 \cdot 04 \end{gathered}$	\#	31	0			1	1		0	0	1	1	1		1	1	0	0	1	0	0	1	10	0		00	01	0	0	0	0	1	0	0	0	13	43.3
1/6/2023	\#	28	1			1	1		1	1	1	1	0		1	1	1	1	1	1	1	1	10) 1	1	11	10) 0	1	1		1	1	0	0	25	83.3
4:28:56																																					
1/6/2023		29	0			1	0		1	0	1	1	0		1	1	0	1	1	0	0	0	$0 \quad 1$	1		00	$0 \quad 1$	0	0	0	1	0	1	0	0	15	50.0
5:16:09		28			1	0	0		1	1	0) 0	1		1	1	1	1	1	1	1	1	10) 1		11	10	0	1		1			0	1	20	66.7
10:26:45																																					
1/6/2023	\#	27		0	1	1	1		1	1	1	1	0		1	0	0	1	0	1	0	1	10) 1	0	0	1	1 0	0	0	0	0	1	0	0	15	50.0
12:25:59																																					
1/6/2023		41		1	1		1		1	1	1	1	1		1	1	1	1	1	1	1	1	1 0) 1		11	10) 0	1	1	1		0	0	1	24	80.0
12:59:07																																					
1/6/2023		29	0			1			0	1	1	1	1			0	0	1	0	1	0	1	10	0		00	00	0	0	0	0	1	0	0	0	13	43.3
13:31:27																																					
$1 / 9 / 2023$	\#	34	0			1	1		0		0	0	0		1	0	1	1	1	1	1	1	10) 1		11	10) 1	1	1		1	1	1	0	20	66.7
1/9/2023		45	1			1	1		1	1	1	1	0		1	1	1	1	1	1	1	1	11	1	0	01	11	0	0	0	1	1	1	0	0	24	80.0
5:31:47																																					
1/9/2023	\#	44		1	1	1	1		1	1	1	1	0		1	1	1	1	1	1	1	1	11	1	1	11	11	0			0	1	1	0	0	25	83.3
11:37:21																																					
1/14/2023		41	0		1	1	1		1	1	1	1	1			1	1	1	1	1	1	1	10	1		1	10	0			1	1	0	0	1	24	80.0
1:27:13																																					
1/14/2023		26	0		1	0	1		0	1	1	1	0		1	1	1	1	1	1	1	1	10	- 1	1	11	11	- 0	1	1	1	1	1	1	0	22	73.3
9:32:41																																					
1/16/2023		35	0			1	1		1	1	1	1	0		1	1	1	1	1	1	1	1	10) 1	0	$0 \quad 1$	11	0	0	0	1	1	0	0	1	21	70.0
8:15:44																																					
44940.06057		23	0	0	1	11	1		1	1	1	1	1		1	1	1	1	1	1	1	1	11	1	1	11	11	1	0	0	1	1	1	1	1	27	90.0
1/5/2023	\#	35	0	1	1	11	1		0	1	1	1	0		1	0	0	1	0	0	1	0	01	1	1	11	11	1	1	1	1	1	1	1	1	22	73.3
0:01:56																																					
1/6/2023			0	0	1	11	1		1	1	1	1	1		1	0	1	0	1	1	1	1	11	1	1	11	11	1	1	1	1	1	1	1	0	25	83.3
2:12:14																																					
1/6/2023	\#	31	0	1	1	11	1		1	1	1	1	1		1	0	0	0	1	0	0	1	10) 1	1	11	11	1	1	1	1	1	1	1	1	23	76.7

 The data (KAP survey: $\mathrm{n}=61$ housewives) of Metinaro Administrative Post

Timestamp	Name Age			Knowledge										Attitude												Practice												
			a	b	c	d	d	e	f	g	h	h i	i		a	b	c	d	e	f		g	h	i	j			b	c	d	e	f	g	h	i	j	Total Score	\%
1/9/2023	\#	29	0	0	1	1	1	1	1	1	1	1	10		1	1	1	1	1	1	1	1	1	0	1	0	1		1	0	0	1	1	0	0	1	21	70.0
11:37:21																																						
1/14/2023		31	0	1	1	1	1	1	1	1	1	1	11		11	1	1	1	1	1		1	1	0) 1	1	1		0	0	1	1	1	0	0	1	24	80.0
1:27:13																																						
1/14/2023	\#	29	0	0	1	0	- 1	1	0	1	1	1	10			1	1	1	1	1	1	1	1	0	01	1	1		1	0	1	1	1	1	1	0	22	73.3
9:32:41																																						
1/16/2023		26	0	0	1	1	1	1	1	1	1	1	10		11	1	1	1	1	1	1	1	1	0) 1	0	1		1	0	0	1	1	0	0	1	21	70.0
8:15:44																																						
1/18/2023	\#	47	0			1	1	1	1	1	0	01	10		10	0	1	1	1	1	1	1	1	0) 1	0	1		1	0	1		1	1	0	0	21	70.0
3:22:14																																						
1/20/2023		28	0			1	1	1	1	0	1	11	10		1	1	1	1	1	1	1	1	1	0) 1	1	1		1	0	1			0	0	1	23	76.7
9:41:21																																						
1/20/2023		27	0			1	1	1	0	1	1	11	11		0	0	1	1	1	1	1	1	1	0) 1	1	1		1	1	0	1		1	1	1	24	80.0
9:45:47																																						
1/20/2023	\#	26	0			1	11	1	1	1	1	11	10		1	1	1	1	1	1	1	1	1	0) 1	0	1		1	0	0			0	0	1	21	70.0
9:49:22																																						
1/20/2023	\#	37	0	0	1	1	1	1	0	0	1	11	10		10	0	0	1	1	0	0	1	1	0) 1	0	0		0	0	0		1	0	0	1	14	46.7
9:52:26																																						
1/20/2023	\#	38	0		1	0) 1	1	1	1	1	11	11		0	0	0	1	0	0	0	1	1	0	- 1	0	0		0	1	0	0	1	0	0	1	16	53.3
12:58:01																																						
1/20/2023		25	0					1	0	1	1	11	10		170	0	0	1	1	1	1	1	1	0) 1	0	0	,	0	0	0	0		1	0	1	16	53.3
13:00:29																																						
1/20/2023	\#	26	0		1	1	1	1	1	1	1	1	11		$0 \quad 1$	1	0	1	0	0	0	1	0	0) 1	0	0	0	0	0	0	0	0	1	0	0	14	46.7
13:02:37																																						
1/20/2023	\#	23	0	0		1	1	1	0	0	0	1	10		10	0	1	1	1	0	0	1	0	0	0	0	0		0	0	0		1	1	0	0	11	36.7
14:36:31																																						
1/24/2023	\#	26	0	0	1	1	1	1	0	0	0	01	10		10	0	1	1	1	0	0	1	0	0	0	0	0		0	0	0	0	1	1	0	0	11	36.7
14:41:27																																						
1/24/2023	\#	29	0		1	1	1	1	1	1	1	11	10		10	0	1	1	0	0	0	1	1	0) 0	0	0	-	1	0	0	0	1	1	0	0	16	53.3
14:45:05																																						
1/24/2023	\#	31	0	0	1	1	1	1	1	1	1	11	11		10	0	1	0	0	1	1	1	1	0) 1	1	0	-	1	0	0	0	1	1	0	1	20	66.7
19:54:03																																						
3/10/2023		30	0	1		1	1	1	1	1	1	11	10		0	0	1	0	0	0	0	1	1	0	0	0	0	-	1	0	0	0	1	0	0	0	13	43.3
7:48:12																																						
3/10/2023		28	0	0	1	1	1	1	1	1	1	11	10		1	1	1	1	0	1	1	1	1	0) 1	0	0		0	0	0	0	1	1	0	0	18	60.0
7:59:42																																						
3/10/2023	\#	41	0	1	1	1	11	1	0	0	0	01	10		10	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0	1	13	43.3
8:27:24																																						
3/10/2023	\#		0	1	1	1	10	0	0	1	1	11	10		1	1	1	1	1	1	1	0	1	0	0	0	0		1	0	1	0	0	0	0	0	15	50.0
8:31:30																																						
3/10/2023	\#	44	0	1	0	0	0	0	0	0	0	01	10		10	0	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	1	0	0	0	8	26.7

Timestamp	Name Age		Knowledge										Attitude											Practice											
				b	c	d	e	f	g	h	i	j	a	b	c	c	d	e	f	g	h	i	j	a	b	c	d	e	f	g	h	i	j	Total Score	\%
1/14/2023	\#	41	0	0	1	1	1	1	1	1	1	1	1	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	12	40.0
1:27:13																																			
3/6/2023	\#	26	0	0	1	1	1	1	1	1	1	0	1	1			1	1	1	1	1	0	1	0	1	1	0	0	1	1	0	0	1	21	70.0
3:05:34																																			
1/3/1900	\#	29	0		1	1	1	1	1	0	1	0	1	0	1	1	1	1	1	1	1	0	1	0	1	1	0	1	1	1	1	0	0	21	70.0
0:00:00																																			
1/3/1900		41	0		1	1	1	1	0	1	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	0	1	1	1	0	0	1	23	76.7
0:00:00																																			
1/3/1900			0			1	1	0	1	1	1	1	1	0	1		1	1	1	1	1	0	1	1	1	1	1	0		1	1	1	1	24	80.0
0:00:00																																			
1/3/1900		19	0	0		1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0	1	0	1	1	0	0	1	1	0	0	1	21	70.0
0:00:00																																			
1/5/1900		38	0	0		1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0	1	0	1	1	0	0	1	1	0	0	1	21	70.0
0:00:00																																			
1/6/1900			0		1	1	1	1	1	0	1	0	1	0	1	1	1	1	1	1	1	0	1	0	1	1	0	1	1	1	1	0	0	21	70.0
0:00:00																																			

The data (KAP survey: $\mathrm{n}=60$ housewives) of Atauro Administrative Pos

2. Cristo Rei Administrative Post

No.								Mosquito Larvae survey in the container in Cristo Rei administrative post (sub-district)

3. Vera Cruz Administrative Post
4. Nain Feto Administrative Post

| No. | | | Mosquito larvae survey in the container in Nain Feto administrative post (sub-district) |
| :--- | :--- | :---: | :---: | :---: | :---: |

5. Metinaro Administrative Post
6. Atauro Administrative Post

Mosquito larvae survey in the container in Atauro administrative post (sub-district)						
No.	Type of container	Number of Container inspected	Number of Positive Container	Household Inspected	Household Positive based on Container Type	Number of Household Positive
Recognized containers						
1	Concrete water storage tanks	66	26		23	
2	Discarded tires	5	0		5	
3	Discarded bottles and tin cans	20	5		5	
4	Metal drums for water storage	30	0		3	
5	Buckets	65	7		3	
6	Plastic containers	15	4	63	3	23
7	Water trays of refrigerators	1	0			
8	Pots	9	1		3	
9	Animal water container	3	0		3	
Unrecognized containers						
1	Water trays of dispenser	5	0			
2	Aquarium	0	0		0	
3	Pan	0	0		0	
	Total	219	43			

Appendix 9

Container survey by research team in each study area (Recognize and Unrecognize Containers)

The Team Conducted Research in each study Area.

The team trip to Atauro Administrative Post (An Island)

Appendix 10

Subject: To Facilitate Dengue Data from MoH TL
Respectfully, Sir or Madam,
Regarding the request from Dr. Zito Viegas da Cruz, from Thailand, Mahasarakham University Faculty of Medicine, majoring in Master Program in Tropical Health Innovation, appropriate for his thesis proposal title, "Spatial Analysis of Dengue Infection Using Geographic Information Systems in Dili, Timor Leste." To fulfill his research, he required the Department of teal six administrative post levels, such as Vera-Cruz. Comoro (Dom Aleixo), Becora (Cristo Rei) Bairo-Formosa (Nain Feto). Metinaro, and Atauro. with a period of time from 2016 to 2022.
Due to the program of dengue control, the Department of Health Statistics, MoH Timor Leste, made available to support the data collection.
Distribution of Dengue Cases according to Six Administrative Post Levels in Dili Municipality,

No.	Administrative Post (Subdistriets)	2016	2017	2018	2019	2020	2021	$\begin{aligned} & \mathrm{Alg}_{-2022} \\ & 17 \end{aligned}$	Total
1	Dom Aleixo	78	136	101	222	382	395	2.208	3522
2	Vera-Cruz	24	57	31	116	118	79	449	874
3	Cristo Rei	54	118	65	126	172	103	626	1264
4	Nain Feto	30	67	12	109	99	73	429	819
5	Atauro	5	11	4	18	16	9	32	95
6	Metinaro	21	19	10	29	25	13	70	187
7	Total	212	408	223	620	812	672	3814	6.761

That's all our department of health statistics information in collaboration with all of the students in their success.

Thank you and best regards.

BIOGRAPHY

NAME
DATE OF BIRTH
PLACE OF BIRTH
ADDRESS
POSITION
PLACE OF WORK

Mr. Zito Viegas da Cruz
29 January 1990
Ai-assa, Bobonaro, Timor Leste
Country: Timor Leste
Administrative Post: Maliana
Village: Odomao
Sub-Village: Roccon
Email: zitoviegas6@gmail.com
Actual Adress:
Karaket Dorm Mahasarakham University (MSU), Talad, Muang, Thailand, 44000
As a student at the Master Science Program in Tropical Health Innovation, Faculty of Medicine, Mahasarakham University's (MSU), Thailand.
Student

Bachelor Degree in Medical Doctor (2009-2016), M.Sc. Tropical Health Innovation, Faculty of Medicine, Mahasarakham University, Thailand (2021-2023)
Research grants \& awards The Thailand International Postgraduate Program (TIPP) and Thailand International Cooperation Agency (TICA) Scholarship Awards.
32,000.00 Thai Baht THB

[^0]: Sources: The Ministry of Health Timor Leste (MoH.TL)'s Health statistic information (HIS) department (Appendix 10), the Ministry of Public works, the department of Road, Bridges, and flood control, and the application Google Earth Pro (free download at http://earth.google.com/web/search), as well as the result of the 2015 population and housing census [77], [78], [90],

