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ABSTRACT

COVID-19 has spread to numerous countries over five years, resulting in
774 million cases and 7 million deaths worldwide. Challenges, including ineffective
medications, vaccine hesitancy, gene mutations, and high drug costs, emphasize the
necessity for new inhibitors. SARS-CoV-2's papain-like protease (PLpro), which
plays a crucial role in cleaving the replicase polyprotein at three essential sites vital
for viral replication, has emerged as an attractive target for SAS-CoV-2 treatment.
This study utilized structure-based virtual screening, pharmacokinetic analysis,
molecular docking, and molecular dynamics (MD) simulation to identify
phytochemical inhibitors targeting SARS-CoV-2 PLpro. Based on Lipinski's rule of
five, a group of 45 phytochemicals sourced from Thai medicinal plants underwent
initial screening. Among them, ADMET and molecular docking calculations further
analyzed 27 compounds meeting the criteria. Out of these phytochemical molecules,
(3R)-7,4'-dihydroxy-8-methoxyhomoisoflavane, bergenin, capparispine, and feruloyl
tyramine representing the top 15 percent of docked compounds, underwent three
cycles of 100 ns. MD simulations to assess stability and interactions at the PLpro
binding pocket. All ligands except for feruloyl tyramine demonstrated extensive
interactions with PLpro residues, including D164, R166, P247, P248, Y264, Y268,
Q269, Y273, and D302, through both hydrogen bonds and hydrophobic interactions.
MM/GBSA binding free energy, decomposition energy and hydrogen bond formation
indicated that these three phytochemicals ((3R)-7,4'-dihydroxy-8-
methoxyhomoisoflavane, bergenin, capparispine) showed  strong and favorable
binding energies towards PLpro of SARS-CoV-2, suggesting their potential as
inhibitors. This detailed information could significantly aid in developing and
optimizing effective SARS-CaoV-2 inhibitors.
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CHAPTER I INTRODUCTION

1.1 Rationale and background

The global pandemic of coronavirus 2019 or COVID-19, caused by the severe
acute respiratory syndrome 2 (SARS-CoV-2) virus emerged in December 2019 [1],
has become a significant impact on the global economy and industries [2]. As of
August 2024, there were reported to be approximately 775 million confirmed cases of
COVID-19 and 7 million fatalities worldwide due to SARS-CoV-2 infection [3].
SARS-CoV-2 belongs to the family Coronaviridae and the genus Betacoronavirus. It
is a large positive-sense single-stranded RNA virus[4]. The virus is composed of
several structural and non-structural proteins. The structural proteins include the spike
protein (S), envelope protein (E), membrane protein (M), and nucleocapsid protein
(N). In addition to these, there are 16 species of non-structural proteins present in

SARS-CoV-2 [5] (Figure 1).

Spike protein (S)

Nucleocapsid
protein (N)

Envelope protein (E)

Figure 1 Structure of SARS-CoV-2 [5].

Currently, COVID-19 vaccinations have played a crucial role in preventing
SARS-CoV-2 infection and reducing the severity of the disease. Additional treatment
options are still needed to effectively address the current pandemic. While several
existing drugs have been repurposed and tested for their efficacy against COVID-19,
such as favipiravir [6], remdesivir [7], hydroxychloroquine, and chloroquine [8, 9],
the results have been mixed, and none of them have shown consistently satisfactory

levels of efficacy [10].



14

Papain-like protease (PLpro) is a non-structural protein 3 (nsp3) in SARS-
CoV-2, consisting of multiple domains: a ubiquitin-like domain, a thumb domain, a
zinc-binding domain, and a palm domain [11]. The catalytic triad, made up of C111,
H272, and D286, forms the active site of PLpro, located at the interface between the
thumb and palm domains (Figure 2). The BL2 loop of PLpro consists of a flexible
sequence of amino acids (267-271) that are located in a key area of the enzyme.
These amino acids help break down viral proteins and keep the virus from being
recognized by the human immune system. This loop is essential for PLpro flexibility,
enabling it to bind effectively with substrates or inhibitors. This flexibility is crucial
for PLpro regulation because it lets it attach to viral proteins, break down parts that
are needed for viral replication, and help put proteins together. Consequently, the BL2
loop enhances PLpro functionality and aids in immune evasion.

PLpro functions as a proteolytic enzyme, cleaving the polyprotein replicase at
three specific sites to release key proteins, NSP1-3, which are vital for viral
replication. PLpro recognizes specific LXGG motifs in its substrates for cleavage. In
addition to its role in viral replication, PLpro is also pivotal in inhibiting the host's
immune response. Upon infection, the innate immune system triggers an antiviral
response by modifying host cell proteins through the addition of ubiquitin (Ub) and
interferon-stimulated gene product 15 (ISG15) [12]. These modifications are part of
the host’s defense against viral infection. However, PLpro efficiently removes ISG15
and ubiquitin modifications from proteins via its catalytic cysteine cleavage domain,
which reduces inflammation and inhibits antiviral signaling, thereby enabling the
virus to evade the host’s immune response effectively.

The development of PLpro inhibitors for SARS-CoV-2 is important because
PLpro is a key enzyme involved in both viral replication and immune evasion. It is
crucial to ensure that these inhibitors specifically target the viral PLpro without
interfering with human proteases. Several factors indicate that PLpro inhibitors can be
designed to be highly specific, which will reduce the risk of adverse side effects in the
human body. The SARS-CoV-2 PLpro has a unique structure that differs from human
proteases, particularly in the active site, which can recognize and cleave the molecular
sequence “LXGG|XX” found in the viral polyprotein. This sequence is rarely found

in human proteins [13]. As a result, PLpro can be targeted without disrupting human
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proteases such as cathepsins and caspases, which have different active sites and
molecular sequences, reducing the chance that PLpro inhibitors will affect these
enzymes in the human body.

Given the critical role of PLpro in SARS-CoV-2 replication and immune
suppression, it has become a promising target for antiviral drug development.
Researchers are studying ways to inhibit PLpro activity, either by directly targeting
the catalytic site or by blocking the interaction between PLpro and its substrates. The
hope is that inhibiting PLpro can halt viral replication and restore the host's immune
response, leading to an effective antiviral effect. It should be noted that the
development of drugs targeting PLpro remains an active area of study, and further
research is needed to evaluate the potential of PLpro inhibitors in the treatment of

COVID-19 [14].

¢

- UEL cemelin

Eingerdomainy

Figure 2 Structure of papain-like protease.
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Medicinal plants mainly contain phytochemicals such as alkaloids, phenolic
compounds, flavonoids, terpenoids and other organic molecules, have been a primary
source of materials for treatment of many diseases. These phytochemicals show a
wide range of biological activities such as antibacterial [15], anti-inflammatory [16]
and anticancer [17] activities. The use of natural products derived from herbs is
appealing due to their affordability and widespread availability. Hence, this research
work focuses on exploring the potential of medicinal plants, specifically Thai herbs,
as alternative treatments for common illnesses, including COVID-19. In Thai
traditional medicine, recipes with fever-reducing properties, such as Harak,
Khiaohom, and Chanthaleela, are used to treat moderate to high fevers. These recipes
consist of various herbs, including Tiliacora triandra (Colebr.) Diels, Harrisonia
perforata (Blanco) Merr, Capparis micracantha DC., Dracaena cochinchinensis
(Lour.) S.C.Chen, Azadirachta indica A.Juss., Ficus racemosa L., Tinospora crispa
(L.) Hook. f. & Thomson, and others. To seek for potential compounds inhibiting
PLpro, a target of SARS-CoV-2, the phytochemicals found in these Thai traditional
medicine recipes were collected and screened using various tools such as Lipinski’s
rule of five, ADMET analysis, molecular docking, and MD simulation. By examining
the phytochemical constituents of selected herbs, the researchers aim to gain insight
into the chemical compounds present in these plants that may exhibit strong inhibitory
activity against the PLpro enzyme of COVID-19.

1.2 Purposes of the research

1.2.1 To screen phytochemical compounds that might show good inhibitory potencies
against PLpro enzyme of coronavirus 2019

1.2.2 To study the interaction and dynamical behaviors of the PLpro of coronavirus
2019 with inhibitors

1.3 Scope of the research

1.3.1 To screen compounds/phytochemical compounds with the targeted PLpro of
coronavirus 2019

1.3.2 To perform molecular dynamics simulation of the complexes between PLpro of

coronavirus 2019 and inhibitors
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1.4 Expected outcome

1.4.1 To obtain candidate compounds/phytochemical compounds showing high

potency and selectivity to the PLprc onavirus 2019

ion and interactions between PL-
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CHAPTER II COMPUTATIONAL THEORY AND LITERATURE
REVIEWS

Theoretical methods utilized in this study and the previously reported research
works related to PLpro are described.
2.1 Molecular docking

Molecular docking is a computational method used to predict the binding
modes and interactions between protein (host) and ligand (guest) [18]. Figure 3
shows lock-and-key model [19], which refers to the rigid docking of receptor and
ligand to find the correct orientation for the “key” to open the “lock” [20].

Receptor Ligand

Figure 3 shows lock-and-key model.

The interaction between protein and ligand is a process of systematic
thermodynamic equilibrium, and by which the complex structure formed should be
the possible conformation with the lowest binding free energy. These simplified
scoring functions commonly presume that the binding free energy may be represented
as a sum of numerous additive components representing diverse contributions to the
binding free energy [21]. AGvinding Which is calculated as follows:

AGpinding= AGyawTAGe1etAGhbond TAGdesoly TAGors (1)

AGyvaw 1s The Lennard-Jones (LJ) 12-6 potential that describes the energy

interaction between neutral atoms or molecules [22]. It is expressed as:

ver=aa(3) - (©)' @
Where:

V(r) is the potential energy between the two particles as a function of their
separation distance (7).

¢ 1s the depth of the potential well, representing the strength of the attractive

interaction.
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o is the distance at which the potential energy is zero, related to the size of the

particles.

12
The (g) term: Represents the repulsive forces arising from the electron clouds'

overlap at close distances. Dominates at short distances.

6
The (5) term: Represents the attractive forces, primarily due to van der Waals
p

dispersion forces. Dominates at intermediate distances.

AGelec represents the change in free energy associated with the electrostatic
interaction between two charged species in a solvent environment. It considers both
the Coulombic interaction between the charges and the influence of the solvent's
dielectric constant on this interaction [23]. AGelec, in terms of a simplified Coulombic

interaction within a dielectric medium:
1 9.9, 1
AGejec= - > N 3)

Where:

q1, q2 is charges of the interacting species.

go 1s permittivity of free space.

&r 1s dielectric constant of the solvent.

a is distance between the charges (often approximated as the sum of their ionic
radii)

AGhbond 18 the 12-10 Potential with Goodford Directionality. The 12-10 potential is
another mathematical model that describes intermolecular interactions, similar to the
Lennard-Jones potential. It is beneficial for modeling hydrogen bonding interactions,
and Goodford's Directionality is essential for the directional aspect of hydrogen
bonds. Unlike purely distance-based interactions, the strength of a hydrogen bond is
strongly influenced by the angle between the donor, hydrogen, and acceptor atoms. A
linear alignment (close to 180°) is optimal, and deviations from this angle weaken the
hydrogen bond. This directional dependence is essential for accurately modeling

hydrogen bonds in molecular systems [24]. The potential can be expressed as:

AGhbond:8[5 (V—O)12 '6(:—?)]0]' /() (4)

r
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Where:

AGhpond 18 the hydrogen bond interaction energy.

¢ is the well depth of the potential, representing the strength of the hydrogen
bond.

ro 1s the equilibrium distance between the donor and acceptor atoms.

r is the actual distance between the donor and acceptor atoms.

[(8) is an angular function that modulates the interaction energy based on the
hydrogen bond angle (6) and incorporates Goodford's directionality concept, ensuring
that the hydrogen bond is strongest when the donor, hydrogen, and acceptor atoms are
aligned optimally.

12-10 Exponents are chosen to provide a steeper repulsive wall and a
shallower attractive well compared to the 12-6 Lennard-Jones potential, which is
more suitable for describing the stronger and more directional nature of hydrogen
bonds.

AGdesolv 18 calculated form Stouten Pairwise Atomic Solvation Parameters are a
set of empirical values used to estimate the desolvation free energy associated with
the transfer of a molecule from a solvent environment to a protein binding site. GOLD
program utilizes a simplified version of the Stouten model, which does not explicitly
consider the effect of partial charges [25]. The equation is:

AGyesoy= X2 Sij (5)
Where:

Sij 1s solvation parameter for the pairwise interaction between atom types i and j

The summation is over all pairs of atoms in the ligand that lose contact with the
solvent upon binding.

AGhars are often used to represent the change in free energy associated with the
loss of conformational entropy due to the restriction of rotatable bonds upon ligand
binding to a protein based on the number of rotatable bonds (Nrot) in the ligand [26,
27]:

AGor=RTIn(3") (6)
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Where:

R is gas constant

T is Temperature

Niot is Number of rotatable bonds in the ligand.
2.2 Molecular dynamics simulation

Molecular dynamics (MD) simulation is a statistical tool based on Newton's
second law. This approach assumes that every particle in the system behaves like a
Newtonian particle, and quantum behaviors are entirely disregarded. Electronic
motions are ignored, and electrons are supposed to remain in their ground state and
modify their dynamics quickly when atomic locations change (the Born-Oppenheimer
approximation). Only classical mechanics is employed to describe the motion of the
particles. As a result, the equation of motion, F' = ma, applies to particles where F is
the force, m represents mass, and a is the particle's acceleration. Once each atom's
position and velocity are known, the system's state can be anticipated, and new
positions and velocities can be determined. The method can be performed indefinitely
to obtain a trajectory of atomic motions. The first step of the MD simulation
algorithm (Figure 4) includes the assignment of coordinates for each atom in the
system, initial velocities, and a simulation time step (A¢) is defined. After that, for
each time step of the simulation, the forces between atoms, which are determined by
an interatomic potential (force field), are computed, and equations of motion are

integrated.
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Step 1. Initial conditions
Initial positions (=) and velocities v =%
foratoms,seta =0,t = 0,i = 0, time step At

Atom
movemenls

Step 2. Configuration update

Location update: r? = ri + v()at + %a At? + accurate terms
Velocity update: v?= v® + aAt + accurate terms

v

Step 3. Force/energy calculations
F=-Vp(rP)anda=F/m

Atom
movements h 4

Step 4. Configuration update
Location update: ri*! = rP 4 f(a, Af)
Velocity update: v?= v* + f(a, At)

A 4

Step 5. Apply MD parameters
Apply boundary conditions, temperature and pressure control. Ime
integration and iteration step: t =t + At, i =i+ 1

Repeat step 2 until the acceptable results are obtained

Figure 4 Scheme of the MD simulation [28].
2.3 Ensemble and trajectory
The output of the simulation comes in the form of ensemble of frames. All
frames share the same macroscopic/thermodynamic state but may differ in the
microscopic states. Each frame represents the system at a specific point in time (a
specific microscopic state). If the ensemble is sequence (time) dependent, it is called a
trajectory. In this case, the trajectory represents the time-dependent evolution of the

system.
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2.3.1 Canonical ensemble (NVT)

The canonical ensemble contains all possible states in thermal equilibrium with
a heat bath. The system remains at the absolute temperature of T but may exchange
energy with the heat bath. Three system parameters are fixed throughout the
simulation: the absolute temperature (7), the number of atoms (), and the volume
(V). T is the most influential parameter among the system states.

2.3.2 Micro canonical ensemble (NVE)

The micro canonical ensemble represents an isolated system. No change in
mass/number of atoms (), Volume (), nor exchange of Energy (£) is allowed.

2.3.3 Isothermal—-isobaric ensemble (NPT)

The system has a fixed temperature (7), hence it is isothermal, and fixed
pressure (P), hence it is isobaric [29].
2.4 Force-Field

The Force Field is the summation of bonded and non-bonded terms or

covalent and non-covalent interactions among the atoms and molecules. A simple

molecular mechanics energy equation is given by:

Etotal = Ebonded+ Enon-bonded (7)
Ebonded = Estretch + Ebend + Etorsion (8)
Enon-bonded — Eelectrostatic + Evan der Waals (9)

2.4.1 Stretching energy (Estretch)

The stretching energy associated with vibration about the equilibrium bond
length. The ky parameter controls the stiffness of the bond spring, while o defines its
equilibrium length. Unique ky and ro parameters are assigned to each pair of bonded

atoms based on their type such as C-C, C-H, O-C, etc.

Estretch= Zbonded kb(r - 1’0)2 (10)
2.4.2 Bending energy (Epend)

The bending energy associated with vibration about the equilibrium bond
length. The k, parameter controls the stiffness of the angle, while 0 defines its
equilibrium angle. Unique parameters for angle binding are assigned to each bonded

triplet of atoms based in their type such as C-C-C, C-O-C, C-C-H, etc.
Eend= Yangles k(6 - 6)° (11)
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2.4.3 Torsion energy (Etorsion)

Torsional energy fluctuates as covalent bonds (such as C-C, C-N, and C-O
single bonds) rotate. The power reaches its maximum when the torsion angle (t) is 0°
and when interactions occur between atoms separated by three sigma bonds. The A
parameter governs the amplitude of the energy curve, while the n parameter controls
its periodicity and @ shifts the curve along the rotational angle axis (1). These
parameters are determined through curve fitting. Specific torsional rotation
parameters are assigned to each set of four bonded atoms based on their types, such as
C-C-C-C, C-O-C-N, H-C-C-H, etc.

Etorsion= LtorsionA[1 + cos(nz - @)] (12)
2.4.4 Non-covalent interactions
The non-bonded energy represents the pairwise sum of the energies of all

possible interacting non-bonded atom

__ yoatompairs atompairs
Enon-bonded_ Z if E eletrostatics + Z ij Evan der Waals ( 13 )
_ Ay, By 49
Enon-bonded_ Zier_é—i_rl_z—i_ZiZjT (14)
ij ij i

Where A determines the degree of stickiness of the van der Waals attraction
and B determines the degree of hardness of the atoms, 7;; is the distance between
atoms 7 and j, and q; is the partial atomic charge. With equation 8, it is possible to
observe that the energy depends on non-bonded interactions for van der Waals
attraction, repulsion, and electrostatic interaction [30].

2.5 Algorithms

MD simulation to view the dynamic evolution of biological systems on a

temporal scale can be defined by employing Newton’s Laws of motion.

F;=ma; (15)
dzri'(t) (16)

dr*
In equations 16 and 17, 7; and m; represent the position and mass of atoms i,

Fi(H)= m;

respectively, and Fi(¢) is the force acting on atom i at time ¢. These classical equations
of motion are integrated using the finite difference method. finite difference methods
are techniques used to generate MD trajectories with continuous potential models.

The basic idea is that the total force of each particle is calculated on a time scale as
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the vector sum of its interactions with other particles, rather than as the vector sum of
its interactions with other particles.

Algorithms for integrating the equation of motion often rely on the finite
difference method. A core assumption in these algorithms is that dynamic properties
(such as position, velocity, and acceleration) can be approximated using the Taylor
Series Expansion Method. The Taylor series expansion method provides a framework
for predicting the position and other dynamic properties at a future time ¢+ J¢, using
the current values at time ¢. This expansion includes position, velocity, and
acceleration terms, including higher-order terms for improved accuracy.

Position Update Using Velocity and Acceleration as an equation (18):

#(t + Of) = r(#) + v(£)o(£)+ ; a(f)oF + -+ (17)
Where:

r(¢) = is the position at time ¢, v(¢) is the velocity at time ¢, a(¢) is the acceleration at

time ¢, Jt is a small time step.

Position Update Using Alternative Acceleration Function as an equation (19):
1t + 5t) = 1(t) + v(£)o(6)+ ; b(1)OL + +=- (18)

Here, b(¢) represents a different rate of change in acceleration compared to a(?),
possibly accounting for external forces or other influences on the motion.
Equation (20) is Acceleration Update Using Jerk (Rate of Change of Acceleration)
(t + ot) = a(t) + b(£)o(t) + -+ (19)
Where:
a(t) is the acceleration at time
b(t) represents the jerk (rate of change of acceleration).

These equations are fundamental to many numerical integration algorithms in
physics and engineering simulations, including Verlet Integration and Euler's Method.
These techniques allow for the approximation of particle positions and velocities over

small time intervals [31].
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2.6 Periodic boundary conditions

The periodic boundary condition addresses surface interaction effects (Figure
5), particularly in simulations of small systems, where interactions between particles
and the walls could lead to inaccurate system properties. In this method, the cubic
simulation box is replicated in space, allowing particles to interact not only with
others within the same box but also with particles in adjacent replicated boxes. As a
result, when a particle exits the simulation box, its corresponding image particle
enters from the opposite side with the same velocity, ensuring the conservation of

overall mass and momentum within the system.
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Figure 5 The periodic boundary conditions in two dimensions [32].

2.7 Cut-off and minimum image convention

When a cut-off is applied, the interactions between all pairs of atoms that are
further apart than the cut-off value are set to zero. In the base image convention, each
atom sees at most one image of every other atom in the system. This suggests that
only the closest atoms interact with a fixed atom, as shown in Figure 6. Minimum
image convection is a very explicit way to fix a cut-off length; in contrast, each
system particle could see its image. On the contrary, minimum image convection
could introduce adopted periodicity in the system. These periodicities could not
influence the precision of properties derived as in the case of molecular dynamics
simulations of well-ordered systems. Still, in the case of liquid or vitreous systems,

the periodicity could induce the formation of unreal-ordered phases. Applying the
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minimum image convention means cutting off non-bonded terms that are less than

half the length of the shortest dimension.
® /0® /@0 _/
F|" ¢P” &F
©
Q\“( . g\&(“ O
9 d bt U N U
®
T N O

‘//o“ﬁ &f/o‘O ‘/‘/0
© ® ®

k ‘\*‘( ‘\*‘( "‘m

-

4
0.0

4
0.0

Figure 6 The spherical cut-off and the minimum image convention [33].
2.8 Free energy calculations
2.8.1 Solvation interaction energy (SIE)

The SIE approach utilizes empirical equations [34, 35] to predict the binding
free energy (AGy;,g) of protein-ligand interactions in an aqueous environment, as
described in the following equation [36, 37].

AGing(p:Din,0,7,C) = 0| Eyaw+Ecout(Din) *AGHind (p.Din) tPAMSA (p) |+C

(20)

Where:

Evaw represents the energy associated with van der Waals interactions between
the protein and ligand molecules when bound together.

Ecoul represents the energy associated with electrostatic (Coulomb) interactions
between the protein and ligand in the bound state. These interactions are a result of
the attraction or repulsion between charged or partially charged atoms within the
molecules, and they play a significant role in the binding process.

Evaw and Ecou were calculated using the AMBER molecular mechanics

(GAFF) force field.
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AGY..4 is the change in solvation reaction field energy between the bound and
unbound states, which is influenced by the parameter known as the solute interior
dielectric constant (Din), similar to Coulomb energy.

AMSA represents the molecular surface area change upon binding, with the
area coefficient (y) determining its correlation with the non-polar solvation energy.
The parameter p is the AMBER van der Waals radii linear scaling coefficient.
Additionally, the coefficient a serves as a global scaling factor, while C acts as a
translation constant, aligning the SIE score with the magnitude of experimental values
from a training set.

The optimal standard parameters are as follows:

p 1s typically associated with scaling the van der Waals interaction energy. A
value of 1.6 suggests that the van der Waals interactions are slightly amplified in the
model compared to their raw calculated values.

Din 1s likely related to the dielectric constant used in the calculation of
electrostatic interactions. A value of 2.25 indicates that the model is considering a
lower dielectric environment than that of bulk water (which has a dielectric constant
of around 80). This lower value could reflect the less polar environment at the protein-
ligand interface.

y is often referred to as the surface tension coefficient or area coefficient. It
connects the change in solvent-accessible surface area (AMSA) upon binding to the
non-polar solvation-free energy. The units (kcal mol 'A~?) indicate that it represents
the energy penalty or gain per unit area of surface exposed to or buried from the
solvent.

a scales the contribution of the electrostatic interaction energy to the overall
binding free energy. A value of 0.105 suggests that electrostatic interactions play a
role, but their contribution is moderated compared to other factors.

C is a constant term in the SIE equation with a —2.89 keal/mol value. It is an
overall correction factor that accounts for various energetic contributions not

explicitly captured by the other terms in the model.
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2.8.2 Molecular Mechanics Generalized Born Surface Area (MMGBSA)
The MMGBSA is a widely used computational method to estimate the binding
free energy between two molecules, such as a ligand and a receptor. It combines
molecular mechanics for intramolecular and intermolecular forces with solvation
effects modeled by the Generalized Born (polar) and Surface Area (non-polar) terms.
The method is commonly employed in drug discovery to assess and rank the binding
affinities of ligands for their protein targets [38].
The binding free energy (AGy;,q) is given by:
AGying = Enmt AGolvation = TAS (21)
Where:
Eyv 1s molecular mechanics energy (bonded, van der Waals, and electrostatic
interactions).
AGgvation 18 Solvation-free energy that includes polar (Generalized Born) and non-
polar (Surface Area) contributions.
TAS is an entropic contribution, often neglected due to computational complexity.
2.8.3 Thermodynamic integration (TI)

Thermodynamic integration (TI) calculations determine the free energy
difference between two states, A and B, by coupling them through a parameter called
A, which acts as an extra, nonspatial variable. This A framework enables the
calculation of the free energy difference between the two states as follows:

AGH= [} (&), (22)

The thermodynamic cycle presented in Figure 7 enables the comparison of
results from a series of TI calculations with measurable physical quantities.

Processes A and B represent the binding of two different ligands to a protein,
while processes C and D involve transformations between the two ligands. In process
C, this transformation happens while the ligand is bound to the protein, and in process
D, while the ligand is dissolved in water. Since AGec = AGp = AGa — AGs, TI
calculations can be used to compute relative binding free energies, making them
valuable for drug design or lead optimization. In equation 1, V(A) represents the A-
coupled potential function, corresponding to V(A) when A =0 and V(B) when A = 1.

The integration is performed over the average A derivative of the potential function at
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different A values. Since analytical integration is rarely possible, simulations are
conducted at discrete A points, and the integral is evaluated numerically through
interpolation. One advantage of TI calculations is that independent molecular
dynamics (MD) simulations at fixed A values can be performed in parallel, enhancing
efficiency. Additionally, extra A points can be introduced at any time to improve the

accuracy of the calculations [39].

® —| @

Figure 7 The thermodynamic cycle involves events A and B, which represent the
binding of two distinct ligands to a protein, while events C and D signify the
conversion of one ligand to the other in both the bound and solvated states,
respectively. The free energy differences between processes A and C can be
determined by calculating the free energy differences between processes B and D
[40].

2.8.4 Free energy landscape

The function of a biological system is defined by its free energy landscape,
which represents the probability of the system being in a particular state under
equilibrium conditions [41]. This landscape serves as a map of biological function,
with multiple pathways between states, some requiring less energy than others. The
system moves through-this map by balancing entropic and internal energies,
influenced by dissipative forces, temperature, and the system's structure [42]. This
concept is captured in the following equation.

G=H(U)-TS (23)
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Where:
G is Gibbs free energy
H is enthalpy
U is internal energy
T is temperature

S is entropy (S)

In biophysics, free energy usually refers to Gibbs free energy, but Helmholtz
free energy (F) is also used. The choice depends on the ensemble: Gibbs free energy
applies in the NPT ensemble (constant particle number, pressure, and temperature),
while Helmholtz free energy is for the NVT ensemble (constant particle number,
volume, and temperature). In practice, Gibbs free energy is commonly used in
experiments, but both NVT and NPT ensembles are relevant in biophysics due to
small volume fluctuations. The free energy landscape, representing a probability
distribution, encapsulates a biological system's function and is related to the
Boltzmann factor.
p(x)ox e COVkeT (24)

In this context, p(x) is the probability density function along a reaction coordinate (x),
G(x) is the Gibbs free energy, kg is Boltzmann’s constant, and T is the temperature.
The reaction coordinate (or collective variable) describes transitions between states,
but identifying these variables can be challenging, as they often involve complex
motions in protein conformational changes. If multiple states exist in the free energy
landscape, more than one collective variable may be required.

S= kg In (Q) (25)

State can refer to either microstates or macrostates. A microstate represents a
specific configuration, while a macrostate 1s a collection of microstates, typically
forming a basin in the free energy landscape. A macrostate has non-zero entropy,
which is defined as:

In this context, kg is Boltzmann's constant and Q represents the number of
microstates. Microstates have zero entropy, so their free energy is determined by
enthalpy alone. For macrostates, entropy is proportional to the logarithm of the
macrostate's hyper-volume, or the width of the basin in a 1D example. As temperature

increases, macrostates widen and the free energy landscape flattens. Lower energy
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states are more probable, meaning transitions between low-energy microstates are

faster, while crossing energy barriers between macrostates is slower [43].
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Figure s A free energy landscape sketch shows two macrostates, each represented by

a basin, reflecting distinct protein conformations. The collective variable x describes
the slow transition between states, with the transition timescale determined by the
energy barrier height between the macrostates [41].

2.8.5 Umbrella sampling

Umbrella Sampling is a computational technique used to calculate the Potential
of Mean Force (PMF), which represents the free energy profile along a reaction
coordinate, such as the distance between two molecules or the rotation of a bond. It is
commonly employed in molecular dynamics simulations to study rare events and
processes where direct sampling is inefficient.

In Umbrella Sampling, the system is biased using a harmonic potential (or
"umbrella") to sample different regions of the reaction coordinate more effectively.
This method helps overcome energy barriers and ensures adequate sampling across
the entire reaction coordinate space. After the simulations, these biased distributions
are "unbiased" using statistical techniques such as the Weighted Histogram Analysis

Method (WHAM) to compute the PMF [44].
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The PMF, W(x), along a reaction coordinate X, can be described as:
W(x)= -kgTInP(x) (25)
Where:

W(x) is the Potential of Mean Force at point x along the reaction coordinate.

P(x) is the probability distribution of the system at x.

kB is Boltzmann’s constant.

T is the temperature.

In umbrella sampling, biased simulations are conducted with a harmonic
potential of the form:
Upias ()= 5k(x%0)’ (26)

Where:

Ubias (X) is the biasing potential.

k is the force constant of the harmonic potential.

Xo 1s the center of the biasing window (the point along the reaction coordinate
where the bias is applied).

The probability distribution obtained from each biased simulation is corrected to

obtain the unbiased distribution, which is then used to calculate the PMF [45].
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2.9 Literature reviews

The screening and searching for compounds against PLpro target can be divided
into two main strategies i.e., drug repurposing and new compound
searching/screening.

2.9.1 Drug Repurposing

Kandeel, M., et al., performed virtual screening of 1697 clinical FDA -approved
drugs against SARS-CoV-2 PLpro [46]. The results showed the compounds with the
highest docking scores, including 26 compounds with a docking score of —7 or higher.
Only 10 drugs with the highest estimated docking scores and favorable
pharmacokinetics were subjected to MD simulations, followed by molecular
mechanics/generalized Born surface area (MM/GBSA) binding energy calculations.
Three drugs, phenformin, quercetin, and ritonavir, showed favorable binding free
energies (Table 1) of -56.6, -40.9, and -37.6 kcal/mol, respectively. Among the three
drugs, energetic and structural analyses showed that phenformin was more stable than
quercetin and ritonavir. The list of drugs provided herein constitutes a primer for
clinical application in COVID-19 patients and guidance for further antiviral studies.
Table 1 Decomposition of MM-GBSA binding energies for phenformin, quercetin
and ritonavir in complex with COVID-19 PLpro through 50 ns MD simulations.

Calculated MM-GBSA binding energy (kcal/mol)
Drug name

AEvaw AEeje AEcg AEsur AGgas AGsolv AGbinding
Phenformin -23.2 -124.1 948 |-4.0 -147.3 | 90.7 -56.5
Quercetin -33.5 -75.0 72.7 -5.2 -108.4 | 67.6 -40.9
Ritonavir -45.0 -26.7 40.0 |-5.9 =717 34.0 -37.6

Drug repurposing of DrugBank database was carried out by adopting
ensemble docking approach for multiple conformations of PLpro SARS-CoV-2
molecular target [47]. The three drugs (Benserazide, Dobutamine and Masoprocol)
showed the best docking scores and interaction with Y268 and Q269 key binding
residues as illustrated Figure 7. Further MD simulations suggested the superior
stability and binding of dobutamine and masoprocol inside the binding site compared

to Benserazide. This approach can facilitate identifying drugs for repositioning via
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targeting multiple conformations of a crucial target for the rapidly emerging COVID-

19 pandemic.

GLN 269

TYR 268
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Figure 9 PLpro apo structure in khaki color (PDB ID: 6W9C) showing the binding
site residues with the highly flexible loop (T265-H272) in red and the rest (L162-
E167, P247-P248, Y264-Y273 and T301) in blue. The highly flexible amino acids (3-
83, 182-200, 223-235 and 306-315) are shown in yellow [47].

Reza, R., et al., [48] study explores the potential of seventeen anti-lung cancer
drugs to combat COVID-19 by screening them against essential SARS-CoV-2
proteins: Main Protease (Mpro), Papain-like Protease (PLpro), and Spike
Glycoprotein. ADMET profiling was employed to assess the pharmacokinetics and
toxicity of these drugs. In molecular docking studies, Capmatinib (CAP) emerged as
the top candidate, showing the highest binding affinity and lowest inhibition constant
(Kj) against SARS-CoV-2 proteins. Molecular Dynamics (MD) simulations confirmed
that CAP induced significant conformational changes in the proteins, further
supported by analyses of RMSD (Root Mean Square Deviation), RMSF (Root Mean
Square Fluctuation), and binding energy. MMPBSA calculations revealed that CAP
had the highest binding energy with PLpro compared to other proteins, indicating a
strong inhibitory effect. ADMET profiling suggested that CAP has a favorable
toxicity profile. The results reveal the intriguing potential of CAP as a therapeutic
agent against COVID-19, sparking further interest and engagement in experimental

validation and drug discovery efforts targeting SARS-CoV-2.
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Figure 10 Binding interactions, RMSD, RMSF, Radius of gyration and SASA plots
with CAP and PLpro

The researchers of Patel, R., et al., [49] focused on GRL0617, an established
inhibitor of PLpro in SARS-CoV, which is also effective against SARS-CoV-2
because of the high similarity (over 80%) between the PLpro enzymes of both viruses.
Notably, conserved amino acids such as Tyr268 in SARS-CoV-2 were identified for
their crucial role in interacting with GRL0617, mainly through hydrophobic
interactions that stabilize the binding. Then, Screening of Antibacterial Compounds.
To identify new potential inhibitors of SARS-CoV-2 PLpro, an extensive database of
8581 antibacterial compounds was downloaded from the ZINC database. These
compounds were filtered based on their molecular weight (between 250 and 400
Daltons) and structural features resembling GRL0617. Priority was given to
compounds with aromatic rings capable of forming hydrophobic p1 interactions and a
central -CONH group that could form hydrogen bonds with the critical Y268 residue.
The filtered compounds were docked against SARS-CoV-2PLpro to evaluate their
potential as inhibitors. This docking analysis identified five top hits that demonstrated
strong interactions with the crucial Y268 residue. Among the five compounds,
ZINC44459905 emerged as the lead compound, displaying the strongest interaction
with Y268.
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Further analysis through molecular dynamics (MD) simulations confirmed the
stability of the ZINC44459905-PLpro complex, suggesting that this compound could
effectively inhibit PLpro’s function. Based on the docking and simulation results, the
study proposes ZINC44459905 as a potential lead molecule for further in vitro and in
vivo experiments. This compound is suggested as a promising candidate for the
development of therapeutic treatments against COVID-19, targeting the critical PLpro

enzyme to disrupt viral replication and immune evasion mechanisms.
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Figure 11 Illustrations represent the process of the study.
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Table 2 Some repurposed drugs are predicted to be potential inhibitors for PLpro of

SARS-CoV-2.
Database Results
Molecular MD
Chemical L docking simulation REF
Inhibitor Docking Binding free
¥ score energy
(kcal/mol) . ¥ (kcal/mol)
Phenformin FDA- 6W9C | -7.23 - -56.5 [46]
approved (MMGBSA)
drugs
Benserazide DrugBank | 7JRN | -11.15 Q269 | - [47]
database Y273
D164
Capmatinib PubChem | 6W9C | -7.70 - -8.34 [48]
(MMGBSA)
2-(2-((benzofuran-2- | ZINC15 | 7CMD | -5.70 Q269 | -50.96 [49]
carboxamido) database D164 | (MMGBSA)
methyl)-5-methoxy-
1H-indol-1-yl)acetic
acid (ZINC44459905)
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2.9.2 New compound searching

Pang, J., et al., discovered small molecules inhibited SARS-CoV-2 PLpro [50].
Data analysis of the simulations shows the top four compounds (F403 0159,
F112 0109, G805 0497, and D754 0006) identified as potent SARS-CoV-2 PLpro
inhibitors. MD simulations indicated that the contribution of van der Waals interaction
dominated the binding free energies of these compounds, which may be attributed to
the hydrophobicity of the active site of PLpro. Furthermore, as shown in Figure 8, all
four compounds formed conservative hydrogen bonds with residues such as D164,

Q269, and Y273.

R166

Figure 12 Predicted binding modes of four PLpro-inhibitor systems: PLpro-
G805.0497 (a and b), PLpro-F403 0159 (c and d), PLpro-F112 0109 (e and f), and
PLpro-D754-0006 (g and h) obtained from structure-based virtual screening. The
protein PLpro is shown in cartoons and colored in blue. Hydrogen bond and n-n

interactions are shown as dashed lines and colored in red and blue, respectively.
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Bhowmick, S., et al., reported a few specific food compounds that can bind
tightly with the SARS-CoV-2 PLpro protein identified through virtual screening,
molecular docking, MD simulations, and MM -GBSA-based binding free energy
calculations [51]. This research also provides a deeper understanding of the binding
modes of the four proposed food compounds (FDB001395, FDB029219, FDB030757,
and FDB031079) with SARS-CoV-2 PLpro protein. Molecular docking revealed
several significant inter-molecular binding contacts between the functional groups of
the identified food compounds and the catalytic amino acids of the SARS-CoV-2
PLpro protein (Figure 11), which were also confirmed by all-atom MD simulation
studies in a dynamic state. The binding free energy showed the proposed compounds
displayed better binding affinity for the SARS-CoV-2 PLpro than the standard
compound VBY (control). Data analysis of MD simulations shows characteristics of
both the protein backbone and the food compound, such as RMSD and RMSF, RoG,
SASA, H-bond interaction profiles, etc., and it was discovered that the backbone of
SARS-CoV-2 PLpro remained very stable even after binding with the suggested
molecules in comparison to the standard inhibitor. Moreover, the binding free energy
demonstrated strong AG values for all complexes, ranging from —15.56 to —28.59
kcal/mol. Overall, the extensive computational study explained that all proposed food
compounds might be acting as crucial SARS-CoV-2 PLpro inhibitors or modulators

for successful therapeutic application in COVID-19.

Figure 13 A) Molecular binding interactions and B) Binding mode of proposed food
compounds inside the active site cavity of SARS-CoV-2 PLpro protein.
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Lakhera, S., et al., investigated phytoconstituents of medicinal herb  Piper
Longum’ against SARS-CoV-2 PLpro using screen of the pharmacokinetic properties
[52]. Molecular docking has revealed that I-asarinin, a component of Piper Longum
with the best binding affinity score of —10.8 kcal/mol and following most of the
ADMET properties, has forced us to assume it is a better component to be used as a
drug against SARS-CoV-2 PLpro. Furthermore, the MD simulation results have
justified the assumption by showing acceptable values of calculated binding energy.
H-bond interactions and the radius of gyration, although, explained the better stability
and compactness of proteins, all these properties uplift the motive to use I-asarinin as
a potential drug against COVID-19 (Figure 12), and the authors believe that this in
silico study will lead to drug development for the treatment of COVID-19.

Figure 14 Donor-acceptor interactions obtained by docking of I-asarinin and receptor
40VZ of PLpro protease of COVID-19.

Sanachai, K., et al., employed all-atom MD simulations and binding free
energy calculations based on MM-PB(GB)SA and SIE methods to elucidate and
compare the binding behaviors of five inhibitors derived from peptidomimetic
inhibitors (VIR250 and VIR251) and naphthalene-based inhibitors (GRL-0617,
compound 3, and compound Y96) against SARS-CoV-2 PLpro [53]. The results
showed that all inhibitors interacted within the PLpro active site. The van der Waals
interactions and hydrogen bond formation in residues G163 and G271 with
peptidomimetics and the Q269 residue with naphthalene-based inhibitors were the

main energy contributions that stabilized the protein-ligand complexes. The
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simulation results showed that VIR250 had the highest binding efficiency with SARS-
CoV-2 PLpro of the five inhibitors tested. Rational drug design to replace the
aromatic rings, including heteroatoms (e.g., thiazolopyridine), at the P2 and P4 sites
could help to improve the inhibitor-binding efficiency, and increased the nonpolar
moiety (e.g., ethene) at the N-terminal of VIR250 to enhance hydrophobic

interactions with residues at the P1 and P3 sites (Figure 13).
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Figure 15 Rational design of the SARS-CoV-2 PLpro inhibitors based on the
peptidomimetic VIR250 inhibitor. (A) 3D and 2D structures of VIR250 with ligand
modifications, (B) 2D structure of modified VIR250 and their binding free energy
prediction comparison with VIR250 against SARS-CoV-2 PLpro derived from MM-
PB(GB)SA calculations, (C) hydrogen bond occupation, and (D) per-residue
decomposition free energy (AGupind residue) of modified VIR250 and the A2/SARS-
CoV-2 PLpro complex. Calculations are obtained from one snapshot of the complex
after system minimization and solvation in the TIP3P model.

Baildya, N., and co-workers screened potential drugs from Azadirachta Indica
(Neem) for SARS-CoV-2 PLpro by molecular docking study along with MD
simulation [54]. Desacetylgedunin (DCG) found in Neem seed showed the highest
binding affinity towards PLpro as shown in Figure 14. Furthermore, MD simulation
studies supported by standard analysis (e.g. root mean square deviation and
fluctuation (RMSD, RMSF), radius of gyration, solvent accessible surface area

(SASA)) showed large impact on the structure of PLpro by DCG.
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Figure 16 3D and 2D images of desacetylgedunin (DCG), with the highest binding
affinity towards PLpro.

Singh, E., et al., investigated the structural influences of ligand binding on
PLpro [55]. ZINC-in-Trials screening for SARS-CoV-2 PLpro Was performed. The
resulting compounds obtained from molecular docking calculations,
ZINC000000596945, ZINC000064033452, and VIR251 (control molecule), were
subjected to MD simulation. The essential dynamics analyses utilize principal
component analysis, a dynamic cross-correlation matrix, a free energy landscape, and
time-dependent essential dynamics to predict the structural changes observed in
PLpro upon ligand binding in a simulated environment. The binding free energy
calculations based on MM/PBSA of the two selected molecules, ZINC000000596945
(-41.23 £ 3.70 kcal/mol) and ZINC000064033452 (-25.10 £ 2.65 kcal/mol), revealed
significant values, indicating that they are potential inhibitors of PLpro from SARS-
CoV-2 (Table 4).
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Table 3 Individual component contribution in binding free energy calculations for

native PLpro and its ligand-bound complexes.

System Van der | Electrostatic | Polar SASA Binding
Waals energy solvation | energy free
energy (kcal/mol) energy (kcal/mol) | energy
(kcal/mol) (kcal/mal) (kcal/mol)

ZINC000000596945 | -44.70 +|-9.86+4.59 |17.34 +|-400 +£|-4123 =
3.39 3.52 0.21 3.70

ZINC000064033452 | -39.25 + |-578+254 | 2407 +|-413 +|-2510 =
2.93 3.43 0.27 2.65

VIR251 -17.38 + | -22.68 +3511 +|-217 +|-7.13 %
2.48 6.01 7.70 0.26 5.69

Based on the research work done by Jupudi, S., et al., [S6]. The docking scores
0of SN00334175 and SN00162745 are -10.58 kcal/mol and -9.93 kcal/mol,
respectively. The MD simulation of SN00334175/7JN2 and SN00162745/7IN2

revealed that these complexes were stabilized with ligand binding interactions

forming with G266, N267, Y268, Y273, T301 and D302, K157, L162, D164, R166,

Q167, P248 and Y264. Moreover, van der Waal energy and hydrophobic energy terms

are major contributors to total binding free energy (Figure 15).
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Figure 17 2D interaction diagram for the 100ns simulation trajectory of

SN00334175/7JN2 (A) and SN00162745/7IN2 (B) complex.
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Based on the research work by Elseginy, S.A. and M.M. Anwar, [57].
ZINC101291108 (lead 1) and ZINC16449029 (lead 2) were identified as potent
SARS-CoV-2 PLpro inhibitors with ICso values of 0.085 mM and 0.063 mM,
respectively. MD simulations were performed for lead 1, 2 and several reported
SARS-CoV-2 inhibitors. The simulations confirmed the stability of both lead
compounds and showed that they adopted two confirmations during the simulation
period. The per-residue decomposition results revealed that the key residues involved
in inhibitor binding were E167, P247, P248, Y264, Y268 and Q269. H-bond analyses
showed H-bonds with G266 and N267 and salt bridges with G209 and Y273, which
are essential for strengthening the substrate-binding pocket. Both inhibitors showed
hydrophobic interactions with the S4 site and BL2 loop residues. The RMSD of the
BL2 loop with the two inhibitors was investigated, and the results showed that the
Y268 and Q269 BL2 loop residues moved outward to accommodate the large size of
lead 2. The van der Waals interaction was the main energy contribution that stabilized
lead 2, while van der Waals and electrostatic interactions were the main energy
contributions stabilizing lead 1. The rational design of lead 2 suggested that
replacement of the 2-(2-hydroxybenzylidene) hydrazine moiety with naphthalene or
nitrobenzene at the P4 position of lead 2 and introduce polar substituents as aniline
and benzoate groups at position P1 to enhance hydrophobic interactions and H-bonds,

respectively as illustrated in Figure 17.
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Figure 18 Rational drug design of the SARS-CoV-2 PLpro inhibitors. 2D structure

of lead 2 with possible modified fragments.
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Based on the research work by Thangavel, N. and M. Albratty, [58] predicted
4 olive secoiridoids as SARS-CoV-2 PLpro inhibitors. Docking results showed that
demethyloleuropein aglycone was the top-ranked compound. MD simulation analysis
predicted that demethyloleuropein aglycone was a potent non-covalent inhibitor of
SARS-CoV-2 PLpro based on the nature and stability of its interactions with multiple
binding sites. MM-GBSA energy of -94.54 & 6.05 kcal/mol indicates good stability. In
addition, for 98 % of the simulation time, two phenolic hydroxy groups of the
demethyloleuropein aglycone maintained two hydrogen bonds with Asp302 of PLpro,
specifying the significance of the groups in receptor binding (Figure 18).

B

Interactions

Figure 19 2D interaction diagrams of aspergillipeptide F with PLpro active site
residues.

Based on the research work by Selvaraj, V., et al., [59] study explores the in
silico inhibitory potential of 28 polyphenolic compounds against the SARS-CoV-2
papain-like protease (PLpro), which is crucial for viral replication. Among these
compounds, amentoflavone, tiliroside, papyriflavanol A, and the antiviral drug
indinavir exhibited strong binding affinities and were selected for further analysis.
Amentoflavone, tiliroside, and papyriflavanol A demonstrated high stability and
inhibitory potential, particularly by binding to the T158 and L162 dyad in PLpro.
Further ADME (absorption, distribution, metabolism, and exeretion) and DFT
(density functional theory) analyses of amentoflavone and papyriflavanol A indicated
excellent pharmacokinetic and molecular electrostatic properties. Molecular dynamics
(MD) simulations and MM-GBSA analysis showed that amentoflavone, tiliroside, and
indinavir effectively bind to the PLpro active site, with the amentoflavone-PLpro

complex yielding a high MM-GBSA score of -106.56 kcal/mol. Although these
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findings are promising, human clinical trials are necessary to confirm their therapeutic

relevance.

Table 4 MMGBSA scores for MD simulated complexes.

Complexes MMGBSA score (-kcal/mol)
PLpro (6 W9C)-Amentaflavone -106.56

PLpro (6W9C)-Tiliroside -90.13

PLpro (6 W9C)-Indinavir -81.55

According to the analysis of Waqas, M., et al., [60] explore the discovery of
potential drug candidates targeting the SARS-CoV-2 papain-like protease (PLpro), a
critical enzyme for viral replication and immune evasion. Using computational and
enzymatic methods, the study identified five natural compounds with strong
interactions and high binding energies with PLpro, suggesting they could disrupt its
activity. Molecular dynamics simulations showed that these compounds form stable
complexes with the enzyme, potentially altering its normal functions. Among the
identified compounds, COMP4 was the most effective in inhibiting protease and
deubiquitinase activities, followed by COMP1-COMP3 and COMPS. In vitro tests
demonstrated low cytotoxicity in human BJ cells at a 30 uM dosage. These findings
suggest that the selected compounds have therapeutic potential for treating COVID-19
by inhibiting PLpro, and further optimization and in vivo testing are needed to

improve their efficacy as drug candidates.
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Figure 20 the 2D and 3D interactions of the compounds COMP1-COMPS5. A
superimposed view shows the comparison between the co-crystallized ligand (in
green) in the 7CMD structure and its re-docked conformation (in purple), with a Root
Mean Square Deviation (RMSD) of 0.388 A, indicating high accuracy in docking. In
the 2D format, hydrogen bonds are represented by blue and green dotted arrows,
while in the 3D format, they are shown as black dotted lines. For color references and
further details, readers are directed to the online version of the article.

According to the analysis of Gao, H., R. Dai, and R. Su, [61] discuss the
severe global impact of the SARS-CoV-2 virus, emphasizing that managing its long-
term effects on public health, the economy, and mental health will be a significant
challenge. It identifies the papain-like protease (PLpro) as a promising target for
antiviral drug development. Using pharmacophore-based drug design, the study
screened and identified ten potential inhibitors, with compound UKR 1129266
showing the best binding to PLpro through molecular docking analysis. Inhibiting
PLpro is essential for blocking viral replication and preventing immune system
disruptions, such as inflammatory flares observed in COVID-19 patients. Despite

challenges in developing PLpro inhibitors, they are seen as essential for fighting



49

current and future coronavirus pandemics. The findings offer crucial insights for the
design of antiviral drugs targeting SAR—COV-Z.
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Table 5 Some new selected compounds predicted to be potential inhibitors for PLpro

of SARS-CoV-2.

Chemical Name Database Results REF
Inhibitor | PDB Molecular MD
ID docking simulation
Docking {-bond | Binding free
score energy
(kcal/mol (kcal/mol)
)
N-[(2S)-3-(1-oxo- | ChemDiv | 6WX4 | - Q269 | —36.60 [50]
1,3-dihydro-2H- database Y273 | (MMGBSA)
isoindol-2-yl)-2- D164
phenylpropyl]-4-(4-
0x0-3.4-
dihydroquinazolin-
2-yl) butanamide
(ID: D754 _0006)
p-coumaroyl FooDB 7JIW | -7.00 A240 | -28.597 [51]
triacetic acid database Y258 | (MMGBSA)
lactone Q263
(ID: FDB031079) T295
[-asarinin Phytoche | 40VZ | -10.80 N1l |=11.9 [52]
mical S116 | (MMGBSA)
(Piper W107
Longum) Y274
H273
VIR250 VIR250 6WIC | - - —13.68 [53]
(6WUU) | 6WX4 (MMPBSA)
VIR251 7JRN —15.02
(6WX4) | 7JIW (MMGBSA)
GRL- 7KOL
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0617
(7JRN)
compoun
d3
(7J3IW)
compoun
dY96
(7KOL)
Desacetylgedunin | Phytoche | 6W9C | —7.3 - - [54]
mical
(Azadirac
hta
Indica)
(25)-2-(4-(6- DrugDisc | 6WX4 | -8.4 H272 | -41.23 [55]
Phenylpyridin-3- overy@ (Autodoc | Y273 | (MMPBSA)
ylmethoxy)phenyl) | TACC k) D286
propanoic acid portal
(ID:
ZINC00000059694
5)
Paclitaxel SuperNat [ 7JN2 -10.58 R166 | -58.344 [56]
(ID: SN00334175) | ural Y264 | (MMGBSA)
Database G266
Y268
Q269
Lead 2 ZINC 6WZU [ -79.58 Q269 | -55.6 [57]
(ID: database (BUDE) = [ D164 | (MMGBSA)
ZINC16449029)
Aspergillipeptide F | DrugBan | 7LBS | -9.9 R166 | -58.08 [62]
k (Vina) Y273 | (MMGBSA)
PubChem -9.7 Q269
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ChEMBL (Autodoc | A246
ZINC k)
Natural
Product
Database
Amentaflavone polyphen | 6W9C | -10.8 D108 | -106.56 [59]
olic (AutoDoc | T158 | (MMGBSA)
compoun k vina) Qle6l
d L162
2-bromo-3-11- natural 7CMD | -8.38 K157 |-49.16 [60]
dioxo-urs-12-en- compoun MOE R166
24-oate (COM4) ds 2022.02 | Y268
Boswellic Q269
acid
derivative
S
Ukrain Chelidoni | 6WUU | -35.98 D164 | - [61]
(ID: UKR1129266) | um majus (CDOCK | Q167

ER)
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CHAPTER III COMPUTATIONAL DETAILS

3.1 Phytochemical compounds
The selection of Thai medicinal plants for this study was based on the Thai
medical plant database, focusing on plants with antipyretic (fever-reducing) properties

(https://ttdkl.dtam.moph.go.th) such as Harak, Khiaohom, and Chanthaleela, which

are used in traditional Thai medicine recipes. These herbs are traditionally used to
treat moderate to high fevers. From these plants, 45 phytocompounds were identified
and assessed for their drug-like potential using Lipinski's rule [63] through the
SwissADME web server (http://www.swissadme.ch) [64]. Phytocompounds meeting
these criteria were further evaluated for their ADMET (Absorption, Distribution,
Metabolism, Excretion, and Toxicity) properties using the pkCSM
(http://biosig.unimelb.edu.au/pkcsm/) web platform. [65].
3.2 Drug-likeness properties

3D structures of the collected Thai medicinal plants were obtained from
PubChem database, www.pubchem.ncbi.nlm.nih.gov. The selection of the Thai
medicinal plants was premised on the Thai medical plant database with antipyretic
properties (https://ttdkl.dtam.moph.go.th). The search provided fifty isolated
phytocompounds from these plants were screened for their drug-likeness based on
Lipinski’s rule with additional parameters such as molar solubility (logS), molar
volume (v), and number of rotatable bonds using SwissADME
(http://www.swissadme.ch/) [64]. Further, those phytocompounds which fulfilled the
criteria of drug-likeness were checked for their Absorption, Distribution, Metabolism,
Excretion and Toxicity (ADMET) properties. The pharmacokinetics properties
evaluation were done with the help SwissADME online server [64]. After the
ADMET analysis, the phytocompounds showed efficient pharmacokinetic parameters

were selected for the molecular docking analysis.


https://ttdkl.dtam.moph.go.th/
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3.3 Molecular docking

Our detailed molecular docking process was crucial in our study of SARS-
CoV-2 PLpro. We discovered that the size of an inhibitor affects the conformation of
the enzyme’s BL2 loop in both its closed and open forms [66-69]. Specifically,
binding of the small molecule GRLO0617 led to a more closed conformation,
narrowing the substrate cleft between the BL2 loop and the a3-to-a4 loop [57, 70]. In
contrast, the larger molecule VIR251 caused this cleft to widen. Based on these
findings, we chose to model the PLpro enzyme in its open BL2 loop conformation for
our further analysis. To validate our docking method, we first docked GRL0617,
which we obtained from a ligand-bound structure (PDB: 7CMD), into the active site
of the unbound PLpro enzyme (PDB: 6WZU) [71]. This docking was performed
using the GOLD CSDS 2023.3 software with default genetic algorithm settings [72],
conducting 100 independent docking runs per molecule. We carefully considered the
ligand binding area around SARS-CoV-2 PLpro, defined by residues within a 10 A
radius of the co-crystallized ligand GRL-0617 (X =-27.43 A,Y=30.00 A, Z=27.53
A) [53, 57]. The best docking conformations for each compound were selected based
on the GOLD score and were subsequently used for further analysis.
3.4 Molecular dynamics simulation

The best poses of protein-ligand complexes were obtained from molecular
docking calculation and were used to further perform MD simulations using
AMBER16 [73]. Force fields using FF14SB [74] and the second generation of GAFF
(GAFF2) [75] were used as parameters for protein and ligands, respectively. The
electrostatic potential (ESP) charges of each ligand were computed the HF/6-31g(d)
level of theory and then the restrained electrostatic potential (RESP) charges were
created by a charge fitting calculation using antechamber module implemented in
AMBER16 [73]. This module was also used to neutralize the complexes by
introducing Cl° counterions, as well as to solve the complexes using a TIP3P 12.0 A
water box. The systems generated were then partially minimized for 500 steps with a
500 kcal/mol restraint potential and then fully minimized without energy restraint for
500 steps. Gradual heating of the systems was then performed from 0 K to 300 K for
50 ps under the NVT ensemble using Langevin thermostat. Equilibration of the

systems at 300 K for 100 ns without energy restraint at a constant pressure of 1 atm
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was performed under the NPT ensemble using Berendsen barostat [76]. The Particle-
Mesh Ewald (PME) algorithm [77] was used for dialing with long-range interactions,
whereas short-range cutoff of 12° A for nonbonded interaction. The final MD
simulation was performed at 100 ns for all the systems while the SHAKE algorithm
[78] was employed to constrict all atomic hydrogen bonds. The MD trajectories were
collected every 20 ps, and the calculation was extracted from the last 20 ns. While,
The MM/GBSA method was also employed to predict the binding free energy of
protein-ligand complexes [40]. The binding free energy (AG) is calculated using the

following equation:

AG = AEyy + AG; - TAS (22)
AEMM = AEbonded + AEVdW - AEele (23)
AGsol = AGpsolv + AGnsolv (24)

Where, AEmw is the solvation free energy, and AGsol is the conformational
entropy. The entropy contribution from changes in translational, rotational, and
vibrational degrees of freedom —7TAS was calculated using normal mode analysis.
AEwmwm is further divided into bonded energy (AEbonded), van der Waals energy (AEvaw),
electrostatic energy (AEeic). The total solvation free energy (AGsor) is the sum of the

polar solvation (AGpso) and non-polar energy (AGnpor)
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CHAPTER IV RESULTS AND DISCUSSION
4.1 Drug likeness and pharmacokinetic ADMET predictions

To enhance the design of molecules with favorable bioavailability, Chris
Lipinski of Pfizer introduced a set of guidelines known as Lipinski’s Rules of Five,
commonly referred to as Lipinski's or the Rule of 5 [79]. These rules serve as a
benchmark for evaluating the drug-likeness of compounds, particularly their potential
to be orally active drugs in humans. Lipinski’s rules are defined by four key criteria
which the details are provided below:

(1) The compound must have a molecular weight not exceeding 500 g/mol. A
lower molecular weight generally facilitates better cell membrane permeability,
critical for oral bioavailability. Molecules that exceed this limit are often too large to
easily traverse cellular membranes, which can impede their effectiveness as drugs

(i1) The compound should have no more than five hydrogen bond donors,
typically comprising hydroxyl (OH) and amine (NH) groups. A higher number of
hydrogen bond donors can reduce a compound's ability to cross lipid membranes, as
excessive hydrogen bonding increases water solubility at the expense of membrane
permeability.

(ii1) The molecule should contain no more than ten hydrogen bond acceptors,
including nitrogen and oxygen atoms. Similar to hydrogen bond donors, a higher
count of acceptors can hinder a compound's ability to penetrate lipid membranes,
negatively impacting its absorption.

(iv) The octanol-water partition coefficient, denoted by ClogP, should not
exceed five. ClogP measures a compound's lipophilicity, indicating its distribution
between hydrophobic (lipid) and hydrophilic (aqueous) environments. A ClogP value
above five suggests that a compound is overly lipophilic, which may lead to poor
solubility in water, thus affecting absorption and distribution.

The compounds-that comply with Lipinski's Rule of Five demonstrate
favorable drug-like properties, indicating strong potential for effective oral activity.
These compounds not only align with the specified physicochemical parameters but
also exceed them, making them highly promising candidates for further drug
development. On the other hand, compounds that do not meet Lipinski's criteria show

deviations from one or more guidelines, suggesting potential challenges in achieving
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oral efficacy. As shown in Table 6, out of the 47 screened compounds, only 27 adhere
to Lipinski's Rule of Five.
Table 6 Drug-likeness properties of phytocompounds predicted by SwissADME.

Follow
No. Compounds MW ClogP HBDs HBAs Lipinski’s
rule
1 3R)-6—4—-dihydroxy—8—
GR) YA 286.32 29 2 4 Yes
methoxyhomoisoflavane
2 3R)-7,4’—dihydroxy—8—
GR) y Y 284.35 3.45 2 3 Yes
methoxyhomoisoflavane
3 (3R)-7-4—-dihydroxy—5—
286.32 29 2 4 Yes
methoxyhomoisoflavane
4 Z)-2B-hydroxy—14-hydro—3—
@ Y 238.37 2.89 2 2 Yes
santalol
5 (Z)-lanceol 220.35 4.01 1 1 Yes
6 (Z)—o—santalol 220.35 3.39 1 1 Yes
8 15-N-acetylcapparisine 507.58 2.12 6 3 No
9 28-Deoxonimbolide 452.54 4.22 0 6 Yes
10  2R—(Z)-campherene—2,13—diol  238.37 2.89 2 2 Yes
11 3,29-0-
64891 10.79 0 4 Yes
Dibenzoyloxykarounidiol
12 3-Deacetyl-3-
808.82 1.38 16 3 No
cinnamoylazadirachtin
13 Aoibaclyin 642.82 3.61 5 9 No
14 Artemisinin 282.33 2.39 0 5 Yes
15 Astilbin 450.39 -0.29 7 11 No
16  Atractylodin 182.22 2.93 0 1 Yes
17  Bergenin 32827 —-1.53 5 9 Yes
18  Borapetoside B 552,57 -036 5 12 No
19  Borapetoside C 536.57 0.67 4 11 No
20  Bourjotinolone A 470.73 6.71 2 3 No
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21  Capparispine 436.52 0.48 4 5 Yes
22 Daucosterol 576.85 5.85 4 6 No

23 Engeletin 434.39 0.01 10 6 No

24 Eurycomanol 410.42 -2.04 6 9 No

25  Eurycomanone 4084 —-1.83 5 9 Yes
26  Feruloyl tyramine 313.35 2.37 3 4 Yes
27  Gluanol acetate 468.75 9.05 0 2 No

28  Hanisonin 514.56 2.32 2 9 No

29  Hinesol 22237 3.92 1 1 Yes
30  Hispidulin 300.26 2.59 3 6 Yes
31  Imperatorin 270.28 3.88 0 4 Yes
32 Isoastilbin 450.39 -0.29 7 11 No
33 Isocodonocarpine—noniso 466.55 0.84 4 5 Yes
34  Isoimperatorin 270.28 3.88 0 4 Yes
35 Lupeol acetate 468.75 8.45 0 2 No

36 Nimbandiol 456.53 2.92 2 7 Yes
37  Obacunone 454.51 3.6 0 7 Yes
38  Oxypeucedanin 286.28 3.1 0 S Yes
39  Pectolinarigenin 314.29 2.89 2 6 Yes
40  Perforaquassin B 360.44 2.72 0 5 Yes
41  Resveratrol 228.24 2.76 3 3 Yes
42 Scopoletin 192.17 1.51 1 4 Yes
43 _ f—eudesmol 22237 3.92 1 1 Yes
44  Taraxerol 426.72 - 8.17 1 1 No
45 < Tiliacorine 576.68 5.42 1 7 No
46  Tiliacorinine 576.68 5.42 1 7 No
47 GRL0617 304.39 3.91 2 1 Yes
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Compounds that adhere to all four of Lipinski's criteria are likelier to possess
desirable pharmacokinetic properties, including effective absorption, distribution,
metabolism, excretion, and toxicity (ADMET) profiles shown in Table 7. These
properties are crucial for ensuring the efficacy and safety of drugs administered orally.
By meeting these standards, the compounds demonstrate potential not only for
effective therapeutic action but also for minimized risks related to poor absorption or
undesirable metabolic pathways. Thus, compliance with Lipinski’s Rule of 5 serves as
a key indicator of a compound’s suitability for further development as an oral drug.

Aqueous solubility is a critical factor in the absorption of drug compounds,
directly influencing their bioavailability and overall pharmacokinetic profile.
Solubility is often measured using log S values, which represent the logarithm of the
compound's solubility in water. Compounds with log S values below -2 are generally
considered to have adequate solubility, which enhances their likelihood of being
effectively absorbed in the gastrointestinal tract [80]. For oral drugs, sufficient
aqueous solubility is essential as it ensures that the compound remains dissolved in
gastrointestinal fluids, facilitating its passage across the intestinal membrane and into
systemic circulation. Beyond solubility, intestinal absorption is another key factor in
determining a compound's oral bioavailability. The percentage of intestinal absorption
reflects a compound's ability to permeate the intestinal barrier a critical step for any
orally administered drug to reach its target site within the body. Compounds with
intestinal absorption rates exceeding 30% are typically viewed as having the potential
to effectively cross the intestinal barrier, making them more promising candidates for
oral drug development [81-83]. This threshold serves as a valuable benchmark in
early drug discovery, helping to filter out molecules that may face absorption
challenges. All compounds demonstrated calculated human intestinal absorption
values greater than 60%, far exceeding the recommended criterion of 30%. This
suggests that these compounds have a high absorption potential, enhancing their
suitability as orally administered drugs. The high absorption rates observed for our
collects compounds are particularly advantageous because they correlate with

improved oral bioavailability, a critical parameter for drug effectiveness.
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These findings underscore the importance of considering both solubility and
absorption during the early stages of drug development. While solubility ensures that
a compound remains dissolved, absorption determines its ability to cross the intestinal
barrier and reach systemic circulation. The high intestinal absorption (>60%)
observed in this study highlights the compounds' potential as drug candidates with
promising oral bioavailability profiles.

Distribution is a vital component of pharmacokinetics, defining how a drug
moves and functions within the body once it enters the bloodstream. After absorption,
the drug is transported to various tissues and organs, influencing its therapeutic
effectiveness, duration of action, and potential side effects. This stage is crucial in
determining the overall success of the drug as a treatment.

The blood-brain barrier (BBB) plays a critical role in protecting the central
nervous system (CNS) by tightly regulating the movement of substances between the
bloodstream and the brain. It selectively permits only certain molecules, such as water
and lipid-soluble substances, to pass into brain tissue while blocking others. This
selective permeability is essential for maintaining the brain's microenvironment and
shielding it from toxins, pathogens, and other harmful substances. Evaluating a drug’s
ability to cross the BBB is crucial for understanding its potential therapeutic effects on
the CNS and assessing the risk of adverse side effects. A key measure of a drug's
ability to penetrate the BBB is the log BB value, which indicates the drug's
distribution between the blood and the brain. Drugs with log BB values greater than
0.3 are considered effective at crossing the BBB, making them suitable candidates for
targeting CNS disorders. [84-86]. In this study, most compounds, except for
compounds 1, 5,6, 10, and 13, had log BB values below 0.3, indicating that they
would be poorly distributed within the brain. This suggests limited CNS accessibility,
which can be beneficial for non-CNS-targeting drugs but a limitation for drugs
intended to treat brain disorders. Another parameter used to assess CNS penetration is
the log PS, which measures the permeability-surface area coefficient a critical factor
in determining how well a compound can penetrate brain tissue. Compounds with log
PS values less than -2 are considered poorly distributed to the brain, indicating
minimal CNS penetration [87, 88]. Most of the substances in this investigation

showed log PS values below -2, suggesting a restricted ability to enter the brain.
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Compounds 2, 6, 7, 10, 14, 19, and 25, on the other hand, indicated a higher chance of
CNS penetration with log PS values exceeding -2.

Comprehending the log BB and log PS values of a substance offers valuable
understanding regarding its dispersion across the central nervous system. When
creating medications to treat neurological disorders, these measurements are
especially crucial since they forecast how well the medication will work to target
specific brain regions while reducing systemic adverse effects. Lower log BB and log
PS values, Conversely, for drugs intended to act outside the CNS, lower log BB and
log PS values are desirable to avoid unwanted neurological effects.

Metabolism is a pivotal stage in a drug's lifecycle within the body and a key
component of pharmacokinetics, which explores how the body processes drugs. This
metabolic process significantly influences the drug's effectiveness, duration of action,
safety, and elimination and is crucial for achieving optimal therapeutic effects. The
metabolism of drugs and their detoxification primarily rely on cytochrome P450
(CYP) enzymes, predominantly located in the liver [89]. These enzymes facilitate the
conversion of drugs into metabolites, simplifying their excretion from the body.
CYP2D6 and CYP3A4 are two primary CYP variants that significantly metabolize a
wide range of medications [90]. Compounds 2, 3, 7, 16, 17, 18, and 26 were found to
be possible CYP3 A4 substrates and inhibitors in this investigation. This indicates that
CYP3A4 plays a major role in the liver, where these chemicals are anticipated to
undergo considerable metabolism [82, 91-93]. These substances are processed by
CYP3A4 as they act as substrates, and their inhibitory potential suggests it might
decrease the activity of the enzyme. This dual function is essential for the
development of new drugs since it affects the drug's general safety profile, possible
interactions with other drugs, and clearance rate. Predicting the behavior of these
compounds in the body, including their metabolic pathways, potential drug-drug
interactions, and potential adverse effects, is rendered easier by knowing what drugs
interact with CYP3A4.

Excretion, the final stage in the pharmacokinetic journey of drugs, is a vital
process that helps preserve internal balance. During this phase, metabolized
compounds are expelled from the body, preventing the accumulation of drugs to

potentially toxic levels. Understanding the excretion mechanisms and pathways is
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critical for formulating safe and effective pharmaceutical treatments. Key indicators
such as renal OCT2 (organic cation transporter 2) substrates and total clearance are
used to gauge the efficiency with which medicines are cleared from the body relative
to their concentrations internally. Total clearance measures the rate at which a drug is
eliminated through metabolic and excretory processes. Drugs with lower total
clearance values are cleared more slowly, potentially enhancing their stability and
extending their therapeutic effects over a longer duration [94]. Eight compounds (4, 5,
6, 8, 14, 16, 18, and 27) with log(CLyo) values larger than 0.7 were found to have high
total clearance in this analysis. This implies that these substances are swiftly excreted
from the body, which may restrict their efficiency if eliminated before they reach
therapeutic levels. It may also be advantageous for lowering the danger of buildup and
toxicity.

On the other hand, five compounds had poor clearance rates; their log(CLtot)
values were less than 0.3, meaning they stayed in the body longer. These compounds
were 1, 2, 20, 21, and 26. Maintaining therapeutic concentrations may benefit from
this prolonged retention, which gives the medication enough time to reach its target
before being eliminated. The remaining compounds had balanced excretion that
supports efficient therapeutic action without quick elimination or excessive
accumulation, indicating moderate clearance rates, with log(CL o) values ranging
from 0.3 to 0.7 [18]. Except for 2R-(Z)-camphene-2,13-diol, none of the compounds
under investigation were expected to be OCT2 substrates regarding renal excretion.
Renal transporter OCT?2 is essential for the renal absorption of many medications.
Substances not OCT2 substrates are less likely to interact with this transporter, which
lowers the possibility of OCT2 activity-related medication interactions and renal
adverse effects.

In pharmacology, toxicity describes the extent to which a substance can harm
humans or animals. For many reasons, managing and understanding toxicity is
critical, establishing it as a fundamental issue in drug development, environmental
health, and clinical environments. Hepatotoxicity and the AMES test are commonly
employed as markers in toxicity assessments. Five chemicals under investigation,
numbers 6,9, 16, 18, and 26, showed signs of probable carcinogenicity and

mutagenicity in the AMES test.
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Moreover, feruloyl tyramine, capparispine, and isocodonocarpine-noniso
demonstrated positive hepatotoxicity test findings, indicating a possibility for
impairing normal liver function. These substances are cytotoxic, so they should be
used sparingly and in low quantities. The molecules under investigation display
advantageous pharmacokinetic characteristics, indicating a higher probability of

exhibiting beneficial drug-like behavior.
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Table 7 ADMET analysis predictions for selected phytocompounds using the pkCSM
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4.2 Molecular Docking Calculation

To validate the docking protocol, the re-docking processes of GRL0617 to the
active site of PLpro of SARS-COV-2 were preliminary performed as described in the
computational method section. As depicted in Figure S1, the re-docked
conformations of GRL0617 showed significant overlap with the native co-crystallized
ligand and interacted with the same critical amino acids characterized by H-bonds
(Y273 and D302), hydrophobic (G163, V165, R166, S245, A246, Y264, N267 and
Y268) and n-n (L162, D164 and T301) interactions. These findings underscore the
efficiency and validity of the docking protocol.

After the validation of docking procedures, molecular docking of the
collected phytochemicals was performed similarly to that of GRL0617, and the
resulting docking scores are summarized in Table 8. These phytochemicals were
assessed based on their maximal docking scores, which served as criteria to evaluate
their potential as drugs. The docking scores of the complexes formed between the
studied molecules and the PLpro enzyme ranged from 35.0 to 55.0 Notably, feruloyl
tyramine) scored the highest at 55.31, followed by capparispine (52.8), bergenin
(51.3), and (3R)—7,4'-dihydroxy—8—methoxyhomoisoflavane (50.5). These scores
were notably higher than that of GRL0617 (52.5). Consequently, the docking poses of
these top-scoring ligands within 15 percent were selected for further investigation

through MD simulations.



68

Table 8 Docking scores (binding energy in kcal/mol) of the phytocompounds against
SARS-CoV-2 PLpro, through GOLD (as the values appear) for the best docked

compounds.

No. Compounds GOLD score
1  (3R)-64-dihydroxy—8—methoxyhomoisoflavane 49.4
2 (3R)-7,4—dihydroxy—8—methoxyhomoisoflavane 50.5
3 (BR)-7-4-dihydroxy—5-methoxyhomoisoflavane 47.5
4  (Z)-2B-Hydroxy—14-hydro—-santalol 47.1
5  (Z)-lanceol 494
6  (Z)-o-—santalol 47.7
7  28-Deoxonimbolide 38.1
8  2R—(Z)-campherene—2,13—diol 46.0
9  Artemisinin 38.5
10  Atractylodin 38.2
11  Bergenin 51.3
12 Capparispine 52.8
13 Eurycomanone 38.5
14 Feruloyl tyramine 553
15 Hinesol 35.8
16  Hispidulin 46.1
17  Imperatorin 49.1
18  Isocodonocarpine—noniso 479
19  Isoimperatorin 473

20  Nimbandiol 42.0
21  Obacunone 37.4
22 Oxypeucedanin 47.7
23 Pectolinarigenin 45.3
24 Perforaquassin B 41.9
25 . Resveratrol 49.1
26  Scopoletin 36.5
27  B—eudesmol 34.7
28 GRLO0617 52.5
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4.3 Molecular Dynamics (MD) simulation

4.3.1 System stability

Root mean square deviation (RMSD) analysis was used to evaluate the binding
stabilities of the top four protein-ligand complexes throughout a 100 ns simulation
period. The results are shown in Figure 22. The ligands continuously stayed inside the
binding pocket, exhibiting outstanding stability throughout the three simulation runs,
as seen by the RMSD figure. Low RMSD values, typically between 2.00 and 3.00 A,
show little volatility and indicate that the complexes maintained relatively stable
conformations over time.

To verify the stability and compactness of the protein-ligand complexes, the
simulations involved the observation of the radius of gyration or R,. R, values
measure the total compactness of the protein structure, giving information on the
protein's ability to hold its shape during the simulation. R values varied by less than 1
A during the simulations, with all complexes falling between 23.50 A and 24.00 A.
This slight variation suggests that the protein-ligand complexes maintained their
structural stability and compactness for the whole simulation time.

Both RMSD and Rg suggested the complexes in their most stable and
equilibrated condition, snapshots taken during the final 20 ns of the simulation
(between 80 and 100 ns) were chosen for additional examination. The information
supports that the most representative configurations of the protein-ligand interactions
serve as the foundation for the final structural evaluations and analyses. The selected
complexes maintain a strong and stable binding, as confirmed by the stability in the
RMSD and R, analyses. This indicates that they are potential candidates for further
study.
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Figure 22 RMSD, and Ry profiles for all protein-ligand complexes over time for

each of the three replicates (Run 1-3).

4.3.2 Solvated interaction energy (SIE) Binding energy

The binding strength of all protein-ligand complexes (AGEEd) was initially
evaluated using the SIE (Solvated Interaction Energy) approach, which utilized
snapshots from the last 20 nanoseconds of simulation from three independent runs.
The SIE method estimates binding free energy in solvation by combining Coulomb
and non-polar interaction components with the desolvation-free energy contribution.
The results showed that the protein-ligand binding energies were energetically
favorable across all three independent runs, with energy differences of less than 1.50
kcal/mol (Figure 23). The most stable binding free energies observed from the three
runs were approximately -7.13, -7.57, -6.69, and -6.27 kcal/mol for (3R)-7,4'-
dihydroxy—8—methoxyhomoisoflavane, bergenin, capparispine, and feruloyl tyramine,
respectively. It's important to note that these binding stabilities differ from docking
energy results, which do not consider structural dynamics and solvation effects.
However, the differences in binding free energies among the four complexes were
similar and not easily distinguishable. Therefore, an additional approach is necessary
to differentiate their potential further. As previously mentioned, the binding free
energies obtained from the three independent runs for each system showed no
significant variation. Consequently, the simulation that yielded the most stable
binding energy for each system was selected as the representative protein-ligand

complex for further analysis, ensuring the reliability and consistency of the research
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findings. The results indicated that the binding energies were consistently favorable
across different simulations, with minimal energy variation, suggesting reliable
interactions. However, since the energy differences between the ligands were
minimal, it was challenging to distinguish their relative binding strengths. The
meticulous process of choosing the simulation with the most stable energy for each
ligand as the best representation for further analysis was crucial to ensure the
robustness of our conclusions.

IEMD-run 1IMD-run 2

MD-run 3

rr?el? _c;(“ﬁgm idsIgf)I( ;:n_e Capparispine Feruloyl tyramine

Figure 23 The AGls,iIfd (kcal/mol) results are based on the SIE method for all protein-

ligand complexes over time for each of the three replicates (Run 1-3).

4.3.3 Molecular Mechanics General Born surface area (MM/GBSA)

Binding free energy

Previous studies have demonstrated the significant role of the MM/GBSA
(Molecular Mechanics/Generalized Born Surface Area) method in enhancing the
accuracy of docking calculations and effectively distinguishing between active and
inactive molecules [65-67]. In this study, we conducted MM/GBSA calculations to
estimate the binding free energy for each simulated system, using 100 snapshots from
the last 20 nanoseconds of the best simulation run identified by the SIE approach.
While MM/GBSA may not perfectly replicate experimental values, its ability to
closely approximate these results underscores its usefulness in predicting relative
binding affinities and understanding molecular interactions, thereby enlightening the

scientific community.
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Table 9 presents the binding free energy and components calculated by the
MM/GBSA method for all the complexes studied. MM/GBSA offers a more apparent
distinction between active and inactive compounds than the SIE results. The binding
free energies for (3R)—7,4'-dihydroxy-8—methoxyhomoisoflavane, bergenin,
capparispine, and feruloyl tyramine were -14.70, -12.48, -13.11, and -1.02 kcal/mol,
respectively, with (3R)—7,4'-dihydroxy—8-methoxyhomoisoflavane showing the
strongest binding affinity to PLpro. All systems demonstrated favorable binding free
energies except for feruloyl tyramine. Although the ranking of the first three
compounds differs from that obtained using the SIE method, both methods
consistently indicate that feruloyl tyramine forms the least stable complex with PLpro
among the four compounds. It is also noteworthy that the ranking of ligand potential
differs from that of docking calculations, which typically rely on a single static
protein conformation and may only be ideal for evaluating some ligands. Utilizing the
MM/GBSA method to assess the binding free energy of various ligands with the
PLpro protein provides valuable insights into the stability of these protein-ligand
interactions, a crucial aspect in drug development.

By analyzing snapshots from the best-performing simulation run identified by
the SIE approach, this study provided valuable predictions about how strongly
different molecules bind to the target protein, aiding in distinguishing active
compounds from inactive ones. The MM/GBSA method's contribution to this
understanding is significant and should be appreciated by the scientific community.
The findings revealed that (3R)-7,4'-dihydroxy—8—methoxyhomoisoflavane had the
strongest binding affinity, while feruloyl tyramine exhibited the weakest. Despite
some differences in compound rankings compared to other methods like SIE and
traditional docking, the consistent conclusion across methods was that feruloyl
tyramine was the least stable, suggesting its likely inactivity. This comparison
underscores the importance of using multiple methods to understand molecular
interactions comprehensively, providing reassurance about the robustness of our

study.
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A detailed analysis of the energy components revealed that van der Waals
interactions, electrostatic interactions, and non-polar solvation energy contributed
negatively to the overall binding energy, enhancing the stability of the protein-ligand
complexes. In contrast, polar solvation energy contributed positively, working against
binding stability. The van der Waals energy terms were relatively consistent across the
four systems, ranging from approximately -30.00 to -43.00 kcal/mol. However, the
contributions from electrostatic interactions varied significantly, ranging from around
-6.00 to -156.00 kcal/mol. Electrostatic interactions significantly stabilized the
bergenin and capparispine complexes, contributing most significantly to their negative
binding energies. In contrast, this stabilizing effect was less pronounced in the (3R)—
7,4'—dihydroxy—8—methoxyhomoisoflavane and feruloyl tyramine complexes. These
variations in electrostatic contributions likely explain the differences in total binding
free energies observed among the four complexes.

Bergenin and capparispine exhibited stronger binding affinity to PLpro,
primarily through hydrogen bonding interactions with surrounding polar amino acids.
On the other hand, van der Waals interactions from non-polar residues were a
significant factor in stabilizing the feruloyl tyramine complex, contributing
significantly to the total binding free energy. The notable increase in electrostatic
energy observed in the capparispine complex can be attributed to its positively
charged nature, allowing it to establish stronger electrostatic interactions than the
other systems. The focus is dissecting the various energy components contributing to
the binding stability of different protein-ligand complexes. The negative contributions
(which lower binding free energy and thus enhance binding stability) primarily come
from van der Waals, electrostatic interactions, and non-polar solvation energy.
However, polar solvation energy works against binding stability by contributing
positively. The ‘electrostatic interactions vary greatly between the ligands,
significantly influencing their overall binding stability. For example, bergenin and
capparispine benefit most from electrostatic solid interactions, leading to more stable

binding.
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Conversely, (3R)-7,4'-dihydroxy—8—methoxyhomoisoflavane and feruloyl
tyramine have less electrostatic stabilization, resulting in different overall binding
energies. The analysis also highlights the importance of hydrogen bonding and van
der Waals interactions in stabilizing these complexes, particularly for bergenin,
capparispine, and feruloyl tyramine. The distinct energy profiles of these interactions
explain why some compounds have stronger binding affinities than others (as
discussed in the following section).

The non-polar solvation-free energies, which relate to the burial of solvent-
accessible surface area (SASA) as the ligand binds to the protein, had a slightly
favorable effect on the binding stability. This suggests that the non-polar components
of the energy specifically, the sum of non-polar solvation energy (AGsolv-np) and van
der Waals interactions (AEvaw) played a significant role in stabilizing the complexes
between PLpro and the ligands. These non-polar forces help the ligand fit snugly into
the protein's binding site, enhancing overall stability. While the electrostatic
interactions (AE.ic) between the protein and ligands were generally favorable, they
were counterbalanced by the polar solvation energy (AGsolv-cle), Which measures the
energy cost of dissolving the charged groups in water. When these two terms are
combined (AGsolvcle + AEclc), the net electrostatic contribution becomes positive,
detracting from the binding free energy, making it less favorable. This effect was most
pronounced in the PLpro/feruloyl tyramine complex, where the highest value of this
combined electrostatic term resulted in a reduced overall binding free energy
compared to other PLpro/ligand complexes. This reduction in binding free energy
indicates a less stable complex, which could have implications for the effectiveness of
feruloyl tyramine as a PLpro inhibitor.

Although electrostatic and polar interactions were critical factors in the energy
differences observed between the complexes, the configurational entropy term (-7AS)
also played a role. This term, which reflects the loss of entropy or freedom of
movement when the ligand binds to the protein, was relatively consistent across all
systems. The loss of entropy is a measure of the reduction in the ligand's freedom of

movement when it binds to the protein, and it contributed unfavorably to the binding
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energy, indicating that binding reduced the ligands' flexibility in an energetically
costly way.

Overall, the results suggest that most of the selected phytochemicals, except for
feruloyl tyramine, show promising potential as inhibitors of PLpro. This finding
instills hope and optimism in the potential of these phytochemicals in molecular
biology. However, feruloyl tyramine's less favorable binding characteristics, likely
due to the unfavorable net electrostatic contribution, underscore the need for further
investigation to fully understand the molecular interactions that influence ligand
binding to PLpro. The study reaffirms the potential of most of the phytochemicals
tested as inhibitors of PLpro, except for feruloyl tyramine, which showed less
favorable binding due to its unfavorable electrostatic contribution. This finding
underscores the need for further research to fully understand molecular interactions,
particularly for ligands that do not exhibit binding solid characteristics. The study's
findings are significant in molecular biology, as they point to the potential of these
phytochemicals as PLpro inhibitors and the importance of understanding their binding

characteristics.
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Table 9 MM/GBSA binding energy (kcal/mol) components for a given MD run of

protein-ligand complexes.

Energy
(BR)-7,4'-dihydroxy—8— Feruloyl
conponents Bergenin  Capparispine
methoxyhomoisoflavane tyramine
(kcal/mol)
AEe. -26.26 +1.13 -63.38 £ -156.05 + -5.97 +0.65
0.79 243
AEyaw -35.72 £ 0.44 -30.79 £ -42.54+£0.48 -30.79+0.50
0.42
AEvm -61.98 +1.05 -94.17 + -198.59 + -36.77 £ 0.81
0.66 2.25
Aggg/ﬂe 33.58 +0.90 65.85 £ 169.38£2.10 19.96 +0.59
0.40
AGSB/P -4.51 £0.02 -4.53 -6.00 + 0.04 -4.21+0.03
Sol
0.03
AG%){ 29.07+0.90 61.32 + 163.39+£2.08 15.75+0.59
0.40
Aggg/ele +AEy, 733 +£2.03 203+£1.20 13.33+4.53 13.99 + 1.25
GB/ - - - -
AGgy PHAE qw 40.24 + 0.46 3532 + 48.54 £0.52  -35.01+0.53
0.44
-TAS 18.21 £1.09 20.36 =+ 22.09+£0.92- 20.02£0.39
2.01
MM/GBSA - - . -
AGTomal 3291 +0.44 32.85+ 3521+0.44 -21.02+0.39
0.47
MM/GBSA - - - -
AGy 14.70 +0.66 12.48 + 13.11 £ 0.49 1.02+0.21

1.54
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4.3.4 Understanding the Key Residues in Ligand Binding to SARS-CoV-2
PLpro

To identify the critical residues involved in ligand binding to the SARS-CoV-2
papain-like protease (PLpro), researchers decomposed the MM/GBSA binding free
energy to assess the interaction energy of each protein residue. This analysis allowed
for a detailed understanding of how specific amino acids within PLpro contribute to
the stability of the protein-ligand complexes.

The interaction spectra and binding modes between the protein and the ligands
are illustrated in Figure 23 Residues that contributed more than 0.5 kcal/mol to the
stabilization of the complex are highlighted, with negative energy values indicating
stabilization (favorable interactions) and positive values indicating destabilization
(unfavorable interactions). For the ligand (3R)-7,4'-dihydroxy—-8—
methoxyhomoisoflavane, significant stabilization was provided by residues L162,
D164, V165, R166, Y264, Y268, and Q269, with energy contributions ranging from
approximately -1.50 to -2.50 kcal/mol. These interactions involve hydrophobic
contacts, where nonpolar residues interact with the ligand, n-n stacking, where
aromatic rings of the protein and the ligand interact, and hydrogen bonding, where
hydrogen atoms of the protein interact with electronegative atoms of the ligand.

Additionally, residues P248, Y273, T301, and D302 made smaller contributions
of around -0.50 kcal/mol. The flexible B-hairpin BL2 loop is fascinating, especially
residues Y268 and Q269, which play a crucial role in regulating the binding of viral
protein substrates to PLpro [95]. In the case of the bergenin complex, the primary
stabilizing residues were R166, M208, A246, P247, P248,Y273,T301, and D302,
with energy contributions ranging from approximately -1.00 to -4.00 kcal/mol. The
strongest stabilizing interactions were attributed to residues R166 and D302, which
form hydrogen bonds with bergenin, enhancing the stability of the complex. For the
capparispine complex, residues D164, P247, P248, Y264, Y268, and D302 were
identified as critical stabilizers within the PLpro binding pocket, with energy
contributions between -2.00 and -4.50 kcal/mol. D302 was particularly significant due
to its role in forming a salt-bridge interaction between its carboxylate anion and the
ammonium ion of capparispine. This strong interaction greatly enhances binding

stability.
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The feruloyl tyramine complex was stabilized primarily by residues P247, P248,
Y264, and Y268. These residues played crucial roles in forming favorable
interactions, which helped maintain the ligand's stability within the binding pocket of
the PLpro enzyme. The analysis reveals that specific residues stabilize different
ligands within the PLpro binding pocket. These findings align with previous studies,
confirming the importance of these critical residues across various ligands in
stabilizing protein-ligand complexes. Understanding these interactions is vital for
designing effective inhibitors targeting SARS-CoV-2 PLpro, as these residues are
crucial for strong and stable binding [53].
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4.3.5 Protein-ligand interactions

Hydrogen bonds, pivotal in bimolecular systems, were the subject of our
research. We analyzed their evolution over the last 20 ns of the simulation using the
cpptraj module. Applying a cutoff distance of 3.5 A and an angle of 120°, we
identified these bonds. The binding mode between the protein and ligand complexes
was then visualized using Biovia Discovery Studio, providing a clear and
comprehensive understanding. Figure 24, a visual representation of our findings,
illustrates the percentage of hydrogen bond occupancy along with representative
snapshots.

Throughout the simulation, strong and stable hydrogen bonds were observed
between the hydroxyl (OH) groups of (3R)-7,4'-dihydroxy—-8-—
methoxyhomoisoflavane and the key residues R166, Q269, and D302 within the
PLpro enzyme. These hydrogen bonds persisted consistently, indicating their crucial
role in maintaining the stability of the ligand within the binding pocket. Residue
Q269, situated in the BL2 loop of the palm subdomain, was particularly notable for its
involvement in hydrogen bond formation. This residue has been previously
recognized for its interaction with other inhibitors, reinforcing its importance in ligand
binding [53, 96, 97]. Beyond hydrogen bonding, the ligand's aromatic portions
engaged in n-n stacking interactions with the aromatic residues Y264 and Y273.
These n-n stacking interactions involve overlapping electron clouds between the
aromatic rings of the ligand and protein, adding another layer of stability to the
complex.

Moreover, (3R)-7,4'-dihydroxy—8-methoxyhomoisoflavane formed
hydrophobic interactions with nearby non-polar residues such as L162, G163, V165,
and P248. These hydrophobic interactions occur as the non-polar regions of the ligand
and protein come into proximity, reducing their exposure to the aqueous environment
and contributing to the overall binding stability. In addition to these interactions, n-
alkyl interactions were also observed. These occurred between the aromatic ring of
(3R)-7,4'-dihydroxy—8-methoxyhomoisoflavane and the side chain of L162, as well
as between the aromatic moiety of Y268 and the methoxy group of the ligand. These
n-alkyl interactions enhance the ligand's binding affinity by stabilizing its orientation

within the binding site. The various types of molecular interactions contribute to the
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binding stability of (3R)—7,4'-dihydroxy—8-methoxyhomoisoflavane within the
PLpro enzyme of SARS-CoV-2. Hydrogen Bonds are strong interactions formed
between the hydroxyl groups of the ligand and specific amino acid residues (R166,
Q269, and D302) within PLpro. These bonds are critical for the stability of the ligand
within the protein's binding pocket. The persistence of these hydrogen bonds
throughout the simulation underscores their importance. Residue Q269 is in a flexible
loop region of the protein. This residue is essential for binding and forming hydrogen
bonds with the ligand. In previous studies, its involvement with other inhibitors
highlighted its role as a critical interaction site within PLpro. These interactions
collectively contribute to the strong binding affinity and stability of (3R)-7,4'-
dihydroxy—8-methoxyhomoisoflavane within the PLpro enzyme, making it a
potentially effective inhibitor.

Bergenin, a potential SARS-CoV-2 PLpro enzyme inhibitor, forms several
strong hydrogen bonds with critical residues within the PLpro binding pocket,
particularly R166 and D302. The hydroxyl group (OH) on the aromatic side chain of
Y273 further stabilizes the interaction with bergenin. A unique n-x interaction, a type
of hydrophobic interaction, is observed between the benzene ring of bergenin and the
aromatic residue Y268. Bergenin also establishes non-polar contacts with the residues
A246, P247, and P248. Additionally, a m-alkyl interaction occurs between the
methoxy group of bergenin and the aromatic moiety of Y264. These collective
interactions contribute significantly to the stable binding of bergenin within the PLpro
binding pocket.

Capparispine, a potential SARS-CoV-2 PLpro enzyme inhibitor, forms a
network of salt bridges with the carboxylate groups of residues D164 and D302,
creating electrostatic solid interactions. One of the NH groups of capparispine also
participates in a hydrogen bond with the backbone carbonyl of G163. The large cyclic
ring of capparispine engages in hydrophobic contacts with multiple residues,
including L162, G163, V165, A246, P247, P248, Y264, and Y273, further stabilizing
its binding within the pocket.

In contrast, the feruloyl tyramine complex showed relatively fewer hydrogen
bonding interactions with PLpro residues, with no hydrogen bonds detected between

the protein and this ligand. The stabilization of feruloyl tyramine primarily relied on
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non-polar interactions, including n-m interactions with residues Y264 and Y268,
hydrophobic interactions with P247 and P248, and alkyl-n interactions with L162.
This reduced level of interaction likely accounts for the diminished potency of
feruloyl tyramine against PLpro compared to the other compounds.

The three selected phytochemicals, including (3R)-7,4 '-dihydroxy-8-
methoxyhomoisoflavane, demonstrated strong interactions with PLpro residues,
particularly involving the Y268 and Q269 residues of the BL2 loop. However,
feruloyl tyramine exhibited fewer interactions, likely explaining its reduced efficacy
against the SARS-CoV-2 PLpro enzyme. The Biological Significance of the
Phytochemicals of (3R)—7,4'-Dihydroxy—8—Methoxyhomoisoflavane is flavonoid,
isolated from Dracaena cochinchinensis, also known as dragon's blood (DB), has
shown potential as an anti-osteoporosis agent [98], Bergenin is isocoumarin found in
various plants like Ardisia japonica, A. creanata, Bergenia crassifolia, B.
purpurascens, Rodgersia sambucifolia [99], bergenin exhibits a wide range of
biological activities, including hepatoprotective effects [100], antifungal properties
[101], anti-HIV activity [102], antiarrhythmic potential [103], hypolipidemic effects
[104], and anticancer properties[105]. Capparispine belongs to the class of
spermidine alkaloids; capparispine is known for its anti-inflammatory and antioxidant
activities [106, 107] and feruloyl Tyramine is a phenylpropanoid compound isolated
from various plants. Feruloyl tyramine exhibits several biological activities, including

antimicrobial, antioxidant, anti-melanogenesis, and anticancer effects [108].
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Figure 25 Representative 3D structures (Top) and 2D srtructures (Bottom) displaying

protein-ligand interactions of each simulated system. Hydrogen bond forming

between protein and ligand is displayed by green dot lines.
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CHAPTER V CONCLUSIONS

In conclusion, Thailand is renowned for its rich biodiversity and abundant
natural resources, particularly its extensive use of medicinal herbs in traditional
medical treatments. The abundance of medicinal plants has significantly promoted
research into the therapeutic application of plant extracts. Thai herbs have been
recognized as a potent source of phytochemicals with the potential to treat viral
diseases such as SARS-CoV-2.

The PLpro enzyme of SARS-CoV-2 plays a critical role in the viral replication
process, making it a key target for developing treatments against SARS-CoV-2 or
COVID-19. This study employed virtual screening techniques, including Lipinski’s
rule of five, ADMET prediction, molecular docking, and MD simulations, to
investigate phytochemical compounds from Thai medicinal herbs. Of the 47 isolated
phytochemical compounds, 27 adhered to Lipinski’s rule of five criteria. These
compounds were further analyzed through ADMET prediction and molecular
docking. The four compounds with the Top15% highest docking scores were (3R)-
7,4'-dihydroxy-8-methoxyhomoisoflavane, bergenin, capparispine, and feruloyl
tyramine, which were selected for detailed MD simulations.

The findings revealed that, except for feruloyl tyramine, all other compounds
established significant interactions with the PLpro enzyme via hydrogen bonds and
hydrophobic interactions. SIE and MM/GBSA analyses confirmed that (3R)-7,4'-
dihydroxy-8-methoxyhomoisoflavane, capparispine, and bergenin exhibited strong
binding affinities to SARS-CoV-2 PLpro. Therefore, (3R)-7,4'-dihydroxy-8-
methoxyhomoisoflavane from Dracaena cochinchinensis, bergenin from Ficus
racemosa L., and capparispine from Capparis spinosa L. show potential as antiviral
agents derived from Thai medicinal herbs, potentially inhibiting the PLpro enzyme of
SARS-CoV-2. Although further validation is required, these compounds demonstrate
promise as effective PLpro inhibitors for treating COVID-19.

In the future, the results of these simulations could lead to further laboratory
experiments, such as toxicity studies and in vivo testing, to verify the bioactivity of
these compounds. Additionally, advanced research into the structural properties of the
compounds and enhancing their inhibitory efficiency could pave the way for

developing more effective drugs. Integrating Thai herbal medicine with modern
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COVID-19 treatments opens new opportunities for improving clinical therapy
efficacy and advancing the fields of virology and drug development.
5.1 Future work

To confirm that the lead compounds can be potential inhibitors targeting

PLpro of SARS-CoV-2, the following methods and procedures are suggested.

5.1.1 Protease Assay

The PLpro activity assay is a biochemical method used to measure the activity
of the SARS-CoV-2 PLpro and evaluate the inhibitory effects of potential lead
compounds. It involves preparing a purified PLpro enzyme and a specific substrate,
typically a fluorogenic or chromogenic peptide that mimics the viral polyprotein
cleavage site. The assay is set up by combining the enzyme, substrate, and varying
concentrations of lead compounds in a reaction buffer, followed by incubation at an
optimal temperature. The increase in fluorescence (or absorbance) is measured,
indicating the extent of substrate cleavage, which allows for the quantification of
PLpro activity and the determination of ICso values for the inhibitors. Controls and
replicates are essential for validating the results, making this assay critical in the drug
discovery process targeting SARS-CoV-2.

5.1.2 Viral Replication Inhibition Assay

Viral replication inhibition assays are cell-based experiments designed to
evaluate the efficacy of lead compounds against SARS-CoV-2 by measuring their
ability to inhibit viral replication in infected cells. In this assay, permissive cell lines,
such as Vero E6 or HEK293T, are inoculated with the virus and treated with varying
concentrations of the test compounds. The viral load is assessed using techniques like
qRT-PCR to quantify viral RNA, plaque assays to count infectious viral particles, or
ELISA to detect viral proteins. This approach can determine the inhibitory potency of
lead compounds and their potential therapeutic effects in a biologically relevant

setting.
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5.1.3 Cytotoxicity assays

Cytotoxicity assays are experimental techniques used to evaluate the toxic
effects of lead compounds on host cells, essential for determining the safety profile of
potential therapeutics. These assays measure cell viability and membrane integrity
following treatment with varying concentrations of compounds. Common methods
include MTT or XTT assays, which assess metabolic activity by detecting the
reduction of tetrazolium salts to form a colored product in living cells, and LDH
release assays that quantify lactate dehydrogenase released from damaged cells. By
analyzing the extent of cytotoxicity, we can ensure that observed antiviral effects are
not due to harmful impacts on cell health, aiding in the selection of safe and effective

compounds for further development.
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