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ABSTRACT 

  

COVID-19 has spread to numerous countries over five years, resulting in 

774 million cases and 7 million deaths worldwide. Challenges, including ineffective 

medications, vaccine hesitancy, gene mutations, and high drug costs, emphasize the 

necessity for new inhibitors.  SARS-CoV-2's papain-like protease (PLpro), which 

plays a crucial role in cleaving the replicase polyprotein at three essential sites vital 

for viral replication, has emerged as an attractive target for SAS-CoV-2 treatment. 

This study utilized structure-based virtual screening, pharmacokinetic analysis, 

molecular docking, and molecular dynamics (MD) simulation to identify 

phytochemical inhibitors targeting SARS-CoV-2 PLpro.  Based on Lipinski's rule of 

five, a group of 45 phytochemicals sourced from Thai medicinal plants underwent 

initial screening. Among them, ADMET and molecular docking calculations further 

analyzed 27 compounds meeting the criteria. Out of these phytochemical molecules, 

(3R)-7,4'-dihydroxy-8-methoxyhomoisoflavane, bergenin, capparispine, and feruloyl 

tyramine representing the top 15 percent of docked compounds, underwent three 

cycles of 100 ns. MD simulations to assess stability and interactions at the PLpro 

binding pocket.  All ligands except for feruloyl tyramine demonstrated extensive 

interactions with PLpro residues, including D164, R166, P247, P248, Y264, Y268, 

Q269, Y273, and D302, through both hydrogen bonds and hydrophobic interactions. 

MM/GBSA binding free energy, decomposition energy and hydrogen bond formation 

indicated that these three phytochemicals ((3R)-7,4'-dihydroxy-8-

methoxyhomoisoflavane, bergenin, capparispine) showed strong and favorable 

binding energies towards PLpro of SARS-CoV-2, suggesting their potential as 

inhibitors. This detailed information could significantly aid in developing and 

optimizing effective SARS-CoV-2 inhibitors. 
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CHAPTER I INTRODUCTION 

1.1 Rationale and background 

The global pandemic of coronavirus 2019 or COVID-19, caused by the severe 

acute respiratory syndrome 2 (SARS-CoV-2) virus  emerged in December 2019 [1], 

has become a significant impact on the global economy and industries [2]. As of 

August 2024, there were reported to be approximately 775 million confirmed cases of 

COVID-19 and 7 million fatalities worldwide due to SARS-CoV-2 infection [3]. 

SARS-CoV-2 belongs to the family Coronaviridae and the genus Betacoronavirus. It 

is a large positive-sense single-stranded RNA virus[4]. The virus is composed of 

several structural and non-structural proteins. The structural proteins include the spike 

protein (S), envelope protein (E), membrane protein (M), and nucleocapsid protein 

(N). In addition to these, there are 16 species of non-structural proteins present in 

SARS-CoV-2 [5] (Figure 1). 

 
 

Figure 1 Structure of SARS-CoV-2 [5]. 

Currently, COVID-19 vaccinations have played a crucial role in preventing 

SARS-CoV-2 infection and reducing the severity of the disease. Additional treatment 

options are still needed to effectively address the current pandemic. While several 

existing drugs have been repurposed and tested for their efficacy against COVID-19, 

such as favipiravir [6], remdesivir [7], hydroxychloroquine, and chloroquine [8, 9], 

the results have been mixed, and none of them have shown consistently satisfactory 

levels of efficacy [10]. 
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Papain-like protease (PLpro) is a non-structural protein 3 (nsp3) in SARS-

CoV-2, consisting of multiple domains: a ubiquitin-like domain, a thumb domain, a 

zinc-binding domain, and a palm domain [11]. The catalytic triad, made up of C111, 

H272, and D286, forms the active site of PLpro, located at the interface between the 

thumb and palm domains (Figure 2). The BL2 loop of PLpro consists of a flexible 

sequence of amino acids (267–271) that are located in a key area of the enzyme. 

These amino acids help break down viral proteins and keep the virus from being 

recognized by the human immune system. This loop is essential for PLpro flexibility, 

enabling it to bind effectively with substrates or inhibitors. This flexibility is crucial 

for PLpro regulation because it lets it attach to viral proteins, break down parts that 

are needed for viral replication, and help put proteins together. Consequently, the BL2 

loop enhances PLpro functionality and aids in immune evasion. 

PLpro functions as a proteolytic enzyme, cleaving the polyprotein replicase at 

three specific sites to release key proteins, NSP1 -3, which are vital for viral 

replication. PLpro recognizes specific LXGG motifs in its substrates for cleavage. In 

addition to its role in viral replication, PLpro is also pivotal in inhibiting the host's 

immune response. Upon infection, the innate immune system triggers an antiviral 

response by modifying host cell proteins through the addition of ubiquitin (Ub) and 

interferon-stimulated gene product 15 (ISG15) [12]. These modifications are part of 

the host’s defense against viral infection. However, PLpro efficiently removes ISG15 

and ubiquitin modifications from proteins via its catalytic cysteine cleavage domain, 

which reduces inflammation and inhibits antiviral signaling, thereby enabling the 

virus to evade the host’s immune response effectively. 

The development of PLpro inhibitors for SARS-CoV-2 is important because 

PLpro is a key enzyme involved in both viral replication and immune evasion. It is 

crucial to ensure that these inhibitors specifically target the viral PLpro without 

interfering with human proteases. Several factors indicate that PLpro inhibitors can be 

designed to be highly specific, which will reduce the risk of adverse side effects in the 

human body. The SARS-CoV-2 PLpro has a unique structure that differs from human 

proteases, particularly in the active site, which can recognize and cleave the molecular 

sequence “LXGG↓XX” found in the viral polyprotein. This sequence is rarely found 

in human proteins [13]. As a result, PLpro can be targeted without disrupting human 
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proteases such as cathepsins and caspases, which have different active sites and 

molecular sequences, reducing the chance that PLpro inhibitors will affect these 

enzymes in the human body. 

Given the critical role of PLpro in SARS-CoV-2 replication and immune 

suppression, it has become a promising target for antiviral drug development. 

Researchers are studying ways to inhibit PLpro activity, either by directly targeting 

the catalytic site or by blocking the interaction between PLpro and its substrates. The 

hope is that inhibiting PLpro can halt viral replication and restore the host's immune 

response, leading to an effective antiviral effect. It should be noted that the 

development of drugs targeting PLpro remains an active area of study, and further 

research is needed to evaluate the potential of PLpro inhibitors in the treatment of 

COVID-19 [14]. 

 
 

Figure 2 Structure of papain-like protease. 
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Medicinal plants mainly contain phytochemicals such as alkaloids, phenolic 

compounds, flavonoids, terpenoids and other organic molecules, have been a primary 

source of materials for treatment of many diseases. These phytochemicals show a 

wide range of biological activities such as antibacterial [15], anti-inflammatory [16] 

and anticancer [17] activities. The use of natural products derived from herbs is 

appealing due to their affordability and widespread availability.  Hence, this research 

work focuses on exploring the potential of medicinal plants, specifically Thai herbs, 

as alternative treatments for common illnesses, including COVID -19. In Thai 

traditional medicine, recipes with fever-reducing properties, such as Harak, 

Khiaohom, and Chanthaleela, are used to treat moderate to high fevers. These recipes 

consist of various herbs, including Tiliacora triandra (Colebr.) Diels, Harrisonia 

perforata (Blanco) Merr, Capparis micracantha DC., Dracaena cochinchinensis 

(Lour.) S.C.Chen, Azadirachta indica A.Juss.,  Ficus racemosa L., Tinospora crispa 

(L.) Hook. f. & Thomson, and others. To seek for potential compounds inhibiting 

PLpro, a target of SARS-CoV-2, the phytochemicals found in these Thai traditional 

medicine recipes were collected and screened using various tools such as Lipinski’s 

rule of five, ADMET analysis, molecular docking, and MD simulation.  By examining 

the phytochemical constituents of selected herbs, the researchers aim to gain insight 

into the chemical compounds present in these plants that may exhibit strong inhibitory 

activity against the PLpro enzyme of COVID-19. 

1.2 Purposes of the research 

1.2.1 To screen phytochemical compounds that might show good inhibitory potencies 

against PLpro enzyme of coronavirus 2019 

1.2.2 To study the interaction and dynamical behaviors of the PLpro of coronavirus 

2019 with inhibitors 

1.3 Scope of the research 

1.3.1 To screen compounds/phytochemical compounds with the targeted PLpro of 

coronavirus 2019 

1.3.2 To perform molecular dynamics simulation of the complexes between PLpro of 

coronavirus 2019 and inhibitors 
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1.4 Expected outcome 

1.4.1 To obtain candidate compounds/phytochemical compounds showing high 

potency and selectivity to the PLpro of coronavirus 2019 

1.4.2 In depth understanding of mechanism of action and interactions between PL-

inhibitor complexes 
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CHAPTER II COMPUTATIONAL THEORY AND LITERATURE 

REVIEWS 

Theoretical methods utilized in this study and the previously reported research 

works related to PLpro are described. 

2.1 Molecular docking   

Molecular docking is a computational method used to predict the binding 

modes and interactions between  protein (host) and ligand (guest) [18].  Figure 3 

shows lock-and-key model [19], which refers to the rigid docking of receptor and 

ligand to find the correct orientation for the “key” to open the “lock” [20]. 

 
 

Figure  3 shows lock-and-key model. 

The interaction between protein and ligand is a process of systematic 

thermodynamic equilibrium, and by which the complex structure formed should be 

the possible conformation with the lowest binding free energy. These simplified 

scoring functions commonly presume that the binding free energy may be represented 

as a sum of numerous additive components representing diverse contributions to the 

binding free energy [21]. ∆Gbinding which is calculated as follows: 

∆Gbinding= ∆GvdW+∆Gele+∆Ghbond+∆Gdesolv+∆Gtors     (1) 

∆GvdW is The Lennard-Jones (LJ) 12-6 potential that describes the energy 

interaction between neutral atoms or molecules [22]. It is expressed as: 

V(r) = 4ε[ (
σ

r
)

12

- (
σ

r
)

6

]        (2) 

Where:  

V(r) is the potential energy between the two particles as a function of their 

separation distance (r). 

ε is the depth of the potential well, representing the strength of the attractive 

interaction. 
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σ is the distance at which the potential energy is zero, related to the size of the 

particles. 

The (
σ

r
)

12

term: Represents the repulsive forces arising from the electron clouds' 

overlap at close distances. Dominates at short distances. 

The (
σ

r
)

6

term: Represents the attractive forces, primarily due to van der Waals 

dispersion forces. Dominates at intermediate distances. 

 ∆Gelec represents the change in free energy associated with the electrostatic 

interaction between two charged species in a solvent environment. It considers both 

the Coulombic interaction between the charges and the influence of the solvent's 

dielectric constant on this interaction [23]. ΔGelec, in terms of a simplified Coulombic 

interaction within a dielectric medium: 

∆Gelec= -
1

2

q
1
q

2

4πε0εr

1

α
         (3) 

Where: 

q1, q2 is charges of the interacting species. 

ε0 is permittivity of free space. 

εr is dielectric constant of the solvent. 

α is distance between the charges (often approximated as the sum of their ionic 

radii) 

∆Ghbond is the 12-10 Potential with Goodford Directionality. The 12-10 potential is 

another mathematical model that describes intermolecular interactions, similar to the 

Lennard-Jones potential. It is beneficial for modeling hydrogen bonding interactions, 

and Goodford's Directionality is essential for the directional aspect of hydrogen 

bonds. Unlike purely distance-based interactions, the strength of a hydrogen bond is 

strongly influenced by the angle between the donor, hydrogen, and acceptor atoms. A 

linear alignment (close to 180°) is optimal, and deviations from this angle weaken the 

hydrogen bond. This directional dependence is essential for accurately modeling 

hydrogen bonds in molecular systems [24]. The potential can be expressed as: 

∆Ghbond = ε [5 (
r0

r
)

12

 - 6 (
r0

r
)

10

] ⋅ ∫ (θ )      (4) 
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Where: 

ΔGhbond is the hydrogen bond interaction energy. 

ε is the well depth of the potential, representing the strength of the hydrogen 

bond. 

r0 is the equilibrium distance between the donor and acceptor atoms. 

r is the actual distance between the donor and acceptor atoms. 

∫(θ ) is an angular function that modulates the interaction energy based on the 

hydrogen bond angle (θ) and incorporates Goodford's directionality concept, ensuring 

that the hydrogen bond is strongest when the donor, hydrogen, and acceptor atoms are 

aligned optimally. 

12-10 Exponents are chosen to provide a steeper repulsive wall and a 

shallower attractive well compared to the 12-6 Lennard-Jones potential, which is 

more suitable for describing the stronger and more directional nature of hydrogen 

bonds. 

∆Gdesolv is calculated form Stouten Pairwise Atomic Solvation Parameters are a 

set of empirical values used to estimate the desolvation free energy associated with 

the transfer of a molecule from a solvent environment to a protein binding site. GOLD 

program utilizes a simplified version of the Stouten model, which does not explicitly 

consider the effect of partial charges [25]. The equation is: 

ΔGdesolv= ∑ ∑ Sij         (5) 

Where: 

Sij is solvation parameter for the pairwise interaction between atom types i and j 

The summation is over all pairs of atoms in the ligand that lose contact with the 

solvent upon binding. 

∆Gtors are often used to represent the change in free energy associated with the 

loss of conformational entropy due to the restriction of rotatable bonds upon ligand 

binding to a protein based on the number of rotatable bonds (Nrot) in the ligand [26, 

27]: 

ΔGtors=RTln(3
Nrot)         (6) 
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Where: 

R is gas constant 

T is Temperature 

Nrot is Number of rotatable bonds in the ligand. 

2.2 Molecular dynamics simulation 

Molecular dynamics (MD) simulation is a statistical tool based on Newton's 

second law. This approach assumes that every particle in the system behaves like a 

Newtonian particle, and quantum behaviors are entirely disregarded. Electronic 

motions are ignored, and electrons are supposed to remain in their ground state and 

modify their dynamics quickly when atomic locations change (the Born-Oppenheimer 

approximation). Only classical mechanics is employed to describe the motion of the 

particles. As a result, the equation of motion, F = ma, applies to particles where F is 

the force, m represents mass, and a is the particle's acceleration. Once each atom's 

position and velocity are known, the system's state can be anticipated, and new 

positions and velocities can be determined. The method can be performed indefinitely 

to obtain a trajectory of atomic motions. The first step of the MD simulation 

algorithm (Figure 4) includes the assignment of coordinates for each atom in the 

system, initial velocities, and a simulation time step (Δt) is defined. After that, for 

each time step of the simulation, the forces between atoms, which are determined by 

an interatomic potential (force field), are computed, and equations of motion are 

integrated. 
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Figure  4 Scheme of the MD simulation [28]. 

2.3 Ensemble and trajectory 

The output of the simulation comes in the form of ensemble of frames. All 

frames share the same macroscopic/thermodynamic state but may differ in the 

microscopic states. Each frame represents the system at a specific point in time (a 

specific microscopic state). If the ensemble is sequence (time) dependent, it is called a 

trajectory. In this case, the trajectory represents the time-dependent evolution of the 

system. 
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2.3.1 Canonical ensemble (NVT) 

The canonical ensemble contains all possible states in thermal equilibrium with 

a heat bath. The system remains at the absolute temperature of T but may exchange 

energy with the heat bath. Three system parameters are fixed throughout the 

simulation: the absolute temperature (T), the number of atoms (N), and the volume 

(V). T is the most influential parameter among the system states. 

2.3.2 Micro canonical ensemble (NVE) 

The micro canonical ensemble represents an isolated system. No change in 

mass/number of atoms (N), Volume (V), nor exchange of Energy (E) is allowed. 

2.3.3 Isothermal–isobaric ensemble (NPT) 

The system has a fixed temperature (T), hence it is isothermal, and fixed 

pressure (P), hence it is isobaric [29]. 

2.4 Force-Field 

The Force Field is the summation of bonded and non-bonded terms or 

covalent and non-covalent interactions among the atoms and molecules. A simple 

molecular mechanics energy equation is given by: 

Etotal = Ebonded+ Enon-bonded            (7) 

Ebonded = Estretch + Ebend + Etorsion       (8) 

Enon-bonded = Eelectrostatic + Evan der Waals       (9) 

 2.4.1 Stretching energy (Estretch) 

 The stretching energy associated with vibration about the equilibrium bond 

length. The kb parameter controls the stiffness of the bond spring, while r0 defines its 

equilibrium length. Unique kb and ro parameters are assigned to each pair of bonded 

atoms based on their type such as C-C, C-H, O-C, etc. 

Estretch= ∑ kb(r - r0)
2

bonded        (10) 

2.4.2 Bending energy (Ebend) 

The bending energy associated with vibration about the equilibrium bond 

length. The kb parameter controls the stiffness of the angle, while θ defines its 

equilibrium angle. Unique parameters for angle binding are assigned to each bonded 

triplet of atoms based in their type such as C-C-C, C-O-C, C-C-H, etc. 

Ebend= ∑ kθ(θ - θ)
2

angles        (11) 
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2.4.3 Torsion energy (Etorsion) 

Torsional energy fluctuates as covalent bonds (such as C -C, C-N, and C-O 

single bonds) rotate. The power reaches its maximum when the torsion angle (t) is 0˚ 

and when interactions occur between atoms separated by three sigma bonds. The A 

parameter governs the amplitude of the energy curve, while the n parameter controls 

its periodicity and ∅ shifts the curve along the rotational angle axis (τ). These 

param eters are determined through curve fitting. Specific torsional rotation 

parameters are assigned to each set of four bonded atoms based on their types, such as 

C-C-C-C, C-O-C-N, H-C-C-H, etc. 

Etorsion= ∑ A[1 + cos(nτ - ∅)]torsion       (12) 

2.4.4 Non-covalent interactions  

The non-bonded energy represents the pairwise sum of the energies of all 

possible interacting non-bonded atom 

Enon-bonded= ∑ Eeletrostatics
atompairs

ij + ∑ Evan der Waals
atompairs

ij    (13) 

Enon-bonded= ∑ ∑
-Aij

rij
6 +

Bij

rij
12 + ∑ ∑

q
i
q

j

rij
jiji        (14) 

Where A determines the degree of stickiness of the van der Waals attraction 

and B determines the degree of hardness of the atoms, rij is the distance between 

atoms i and j, and qi is the partial atomic charge. With equation 8, it is possible to 

observe that the energy depends on non-bonded interactions for van der Waals 

attraction, repulsion, and electrostatic interaction [30]. 

2.5 Algorithms 

MD simulation to view the dynamic evolution of biological systems on a 

temporal scale can be defined by employing Newton’s Laws of motion. 

Fi = miai         (15) 

Fi(t)= mi
d

2
ri⋅(t)

dt
2          (16) 

In equations 16 and 17, ri and mi represent the position and mass of atoms i, 

respectively, and Fi(t) is the force acting on atom i at time t. These classical equations 

of motion are integrated using the finite difference method. finite difference methods 

are techniques used to generate MD trajectories with continuous potential models. 

The basic idea is that the total force of each particle is calculated on a time scale as 
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the vector sum of its interactions with other particles, rather than as the vector sum of 

its interactions with other particles.  

Algorithms for integrating the equation of motion often rely on the finite 

difference method. A core assumption in these algorithms is that dynamic properties 

(such as position, velocity, and acceleration) can be approximated using the Taylor 

Series Expansion Method. The Taylor series expansion method provides a framework 

for predicting the position and other dynamic properties at a future time t + δt, using 

the current values at time t. This expansion includes position, velocity, and 

acceleration terms, including higher-order terms for improved accuracy. 

Position Update Using Velocity and Acceleration as an equation (18): 

r(t + δt) = r(t) + ν(t)δ(t)+
1

2
a(t)δt2 + ⋅⋅⋅           (17) 

Where:  

r(t) = is the position at time t, v(t) is the velocity at time t, a(t) is the acceleration at 

time t, δt is a small time step. 

Position Update Using Alternative Acceleration Function as an equation (19): 

r(t + δt) = r(t) + ν(t)δ(t)+
1

2
b(t)δt2 + ⋅⋅⋅                  (18) 

Here, b(t) represents a different rate of change in acceleration compared to a(t), 

possibly accounting for external forces or other influences on the motion. 

Equation (20) is Acceleration Update Using Jerk (Rate of Change of Acceleration) 

(t + δt) = a(t) + b(t)δ(t) + ⋅⋅⋅              (19) 

Where: 

a(t) is the acceleration at time 

b(t) represents the jerk (rate of change of acceleration). 

These equations are fundamental to many numerical integration algorithms in 

physics and engineering simulations, including Verlet Integration and Euler's Method. 

These techniques allow for the approximation of particle positions and velocities over 

small time intervals [31].  
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2.6 Periodic boundary conditions 

The periodic boundary condition addresses surface interaction effects (Figure 

5), particularly in simulations of small systems, where interactions between particles 

and the walls could lead to inaccurate system properties. In this method, the cubic 

simulation box is replicated in space, allowing particles to interact not only with 

others within the same box but also with particles in adjacent replicated boxes. As a 

result, when a particle exits the simulation box, its corresponding image particle 

enters from the opposite side with the same velocity, ensuring the conservation of 

overall mass and momentum within the system. 

 

Figure  5 The periodic boundary conditions in two dimensions [32]. 

2.7 Cut-off and minimum image convention 

When a cut-off is applied, the interactions between all pairs of atoms that are 

further apart than the cut-off value are set to zero. In the base image convention, each 

atom sees at most one image of every other atom in the system. This suggests that 

only the closest atoms interact with a fixed atom, as shown in Figure 6. Minimum 

image convection is a very explicit way to fix a cut-off length; in contrast, each 

system particle could see its image. On the contrary, minimum image convection 

could introduce adopted periodicity in the system. These periodicities could not 

influence the precision of properties derived as in the case of molecular dynamics 

simulations of well-ordered systems. Still, in the case of liquid or vitreous systems, 

the periodicity could induce the formation of unreal-ordered phases. Applying the 
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minimum image convention means cutting off non-bonded terms that are less than 

half the length of the shortest dimension.  

 

Figure  6 The spherical cut-off and the minimum image convention [33]. 

2.8 Free energy calculations 

2.8.1 Solvation interaction energy (SIE) 

The SIE approach utilizes empirical equations [34, 35] to predict the binding 

free energy (∆Gbind) of protein-ligand interactions in an aqueous environment, as 

described in the following equation [36, 37].    

∆Gbind(ρ,Din,α,γ,C) = α[EvdW+Ecoul(Din)+∆Gbind
R (ρ,Din)+γ∆MSA(ρ)]+C  

 (20) 

Where:  

EvdW represents the energy associated with van der Waals interactions between 

the protein and ligand molecules when bound together. 

Ecoul represents the energy associated with electrostatic (Coulomb) interactions 

between the protein and ligand in the bound state. These interactions are a result of 

the attraction or repulsion between charged or partially charged atoms within the 

molecules, and they play a significant role in the binding process. 

EvdW and Ecoul were calculated using the AMBER molecular mechanics 

(GAFF) force field.  
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ΔGbind
R  is the change in solvation reaction field energy between the bound and 

unbound states, which is influenced by the parameter known as the solute interior 

dielectric constant (Din), similar to Coulomb energy. 

∆MSA represents the molecular surface area change upon binding, with the 

area coefficient (γ) determining its correlation with the non-polar solvation energy. 

The parameter ρ is the AMBER van der Waals radii linear scaling coefficient. 

Additionally, the coefficient α serves as a global scaling factor, while C acts as a 

translation constant, aligning the SIE score with the magnitude of experimental values 

from a training set. 

The optimal standard parameters are as follows:   

ρ is typically associated with scaling the van der Waals interaction energy. A 

value of 1.6 suggests that the van der Waals interactions are slightly amplified in the 

model compared to their raw calculated values. 

D in is likely related to the dielectric constant used in the calculation of 

electrostatic interactions. A value of 2.25 indicates that the model is considering a 

lower dielectric environment than that of bulk water (which has a dielectric constant 

of around 80). This lower value could reflect the less polar environment at the protein-

ligand interface. 

γ is often referred to as the surface tension coefficient or area coefficient. It 

connects the change in solvent-accessible surface area (∆MSA) upon binding to the 

non-polar solvation-free energy. The units (kcal mol−1Å−2) indicate that it represents 

the energy penalty or gain per unit area of surface exposed to or buried from the 

solvent. 

α scales the contribution of the electrostatic interaction energy to the overall 

binding free energy. A value of 0.105 suggests that electrostatic interactions play a 

role, but their contribution is moderated compared to other factors. 

C is a constant term in the SIE equation with a −2.89 kcal/mol value. It is an 

overall correction factor that accounts for various energetic contributions not 

explicitly captured by the other terms in the model. 
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2.8.2 Molecular Mechanics Generalized Born Surface Area (MMGBSA)  

The MMGBSA is a widely used computational method to estimate the binding 

free energy between two molecules, such as a ligand and a receptor. It combines 

molecular mechanics for intramolecular and intermolecular forces with solvation 

effects modeled by the Generalized Born (polar) and Surface Area (non-polar) terms. 

The method is commonly employed in drug discovery to assess and rank the binding 

affinities of ligands for their protein targets [38]. 

The binding free energy (∆Gbind) is given by:  

∆Gbind = EMM+ ∆Gsolvation - T∆S      (21) 

Where: 

EMM is molecular mechanics energy (bonded, van der Waals, and electrostatic 

interactions). 

∆Gsolvation is solvation-free energy that includes polar (Generalized Born) and non-

polar (Surface Area) contributions. 

T∆S is an entropic contribution, often neglected due to computational complexity. 

2.8.3 Thermodynamic integration (TI) 

 Thermodynamic integration (TI) calculations determine the free energy 

difference between two states, A and B, by coupling them through a parameter called 

λ, which acts as an extra, nonspatial variable. This λ framework enables the 

calculation of the free energy difference between the two states as follows:  

∆GTI
0

= ∫ 〈
∂V(λ)

λ∂
〉λ dλ

1

0
        (22) 

The thermodynamic cycle presented in Figure 7 enables the comparison of 

results from a series of TI calculations with measurable physical quantities. 

Processes A and B represent the binding of two different ligands to a protein, 

while processes C and D involve transformations between the two ligands. In process 

C, this transformation happens while the ligand is bound to the protein, and in process 

D, while the ligand is dissolved in water. Since ΔGC – ΔGD = ΔGA – ΔGB, TI 

calculations can be used to compute relative binding free energies, making them 

valuable for drug design or lead optimization. In equation 1, V(λ) represents the λ-

coupled potential function, corresponding to V(A) when λ = 0 and V(B) when λ = 1. 

The integration is performed over the average λ derivative of the potential function at 
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different λ values. Since analytical integration is rarely possible, simulations are 

conducted at discrete λ points, and the integral is evaluated numerically through 

interpolation. One advantage of TI calculations is that independent molecular 

dynamics (MD) simulations at fixed λ values can be performed in parallel, enhancing 

efficiency. Additionally, extra λ points can be introduced at any time to improve the 

accuracy of the calculations [39]. 

 

Figure  7 The thermodynamic cycle involves events A and B, which represent the 

binding of two distinct ligands to a protein, while events C and D signify the 

conversion of one ligand to the other in both the bound and solvated states, 

respectively. The free energy differences between processes A and C can be 

determined by calculating the free energy differences between processes B and D 

[40]. 

2.8.4 Free energy landscape 

The function of a biological system is defined by its free energy landscape, 

which represents the probability of the system being in a particular state under 

equilibrium conditions [41]. This landscape serves as a map of biological function, 

with multiple pathways between states, some requiring less energy than others. The 

system moves through this map by balancing entropic and internal energies, 

influenced by dissipative forces, temperature, and the system's structure [42]. This 

concept is captured in the following equation.  
G = H(U) – TS        (23) 
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Where: 

G is Gibbs free energy 

H is enthalpy 

U is internal energy 

T is temperature 

S is entropy (S) 

In biophysics, free energy usually refers to Gibbs free energy, but Helmholtz 

free energy (F) is also used. The choice depends on the ensemble: Gibbs free energy 

applies in the NPT ensemble (constant particle number, pressure, and temperature), 

while Helmholtz free energy is for the NVT ensemble (constant particle number, 

volume, and temperature). In practice, Gibbs free energy is commonly used in 

experiments, but both NVT and NPT ensembles are relevant in biophysics due to 

small volume fluctuations. The free energy landscape, representing a probability 

distribution, encapsulates a biological system's function and is related to the 

Boltzmann factor. 

ρ(x)∝ e-G(x)/kBT        (24) 

In this context, ρ(x) is the probability density function along a reaction coordinate (x), 

G(x) is the Gibbs free energy, kB is Boltzmann’s constant, and T is the temperature. 

The reaction coordinate (or collective variable) describes transitions between states, 

but identifying these variables can be challenging, as they often involve complex 

motions in protein conformational changes. If multiple states exist in the free energy 

landscape, more than one collective variable may be required. 

S= kB ln (Ω)         (25) 

State can refer to either microstates or macrostates. A microstate represents a 

specific configuration, while a macrostate is a collection of microstates, typically 

forming a basin in the free energy landscape. A macrostate has non-zero entropy, 

which is defined as: 

In this context, kB is Boltzmann's constant and Ω represents the number of 

microstates. Microstates have zero entropy, so their free energy is determined by 

enthalpy alone. For macrostates, entropy is proportional to the logarithm of the 

macrostate's hyper-volume, or the width of the basin in a 1D example. As temperature 

increases, macrostates widen and the free energy landscape flattens. Lower energy 
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states are more probable, meaning transitions between low-energy microstates are 

faster, while crossing energy barriers between macrostates is slower [43]. 

 

Figure  8 A free energy landscape sketch shows two macrostates, each represented by 

a basin, reflecting distinct protein conformations. The collective variable x describes 

the slow transition between states, with the transition timescale determined by the 

energy barrier height between the macrostates [41]. 

2.8.5 Umbrella sampling 

Umbrella Sampling is a computational technique used to calculate the Potential 

of Mean Force (PMF), which represents the free energy profile along a reaction 

coordinate, such as the distance between two molecules or the rotation of a bond. It is 

commonly employed in molecular dynamics simulations to study rare events and 

processes where direct sampling is inefficient.  

In Umbrella Sampling, the system is biased using a harmonic potential (or 

"umbrella") to sample different regions of the reaction coordinate more effectively. 

This method helps overcome energy barriers and ensures adequate sampling across 

the entire reaction coordinate space. After the simulations, these biased distributions 

are "unbiased" using statistical techniques such as the Weighted Histogram Analysis 

Method (WHAM) to compute the PMF [44]. 
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The PMF, W(x), along a reaction coordinate x, can be described as: 

W(x)= -kBTlnP(x)         (25) 

Where:  

W(x) is the Potential of Mean Force at point x along the reaction coordinate. 

P(x) is the probability distribution of the system at x. 

kB is Boltzmann’s constant. 

T is the temperature. 

In umbrella sampling, biased simulations are conducted with a harmonic 

potential of the form: 

Ubias (x)= 
1

2
k(x-x0)

2
         (26) 

Where: 

Ubias (x) is the biasing potential. 

k is the force constant of the harmonic potential. 

x0 is the center of the biasing window (the point along the reaction coordinate 

where the bias is applied). 

The probability distribution obtained from each biased simulation is corrected to 

obtain the unbiased distribution, which is then used to calculate the PMF [45]. 
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2.9 Literature reviews 

The screening and searching for compounds against PLpro target can be divided 

in to  tw o  m a in  s tra teg ie s  i.e ., d ru g  re p u rp o s in g  a n d  n ew  c o m p o u n d 

searching/screening. 

2.9.1 Drug Repurposing 
Kandeel, M., et al., performed virtual screening of 1697 clinical FDA-approved 

drugs against SARS-CoV-2 PLpro [46]. The results showed the compounds with the 

highest docking scores, including 26 compounds with a docking score of –7 or higher. 

O nly  10  drugs w ith  the h ighest estim ated  docking  sco res and  favorable 

pharmacokinetics were subjected to MD simulations, followed by molecular 

mechanics/generalized Born surface area (MM/GBSA) binding energy calculations. 

Three drugs, phenformin, quercetin, and ritonavir, showed favorable binding free 

energies (Table 1) of -56.6, -40.9, and -37.6 kcal/mol, respectively. Among the three 

drugs, energetic and structural analyses showed that phenformin was more stable than 

quercetin and ritonavir. The list of drugs provided herein constitutes a primer for 

clinical application in COVID-19 patients and guidance for further antiviral studies. 

Table  1 Decomposition of MM-GBSA binding energies for phenformin, quercetin 

and ritonavir in complex with COVID-19 PLpro through 50 ns MD simulations. 

Drug name 
Calculated MM-GBSA binding energy (kcal/mol) 

∆EVdw ∆Eele ∆EGB ∆ESUR ∆Ggas ∆GSolv ∆Gbinding 

Phenformin -23.2 -124.1 94.8 -4.0 -147.3 90.7 -56.5 

Quercetin -33.5 -75.0 72.7 -5.2 -108.4 67.6 -40.9 

Ritonavir -45.0 -26.7 40.0 -5.9 -71.7 34.0 -37.6 

 

Drug repurposing of DrugBank database was carried out by adopting 

ensemble docking approach for multiple conformations of PLpro SARS -CoV-2 

molecular target [47]. The three drugs (Benserazide, Dobutamine and Masoprocol) 

showed the best docking scores and interaction with Y268 and Q269 key binding 

residues as illustrated Figure 7. Further MD simulations suggested the superior 

stability and binding of dobutamine and masoprocol inside the binding site compared 

to Benserazide. This approach can facilitate identifying drugs for repositioning via 
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targeting multiple conformations of a crucial target for the rapidly emerging COVID-

19 pandemic. 

 

Figure 9 PLpro apo structure in khaki color (PDB ID: 6W9C) showing the binding 

site residues with the highly flexible loop (T265-H272) in red and the rest (L162-

E167, P247-P248, Y264-Y273 and T301) in blue. The highly flexible amino acids (3-

83, 182-200, 223-235 and 306-315) are shown in yellow [47]. 
 Reza, R., et al., [48] study explores the potential of seventeen anti-lung cancer 

drugs to combat COVID-19 by screening them against essential SARS-CoV-2 

proteins: M ain Protease (M pro), Papain -like Protease (PLpro), and Spike 

Glycoprotein. ADMET profiling was employed to assess the pharmacokinetics and 

toxicity of these drugs. In molecular docking studies, Capmatinib (CAP) emerged as 

the top candidate, showing the highest binding affinity and lowest inhibition constant 

(Ki) against SARS-CoV-2 proteins. Molecular Dynamics (MD) simulations confirmed 

that CAP induced significant conformational changes in the proteins, further 

supported by analyses of RMSD (Root Mean Square Deviation), RMSF (Root Mean 

Square Fluctuation), and binding energy. MMPBSA calculations revealed that CAP 

had the highest binding energy with PLpro compared to other proteins, indicating a 

strong inhibitory effect. ADMET profiling suggested that CAP has a favorable 

toxicity profile. The results reveal the intriguing potential of CAP as a therapeutic 

agent against COVID-19, sparking further interest and engagement in experimental 

validation and drug discovery efforts targeting SARS-CoV-2. 
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Figure  10 Binding interactions, RMSD, RMSF, Radius of gyration and SASA plots 

with CAP and PLpro 

The researchers of Patel, R., et al., [49] focused on GRL0617, an established 

inhibitor of PLpro in SARS-CoV, which is also effective against SARS-CoV-2 

because of the high similarity (over 80%) between the PLpro enzymes of both viruses. 

Notably, conserved amino acids such as Tyr268 in SARS-CoV-2 were identified for 

their crucial role in interacting with GRL0617, mainly through hydrophobic 

interactions that stabilize the binding. Then, Screening of Antibacterial Compounds. 

To identify new potential inhibitors of SARS-CoV-2 PLpro, an extensive database of 

8581 antibacterial compounds was downloaded from the ZINC database. These 

compounds were filtered based on their molecular weight (between 250 and 400 

Daltons) and structural features resembling GRL0617. Priority was given to 

compounds with aromatic rings capable of forming hydrophobic pi interactions and a 

central –CONH group that could form hydrogen bonds with the critical Y268 residue. 

The filtered compounds were docked against SARS-CoV-2 PLpro to evaluate their 

potential as inhibitors. This docking analysis identified five top hits that demonstrated 

strong interactions with the crucial Y268 residue. Among the five compounds, 

ZINC44459905 emerged as the lead compound, displaying the strongest interaction 

with Y268. 
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Further analysis through molecular dynamics (MD) simulations confirmed the 

stability of the ZINC44459905-PLpro complex, suggesting that this compound could 

effectively inhibit PLpro’s function. Based on the docking and simulation results, the 

study proposes ZINC44459905 as a potential lead molecule for further in vitro and in 

vivo experiments. This compound is suggested as a promising candidate for the 

development of therapeutic treatments against COVID-19, targeting the critical PLpro 

enzyme to disrupt viral replication and immune evasion mechanisms. 

 

Figure  11 Illustrations represent the process of the study. 
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Table  2 Some repurposed drugs are predicted to be potential inhibitors for PLpro of 

SARS-CoV-2. 

Chemical 

Database Results 

REF 
Inhibitor 

PDB 

ID 

Molecular 

docking 

MD 

simulation 

Docking 

score 

(kcal/mol) 

H-

bond 

Binding free 

energy 

(kcal/mol) 

Phenformin 

 

FDA-

approved 

drugs 

 

6W9C -7.23 - -56.5 

(MMGBSA) 

[46] 

Benserazide 

 

DrugBank 

database 

7JRN -11.15 Q269 

Y273 

D164 

- [47] 

Capmatinib PubChem 6W9C -7.70 - -8.34 

(MMGBSA) 

[48] 

2-(2-((benzofuran-2-

carboxamido) 

methyl)-5-methoxy-

1H-indol-1-yl)acetic 

acid (ZINC44459905) 

ZINC15 

database 

7CMD -5.70 Q269 

D164 

-50.96 

(MMGBSA) 

[49] 

 

 

 

 

 

 

 

 



 

 

 
 39 

2.9.2 New compound searching 

Pang, J., et al., discovered  small molecules inhibited SARS-CoV-2 PLpro [50]. 

Data analysis of the simulations shows the top four compounds (F403_0159, 

F112_0109, G805_0497, and D754_0006) identified as potent SARS-CoV-2 PLpro 

inhibitors. MD simulations indicated that the contribution of van der Waals interaction 

dominated the binding free energies of these compounds, which may be attributed to 

the hydrophobicity of the active site of PLpro. Furthermore, as shown in Figure 8, all 

four compounds formed conservative hydrogen bonds with residues such as D164, 

Q269, and Y273. 

 

Figure 12 Predicted binding modes of four PLpro-inhibitor systems: PLpro-

G805_0497 (a and b), PLpro-F403_0159 (c and d), PLpro-F112_0109 (e and f), and 

PLpro-D754_0006 (g and h) obtained from structure-based virtual screening. The 

protein PLpro is shown in cartoons and colored in blue. Hydrogen bond and π-π 

interactions are shown as dashed lines and colored in red and blue, respectively. 
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Bhowmick, S., et al., reported a few specific food compounds that can bind 

tightly with the SARS-CoV-2 PLpro protein identified through virtual screening, 

molecular docking, MD simulations, and MM-GBSA-based binding free energy 

calculations [51]. This research also provides a deeper understanding of the binding 

modes of the four proposed food compounds (FDB001395, FDB029219, FDB030757, 

and FDB031079) with SARS-CoV-2 PLpro protein. Molecular docking revealed 

several significant inter-molecular binding contacts between the functional groups of 

the identified food compounds and the catalytic amino acids of the SARS-CoV-2 

PLpro protein (Figure 11), which were also confirmed by all-atom MD simulation 

studies in a dynamic state. The binding free energy showed the proposed compounds 

displayed better binding affinity for the SARS-CoV-2 PLpro than the standard 

compound VBY (control). Data analysis of MD simulations shows characteristics of 

both the protein backbone and the food compound, such as RMSD and RMSF, RoG, 

SASA, H-bond interaction profiles, etc., and it was discovered that the backbone of 

SARS-CoV-2 PLpro remained very stable even after binding with the suggested 

molecules in comparison to the standard inhibitor. Moreover, the binding free energy 

demonstrated strong ΔG values for all complexes, ranging from –15.56 to –28.59 

kcal/mol. Overall, the extensive computational study explained that all proposed food 

compounds might be acting as crucial SARS-CoV-2 PLpro inhibitors or modulators 

for successful therapeutic application in COVID-19. 

 

Figure  13 A) Molecular binding interactions and B) Binding mode of proposed food 

compounds inside the active site cavity of SARS-CoV-2 PLpro protein. 
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  Lakhera, S., et al., investigated phytoconstituents of medicinal herb ‘Piper 

Longum’ against SARS-CoV-2 PLpro using screen of the pharmacokinetic properties 

[52].  Molecular docking has revealed that I-asarinin, a component of Piper Longum 

with the best binding affinity score of −10.8 kcal/mol and following most of the 

ADMET properties, has forced us to assume it is a better component to be used as a 

drug against SARS-CoV-2 PLpro. Furthermore, the MD simulation results have 

justified the assumption by showing acceptable values of calculated binding energy. 

H-bond interactions and the radius of gyration, although, explained the better stability 

and compactness of proteins, all these properties uplift the motive to use I-asarinin as 

a potential drug against COVID-19 (Figure 12), and the authors believe that this in 

silico study will lead to drug development for the treatment of COVID-19. 

 

Figure  14 Donor-acceptor interactions obtained by docking of I-asarinin and receptor 

4OVZ of PLpro protease of COVID-19. 

Sanachai, K., et al., employed all-atom MD simulations and binding free 

energy calculations based on MM- PB(GB)SA and SIE methods to elucidate and 

compare the binding behaviors of five inhibitors derived from peptidomimetic 

inhibitors (VIR250 and VIR251) and naphthalene-based inhibitors (GRL-0617, 

compound 3, and compound Y96) against SARS-CoV-2 PLpro [53]. The results 

showed that all inhibitors interacted within the PLpro active site. The van der Waals 

interactions and hydrogen bond formation in residues G163 and G271 with 

peptidomimetics and the Q269 residue with naphthalene-based inhibitors were the 

main energy contributions that stabilized the protein -ligand complexes. The 
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simulation results showed that VIR250 had the highest binding efficiency with SARS-

CoV-2 PLpro of the five inhibitors tested. Rational drug design to replace the 

aromatic rings, including heteroatoms (e.g., thiazolopyridine), at the P2 and P4 sites 

could help to improve the inhibitor-binding efficiency, and increased the nonpolar 

m oiety (e.g., ethene) at the N -term inal of VIR250 to enhance hydrophobic 

interactions with residues at the P1 and P3 sites (Figure 13).  

 

Figure  15 Rational design of the SARS-CoV-2 PLpro inhibitors based on the 

peptidomimetic VIR250 inhibitor. (A) 3D and 2D structures of VIR250 with ligand 

modifications, (B) 2D structure of modified VIR250 and their binding free energy 

prediction comparison with VIR250 against SARS-CoV-2 PLpro derived from MM-

PB(GB)SA calculations, (C) hydrogen bond occupation, and (D) per-residue 

decomposition free energy (ΔGbind residue) of modified VIR250 and the A2/SARS-

CoV-2 PLpro complex. Calculations are obtained from one snapshot of the complex 

after system minimization and solvation in the TIP3P model. 

Baildya, N., and co-workers screened potential drugs from Azadirachta Indica 

(Neem) for SARS-CoV-2 PLpro by molecular docking study along with MD 

simulation [54]. Desacetylgedunin (DCG) found in Neem seed showed the highest 

binding affinity towards PLpro as shown in Figure 14. Furthermore, MD simulation 

studies supported by standard analysis (e.g. root mean square deviation and 

fluctuation (RMSD, RMSF), radius of gyration, solvent accessible surface area 

(SASA)) showed large impact on the structure of PLpro by DCG.  
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Figure  16 3D and 2D images of desacetylgedunin (DCG), with the highest binding 

affinity towards PLpro. 

Singh, E., et al., investigated the structural influences of ligand binding on 

PLpro [55]. ZINC-in-Trials screening for SARS-CoV-2 PLpro Was performed. The 

resu ltin g  co m p o u n d s  o b ta in ed  fro m  m o lecu la r d o ck in g  ca lcu la tio n s , 

ZINC000000596945, ZINC000064033452, and VIR251 (control molecule), were 

subjected to MD simulation. The essential dynamics analyses utilize principal 

component analysis, a dynamic cross-correlation matrix, a free energy landscape, and 

time-dependent essential dynamics to predict the structural changes observed in 

PLpro upon ligand binding in a simulated environment. The binding free energy 

calculations based on MM/PBSA of the two selected molecules, ZINC000000596945 

(-41.23  3.70 kcal/mol) and ZINC000064033452 (-25.10  2.65 kcal/mol), revealed 

significant values, indicating that they are potential inhibitors of PLpro from SARS-

CoV-2 (Table 4).  
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Table  3 Individual component contribution in binding free energy calculations for 

native PLpro and its ligand-bound complexes. 

System Van der 

Waals 

energy 

(kcal/mol) 

Electrostatic 

energy 

(kcal/mol) 

Polar 

solvation 

energy 

(kcal/mol) 

SASA 

energy 

(kcal/mol) 

Binding 

free 

energy 

(kcal/mol) 

ZINC000000596945 -44.70 ± 

3.39 

-9.86 ± 4.59 17.34 ± 

3.52 

-4.00 ± 

0.21 

-41.23 ± 

3.70 

ZINC000064033452 -39.25 ± 

2.93 

-5.78 ± 2.54 24.07 ± 

3.43 

-4.13 ± 

0.27 

-25.10 ± 

2.65 

VIR251 -17.38 ± 

2.48 

-22.68 ± 

6.01 

35.11 ± 

7.70 

-2.17 ± 

0.26 

-7.13 ± 

5.69 

 

Based on the research work done by Jupudi, S., et al., [56]. The docking scores 

of SN00334175 and SN00162745 are -10.58 kcal/m ol and -9.93 kcal/m ol, 

respectively. The MD simulation of SN00334175/7JN2 and SN00162745/7JN2 

revealed that these complexes were stabilized with ligand binding interactions 

forming with G266, N267, Y268, Y273, T301 and D302, K157, L162, D164, R166, 

Q167, P248 and Y264. Moreover, van der Waal energy and hydrophobic energy terms 

are major contributors to total binding free energy (Figure 15). 

 

Figure  17  2D  interaction diagram  for the 100ns sim ulation trajectory of 

SN00334175/7JN2 (A) and SN00162745/7JN2 (B) complex. 
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Based on the research work by Elseginy, S.A. and M .M. Anwar, [57]. 

ZINC101291108 (lead 1) and ZINC16449029 (lead 2) were identified as potent 

SARS-CoV-2 PLpro inhibitors with IC 50 values of 0.085 mM and 0.063 mM, 

respectively. MD simulations were performed for lead 1, 2 and several reported 

SARS-CoV-2 inhibitors. The simulations confirmed the stability of both lead 

compounds and showed that they adopted two confirmations during the simulation 

period. The per-residue decomposition results revealed that the key residues involved 

in inhibitor binding were E167, P247, P248, Y264, Y268 and Q269. H-bond analyses 

showed H-bonds with G266 and N267 and salt bridges with G209 and Y273, which 

are essential for strengthening the substrate-binding pocket. Both inhibitors showed 

hydrophobic interactions with the S4 site and BL2 loop residues. The RMSD of the 

BL2 loop with the two inhibitors was investigated, and the results showed that the 

Y268 and Q269 BL2 loop residues moved outward to accommodate the large size of 

lead 2. The van der Waals interaction was the main energy contribution that stabilized 

lead 2, while van der Waals and electrostatic interactions were the main energy 

contributions stabilizing lead 1. The rational design of lead 2 suggested that 

replacement of the 2-(2-hydroxybenzylidene) hydrazine moiety with naphthalene or 

nitrobenzene at the P4 position of lead 2 and introduce polar substituents as aniline 

and benzoate groups at position P1 to enhance hydrophobic interactions and H-bonds, 

respectively as illustrated in Figure 17. 

 

Figure  18 Rational drug design of the SARS-CoV-2 PLpro inhibitors. 2D structure 

of lead 2 with possible modified fragments. 
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Based on the research work by Thangavel, N. and M. Albratty, [58] predicted 

4 olive secoiridoids as SARS-CoV-2 PLpro inhibitors. Docking results showed that 

demethyloleuropein aglycone was the top-ranked compound. MD simulation analysis 

predicted that demethyloleuropein aglycone was a potent non-covalent inhibitor of 

SARS-CoV-2 PLpro based on the nature and stability of its interactions with multiple 

binding sites. MM-GBSA energy of -94.54 ± 6.05 kcal/mol indicates good stability. In 

addition, for 98 % of the simulation time, two phenolic hydroxy groups of the 

demethyloleuropein aglycone maintained two hydrogen bonds with Asp302 of PLpro, 

specifying the significance of the groups in receptor binding (Figure 18).  

 

Figure  19 2D interaction diagrams of aspergillipeptide F with PLpro active site 

residues. 

Based on the research work by Selvaraj, V., et al., [59] study explores the in 

silico inhibitory potential of 28 polyphenolic compounds against the SARS-CoV-2 

papain-like protease (PLpro), which is crucial for viral replication. Among these 

compounds, amentoflavone, tiliroside, papyriflavanol A, and the antiviral drug 

indinavir exhibited strong binding affinities and were selected for further analysis. 

Amentoflavone, tiliroside, and papyriflavanol A demonstrated high stability and 

inhibitory potential, particularly by binding to the T158 and L162 dyad in PLpro. 

Further ADME (absorption, distribution, metabolism, and excretion) and DFT 

(density functional theory) analyses of amentoflavone and papyriflavanol A indicated 

excellent pharmacokinetic and molecular electrostatic properties. Molecular dynamics 

(MD) simulations and MM-GBSA analysis showed that amentoflavone, tiliroside, and 

indinavir effectively bind to the PLpro active site, with the amentoflavone-PLpro 

complex yielding a high MM-GBSA score of -106.56 kcal/mol. Although these 
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findings are promising, human clinical trials are necessary to confirm their therapeutic 

relevance. 

Table  4 MMGBSA scores for MD simulated complexes. 

Complexes MMGBSA score (-kcal/mol) 

PLpro (6W9C)-Amentaflavone -106.56 

PLpro (6W9C)-Tiliroside -90.13 

PLpro (6W9C)-Indinavir -81.55 

 

According to the analysis of  Waqas, M., et al., [60] explore the discovery of 

potential drug candidates targeting the SARS-CoV-2 papain-like protease (PLpro), a 

critical enzyme for viral replication and immune evasion. Using computational and 

enzymatic methods, the study identified five natural compounds with strong 

interactions and high binding energies with PLpro, suggesting they could disrupt its 

activity. Molecular dynamics simulations showed that these compounds form stable 

complexes with the enzyme, potentially altering its normal functions. Among the 

identified compounds, COMP4 was the most effective in inhibiting protease and 

deubiquitinase activities, followed by COMP1–COMP3 and COMP5. In vitro tests 

demonstrated low cytotoxicity in human BJ cells at a 30 μM dosage. These findings 

suggest that the selected compounds have therapeutic potential for treating COVID-19 

by inhibiting PLpro, and further optimization and in vivo testing are needed to 

improve their efficacy as drug candidates. 
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Figure  20 the 2D and 3D interactions of the compounds COMP1–COMP5. A 

superimposed view shows the comparison between the co-crystallized ligand (in 

green) in the 7CMD structure and its re-docked conformation (in purple), with a Root 

Mean Square Deviation (RMSD) of 0.388 Å, indicating high accuracy in docking. In 

the 2D format, hydrogen bonds are represented by blue and green dotted arrows, 

while in the 3D format, they are shown as black dotted lines. For color references and 

further details, readers are directed to the online version of the article. 

According to the analysis of  Gao, H., R. Dai, and R. Su, [61] discuss the 

severe global impact of the SARS-CoV-2 virus, emphasizing that managing its long-

term effects on public health, the economy, and mental health will be a significant 

challenge. It identifies the papain-like protease (PLpro) as a promising target for 

antiviral drug development. Using pharmacophore-based drug design, the study 

screened and identified ten potential inhibitors, with compound UKR1129266 

showing the best binding to PLpro through molecular docking analysis. Inhibiting 

PLpro is essential for blocking viral replication and preventing immune system 

disruptions, such as inflammatory flares observed in COVID-19 patients. Despite 

challenges in developing PLpro inhibitors, they are seen as essential for fighting 
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current and future coronavirus pandemics. The findings offer crucial insights for the 

design of antiviral drugs targeting SARS-CoV-2. 

 

Figure  21  2-dimensional analysis of non-bonded interaction between compound 

UKR1129266 and PLpro 
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Table  5 Some new selected compounds predicted to be potential inhibitors for PLpro 

of SARS-CoV-2. 

Chemical Name Database Results REF 

Inhibitor PDB 

ID 

Molecular 

docking 

MD 

simulation 

Docking 

score 

(kcal/mol

) 

H-bond Binding free 

energy 

(kcal/mol) 

N-[(2S)-3-(1-oxo-

1,3-dihydro-2H-

isoindol-2-yl)-2-

phenylpropyl]-4-(4-

oxo-3,4-

dihydroquinazolin-

2-yl) butanamide 

(ID: D754_0006) 

ChemDiv 

database 

6WX4 - Q269 

Y273 

D164 

− 36.60 

(MMGBSA) 

[50] 

p-coumaroyl 

triacetic acid 

lactone 

(ID: FDB031079) 

FooDB 

database 

7JIW -7.00 A240 

Y258 

Q263 

T295 

-28.597 

(MMGBSA) 

[51] 

I-asarinin Phytoche

mical 

(Piper 

Longum) 

4OVZ -10.80 N111 

S116 

W107 

Y274 

H273 

− 11.9 

(MMGBSA) 

[52] 

VIR250 VIR250 

(6WUU) 

VIR251 

(6WX4) 

GRL-

6W9C 

6WX4 

7JRN 

7JIW 

7KOL 

- - −13.68 

(MMPBSA) 

−15.02 

(MMGBSA) 

[53] 
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0617 

(7JRN) 

compoun

d 3 

(7JIW) 

compoun

d Y96 

(7KOL) 

Desacetylgedunin 

 

Phytoche

mical 

(Azadirac

hta 

Indica) 

6W9C −7.3 - - [54] 

(2S)-2-(4-(6-

Phenylpyridin-3-

ylmethoxy)phenyl)

propanoic acid 

(ID: 

ZINC00000059694

5) 

DrugDisc

overy@ 

TACC 

portal 

6WX4 -8.4 

(Autodoc

k) 

H272 

Y273 

D286 

-41.23 

(MMPBSA) 

[55] 

Paclitaxel 

(ID: SN00334175) 

SuperNat

ural 

Database 

7JN2 -10.58 R166 

Y264 

G266 

Y268 

Q269 

-58.344 

(MMGBSA) 

[56] 

Lead 2 

(ID: 

ZINC16449029) 

ZINC 

database 

6WZU -79.58 

(BUDE) 

Q269 

D164 

-55.6 

(MMGBSA) 

[57] 

Aspergillipeptide F DrugBan

k 

PubChem 

7LBS 

 

-9.9 

(Vina) 

-9.7 

R166 

Y273 

Q269 

-58.08 

(MMGBSA) 

[62] 
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ChEMBL 

ZINC 

Natural 

Product 

Database 

(Autodoc

k) 

A246 

Amentaflavone polyphen

olic 

compoun

d 

6W9C -10.8 

(AutoDoc

k vina) 

D108 

T158 

Q161 

L162 

-106.56 

(MMGBSA) 

[59] 

2-bromo-3-11-

dioxo-urs-12-en-

24-oate (COM4) 

natural 

compoun

ds 

Boswellic 

acid 

derivative

s 

7CMD -8.38 

MOE 

2022.02 

K157 

R166 

Y268 

Q269 

-49.16 [60] 

Ukrain 

(ID: UKR1129266) 

Chelidoni

um majus 

6WUU -35.98 

(CDOCK

ER) 

D164 

Q167 

- [61] 
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CHAPTER III COMPUTATIONAL DETAILS 

3.1 Phytochemical compounds 

The selection of Thai medicinal plants for this study was based on the Thai 

medical plant database, focusing on plants with antipyretic (fever-reducing) properties 

(https://ttdkl.dtam.moph.go.th) such as Harak, Khiaohom, and Chanthaleela, which 

are used in traditional Thai medicine recipes. These herbs are traditionally used to 

treat moderate to high fevers. From these plants, 45 phytocompounds were identified 

and assessed for their drug-like potential using Lipinski's rule [63]  through the 

SwissADME web server (http://www.swissadme.ch) [64].  Phytocompounds meeting 

these criteria were further evaluated for their ADMET (Absorption, Distribution, 

M e ta b o lis m , E x c re tio n , a n d  To x ic ity )  p ro p e r tie s  u s in g  th e  p k C S M 

(http://biosig.unimelb.edu.au/pkcsm/) web platform. [65]. 

3.2 Drug-likeness properties 

3D structures of the collected Thai medicinal plants were obtained from 

PubChem database, www.pubchem.ncbi.nlm.nih.gov. The selection of the Thai 

medicinal plants was premised on the Thai medical plant database with antipyretic 

properties (https://ttdkl.dtam.moph.go.th). The search provided fifty isolated 

phytocompounds from these plants were screened for their drug-likeness based on 

Lipinski’s rule with additional parameters such as molar solubility (logS), molar 

v o lu m e  ( v ) ,  a n d  n u m b e r  o f  r o ta ta b le  b o n d s  u s in g  S w is s A D M E  

(http://www.swissadme.ch/) [64]. Further, those phytocompounds which fulfilled the 

criteria of drug-likeness were checked for their Absorption, Distribution, Metabolism, 

Excretion and Toxicity (ADMET) properties. The pharmacokinetics properties 

evaluation were done with the help SwissADME online server [64]. After the 

ADMET analysis, the phytocompounds showed efficient pharmacokinetic parameters 

were selected for the molecular docking analysis.  
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3.3 Molecular docking 

Our detailed molecular docking process was crucial in our study of SARS-

CoV-2 PLpro. We discovered that the size of an inhibitor affects the conformation of 

the enzyme’s BL2 loop in both its closed and open forms  [66-69]. Specifically, 

binding of the small molecule GRL0617 led to a more closed conformation, 

narrowing the substrate cleft between the BL2 loop and the α3-to-α4 loop [57, 70]. In 

contrast, the larger molecule VIR251 caused this cleft to widen. Based on these 

findings, we chose to model the PLpro enzyme in its open BL2 loop conformation for 

our further analysis. To validate our docking method, we first docked GRL0617, 

which we obtained from a ligand-bound structure (PDB: 7CMD), into the active site 

of the unbound PLpro enzyme (PDB: 6WZU) [71]. This docking was performed 

using the GOLD CSDS 2023.3 software with default genetic algorithm settings [72], 

conducting 100 independent docking runs per molecule. We carefully considered the 

ligand binding area around SARS-CoV-2 PLpro, defined by residues within a 10 Å 

radius of the co-crystallized ligand GRL-0617 (X = –27.43 Å, Y = 30.00 Å, Z = 27.53 

Å) [53, 57]. The best docking conformations for each compound were selected based 

on the GOLD score and were subsequently used for further analysis. 

3.4 Molecular dynamics simulation 

The best poses of protein-ligand complexes were obtained from molecular 

docking calculation and were used to further perform MD simulations using 

AMBER16 [73]. Force fields using FF14SB [74] and the second generation of GAFF 

(GAFF2) [75] were used as parameters for protein and ligands, respectively. The 

electrostatic potential (ESP) charges of each ligand were computed the HF/6-31g(d) 

level of theory and then the restrained electrostatic potential (RESP) charges were 

created by a charge fitting calculation using antechamber module implemented in 

AMBER16 [73]. This module was also used to neutralize the complexes by 

introducing Cl- counterions, as well as to solve the complexes using a TIP3P 12.0 Å 

water box. The systems generated were then partially minimized for 500 steps with a 

500 kcal/mol restraint potential and then fully minimized without energy restraint for 

500 steps. Gradual heating of the systems was then performed from 0 K to 300 K for 

50 ps under the NVT ensemble using Langevin thermostat. Equilibration of the 

systems at 300 K for 100 ns without energy restraint at a constant pressure of 1 atm 
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was performed under the NPT ensemble using Berendsen barostat [76]. The Particle-

Mesh Ewald (PME) algorithm [77] was used for dialing with long-range interactions, 

whereas short-range cutoff of 12 Å for nonbonded interaction. The final MD 

simulation was performed at 100 ns for all the systems while the SHAKE algorithm 

[78] was employed to constrict all atomic hydrogen bonds. The MD trajectories were 

collected every 20 ps, and the calculation was extracted from the last 20 ns. While, 

The MM/GBSA method was also employed to predict the binding free energy of 

protein-ligand complexes [40]. The binding free energy (∆G) is calculated using the 

following equation: 

ΔG = ΔEMM + ΔGsol - TΔS       (22) 

ΔEMM = ΔEbonded + ΔEvdW - ΔEele      (23) 

ΔGsol = ΔGpsolv + ΔGnsolv       (24) 

Where, ∆EMM is the solvation free energy, and ΔGsol is the conformational 

entropy. The entropy contribution from changes in translational, rotational, and 

vibrational degrees of freedom −TΔS was calculated using normal mode analysis. 

ΔEMM is further divided into bonded energy (ΔEbonded), van der Waals energy (ΔEvdw), 

electrostatic energy (ΔEele). The total solvation free energy (ΔGsol) is the sum of the 

polar solvation (ΔGpsol) and non-polar energy (ΔGnpol)  
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CHAPTER IV RESULTS AND DISCUSSION 

4.1 Drug likeness and pharmacokinetic ADMET predictions 

To enhance the design of molecules with favorable bioavailability, Chris 

Lipinski of Pfizer introduced a set of guidelines known as Lipinski’s Rules of Five, 

commonly referred to as Lipinski's or the Rule of 5 [79]. These rules serve as a 

benchmark for evaluating the drug-likeness of compounds, particularly their potential 

to be orally active drugs in humans. Lipinski’s rules are defined by four key criteria 

which the details are provided below: 

(i) The compound must have a molecular weight not exceeding 500 g/mol. A 

lower molecular weight generally facilitates better cell membrane permeability, 

critical for oral bioavailability. Molecules that exceed this limit are often too large to 

easily traverse cellular membranes, which can impede their effectiveness as drugs 

(ii) The compound should have no more than five hydrogen bond donors, 

typically comprising hydroxyl (OH) and amine (NH) groups. A higher number of 

hydrogen bond donors can reduce a compound's ability to cross lipid membranes, as 

excessive hydrogen bonding increases water solubility at the expense of membrane 

permeability. 

(iii) The molecule should contain no more than ten hydrogen bond acceptors, 

including nitrogen and oxygen atoms. Similar to hydrogen bond donors, a higher 

count of acceptors can hinder a compound's ability to penetrate lipid membranes, 

negatively impacting its absorption. 

(iv) The octanol-water partition coefficient, denoted by ClogP, should not 

exceed five. ClogP measures a compound's lipophilicity, indicating its distribution 

between hydrophobic (lipid) and hydrophilic (aqueous) environments. A ClogP value 

above five suggests that a compound is overly lipophilic, which may lead to poor 

solubility in water, thus affecting absorption and distribution. 

The compounds that comply with Lipinski's Rule of Five demonstrate 

favorable drug-like properties, indicating strong potential for effective oral activity. 

These compounds not only align with the specified physicochemical parameters but 

also exceed them, making them highly promising candidates for further drug 

development. On the other hand, compounds that do not meet Lipinski's criteria show 

deviations from one or more guidelines, suggesting potential challenges in achieving 
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oral efficacy. As shown in Table 6, out of the 47 screened compounds, only 27 adhere 

to Lipinski's Rule of Five. 

Table  6 Drug-likeness properties of phytocompounds predicted by SwissADME. 

No. Compounds MW ClogP HBDs HBAs 

Follow 

Lipinski’s 

rule 

1 (3R)–6–4–dihydroxy–8–

methoxyhomoisoflavane 
286.32 2.9 2 4 Yes 

2 (3R)–7,4’–dihydroxy–8–

methoxyhomoisoflavane 
284.35 3.45 2 3 Yes 

3 (3R)–7–4–dihydroxy–5–

methoxyhomoisoflavane 
286.32 2.9 2 4 Yes 

4 (Z)–2ß–hydroxy–14–hydro–ß–

santalol 
238.37 2.89 2 2 Yes 

5 (Z)–lanceol 220.35 4.01 1 1 Yes 

6 (Z)–α–santalol 220.35 3.39 1 1 Yes 

8 15-N-acetylcapparisine 507.58 2.12 6 3 No 

9 28–Deoxonimbolide 452.54 4.22 0 6 Yes 

10 2R–(Z)–campherene–2,13–diol 238.37 2.89 2 2 Yes 

11 3,29-O-

Dibenzoyloxykarounidiol 
648.91 10.79 0 4 Yes 

12 3-Deacetyl-3-

cinnamoylazadirachtin 
808.82 1.38 16 3 No 

13 Aoibaclyin 642.82 3.61 5 9 No 

14 Artemisinin 282.33 2.39 0 5 Yes 

15 Astilbin 450.39 -0.29 7 11 No 

16 Atractylodin 182.22 2.93 0 1 Yes 

17 Bergenin 328.27 –1.53 5 9 Yes 

18 Borapetoside B 552.57 -0.36 5 12 No 

19 Borapetoside C 536.57 0.67 4 11 No 

20 Bourjotinolone A 470.73 6.71 2 3 No 
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21 Capparispine 436.52 0.48 4 5 Yes 

22 Daucosterol 576.85 5.85 4 6 No 

23 Engeletin 434.39 0.01 10 6 No 

24 Eurycomanol 410.42 -2.04 6 9 No 

25 Eurycomanone 408.4 –1.83 5 9 Yes 

26 Feruloyl tyramine 313.35 2.37 3 4 Yes 

27 Gluanol acetate 468.75 9.05 0 2 No 

28 Hanisonin 514.56 2.32 2 9 No 

29 Hinesol 222.37 3.92 1 1 Yes 

30 Hispidulin 300.26 2.59 3 6 Yes 

31 Imperatorin 270.28 3.88 0 4 Yes 

32 Isoastilbin 450.39 -0.29 7 11  No 

33 Isocodonocarpine–noniso 466.55 0.84 4 5 Yes 

34 Isoimperatorin 270.28 3.88 0 4 Yes 

35 Lupeol acetate 468.75 8.45 0 2 No  

36 Nimbandiol 456.53 2.92 2 7 Yes 

37 Obacunone 454.51 3.6 0 7 Yes 

38 Oxypeucedanin 286.28 3.1 0 5 Yes 

39 Pectolinarigenin 314.29 2.89 2 6 Yes 

40 Perforaquassin B 360.44 2.72 0 5 Yes 

41 Resveratrol 228.24 2.76 3 3 Yes 

42 Scopoletin 192.17 1.51 1 4 Yes 

43 ß–eudesmol 222.37 3.92 1 1 Yes 

44 Taraxerol 426.72 8.17 1 1  No 

45 Tiliacorine 576.68 5.42 1 7  No 

46 Tiliacorinine 576.68 5.42 1 7  No 

47 GRL0617  304.39 3.91 2 1 Yes 
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Compounds that adhere to all four of Lipinski's criteria are likelier to possess 

desirable pharmacokinetic properties, including effective absorption, distribution, 

metabolism, excretion, and toxicity (ADMET) profiles shown in Table 7. These 

properties are crucial for ensuring the efficacy and safety of drugs administered orally. 

By meeting these standards, the compounds demonstrate potential not only for 

effective therapeutic action but also for minimized risks related to poor absorption or 

undesirable metabolic pathways. Thus, compliance with Lipinski’s Rule of 5 serves as 

a key indicator of a compound’s suitability for further development as an oral drug. 

Aqueous solubility is a critical factor in the absorption of drug compounds, 

directly influencing their bioavailability and overall pharmacokinetic profile. 

Solubility is often measured using log S values, which represent the logarithm of the 

compound's solubility in water. Compounds with log S values below -2 are generally 

considered to have adequate solubility, which enhances their likelihood of being 

effectively absorbed in the gastrointestinal tract  [80]. For oral drugs, sufficient 

aqueous solubility is essential as it ensures that the compound remains dissolved in 

gastrointestinal fluids, facilitating its passage across the intestinal membrane and into 

systemic circulation. Beyond solubility, intestinal absorption is another key factor in 

determining a compound's oral bioavailability. The percentage of intestinal absorption 

reflects a compound's ability to permeate the intestinal barrier a critical step for any 

orally administered drug to reach its target site within the body. Compounds with 

intestinal absorption rates exceeding 30% are typically viewed as having the potential 

to effectively cross the intestinal barrier, making them more promising candidates for 

oral drug development [81-83]. This threshold serves as a valuable benchmark in 

early drug discovery, helping to filter out molecules that may face absorption 

challenges. All compounds demonstrated calculated human intestinal absorption 

values greater than 60%, far exceeding the recommended criterion of 30%. This 

suggests that these compounds have a high absorption potential, enhancing their 

suitability as orally administered drugs. The high absorption rates observed for our 

collects compounds are particularly advantageous because they correlate with 

improved oral bioavailability, a critical parameter for drug effectiveness.  

 



 

 

 
 60 

These findings underscore the importance of considering both solubility and 

absorption during the early stages of drug development. While solubility ensures that 

a compound remains dissolved, absorption determines its ability to cross the intestinal 

barrier and reach systemic circulation. The high intestinal absorption (>60%) 

observed in this study highlights the compounds' potential as drug candidates with 

promising oral bioavailability profiles. 

Distribution is a vital component of pharmacokinetics, defining how a drug 

moves and functions within the body once it enters the bloodstream. After absorption, 

the drug is transported to various tissues and organs, influencing its therapeutic 

effectiveness, duration of action, and potential side effects. This stage is crucial in 

determining the overall success of the drug as a treatment. 

The blood-brain barrier (BBB) plays a critical role in protecting the central 

nervous system (CNS) by tightly regulating the movement of substances between the 

bloodstream and the brain. It selectively permits only certain molecules, such as water 

and lipid-soluble substances, to pass into brain tissue while blocking others. This 

selective permeability is essential for maintaining the brain's microenvironment and 

shielding it from toxins, pathogens, and other harmful substances. Evaluating a drug’s 

ability to cross the BBB is crucial for understanding its potential therapeutic effects on 

the CNS and assessing the risk of adverse side effects. A key measure of a drug's 

ability to penetrate the BBB is the log BB value, which indicates the drug's 

distribution between the blood and the brain. Drugs with log BB values greater than 

0.3 are considered effective at crossing the BBB, making them suitable candidates for 

targeting CNS disorders. [84-86]. In this study, most compounds, except for 

compounds 1, 5, 6, 10, and 13, had log BB values below 0.3, indicating that they 

would be poorly distributed within the brain. This suggests limited CNS accessibility, 

which can be beneficial for non-CNS-targeting drugs but a limitation for drugs 

intended to treat brain disorders. Another parameter used to assess CNS penetration is 

the log PS, which measures the permeability-surface area coefficient a critical factor 

in determining how well a compound can penetrate brain tissue. Compounds with log 

PS values less than -2 are considered poorly distributed to the brain, indicating 

minimal CNS penetration [87, 88]. Most of the substances in this investigation 

showed log PS values below -2, suggesting a restricted ability to enter the brain. 
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Compounds 2, 6, 7, 10, 14, 19, and 25, on the other hand, indicated a higher chance of 

CNS penetration with log PS values exceeding -2. 

Comprehending the log BB and log PS values of a substance offers valuable 

understanding regarding its dispersion across the central nervous system. When 

creating medications to treat neurological disorders, these measurements are 

especially crucial since they forecast how well the medication will work to target 

specific brain regions while reducing systemic adverse effects. Lower log BB and log 

PS values, Conversely, for drugs intended to act outside the CNS, lower log BB and 

log PS values are desirable to avoid unwanted neurological effects.  

Metabolism is a pivotal stage in a drug's lifecycle within the body and a key 

component of pharmacokinetics, which explores how the body processes drugs. This 

metabolic process significantly influences the drug's effectiveness, duration of action, 

safety, and elimination and is crucial for achieving optimal therapeutic effects. The 

metabolism of drugs and their detoxification primarily rely on cytochrome P450 

(CYP) enzymes, predominantly located in the liver [89]. These enzymes facilitate the 

conversion of drugs into metabolites, simplifying their excretion from the body. 

CYP2D6 and CYP3A4 are two primary CYP variants that significantly metabolize a 

wide range of medications [90]. Compounds 2, 3, 7, 16, 17, 18, and 26 were found to 

be possible CYP3A4 substrates and inhibitors in this investigation. This indicates that 

CYP3A4 plays a major role in the liver, where these chemicals are anticipated to 

undergo considerable metabolism [82, 91-93]. These substances are processed by 

CYP3A4 as they act as substrates, and their inhibitory potential suggests it might 

decrease the activity of the enzym e. This dual function is essential for the 

development of new drugs since it affects the drug's general safety profile, possible 

interactions with other drugs, and clearance rate. Predicting the behavior of these 

compounds in the body, including their metabolic pathways, potential drug-drug 

interactions, and potential adverse effects, is rendered easier by knowing what drugs 

interact with CYP3A4. 

Excretion, the final stage in the pharmacokinetic journey of drugs, is a vital 

process that helps preserve internal balance. During this phase, metabolized 

compounds are expelled from the body, preventing the accumulation of drugs to 

potentially toxic levels. Understanding the excretion mechanisms and pathways is 
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critical for formulating safe and effective pharmaceutical treatments. Key indicators 

such as renal OCT2 (organic cation transporter 2) substrates and total clearance are 

used to gauge the efficiency with which medicines are cleared from the body relative 

to their concentrations internally. Total clearance measures the rate at which a drug is 

eliminated through metabolic and excretory processes. Drugs with lower total 

clearance values are cleared more slowly, potentially enhancing their stability and 

extending their therapeutic effects over a longer duration [94]. Eight compounds (4, 5, 

6, 8, 14, 16, 18, and 27) with log(CLtot) values larger than 0.7 were found to have high 

total clearance in this analysis. This implies that these substances are swiftly excreted 

from the body, which may restrict their efficiency if eliminated before they reach 

therapeutic levels. It may also be advantageous for lowering the danger of buildup and 

toxicity. 

On the other hand, five compounds had poor clearance rates; their log(CLtot) 

values were less than 0.3, meaning they stayed in the body longer. These compounds 

were 1, 2, 20, 21, and 26. Maintaining therapeutic concentrations may benefit from 

this prolonged retention, which gives the medication enough time to reach its target 

before being eliminated. The remaining compounds had balanced excretion that 

supports efficient therapeutic action without quick elimination or excessive 

accumulation, indicating moderate clearance rates, with log(CL tot) values ranging 

from 0.3 to 0.7 [18]. Except for 2R-(Z)-camphene-2,13-diol, none of the compounds 

under investigation were expected to be OCT2 substrates regarding renal excretion. 

Renal transporter OCT2 is essential for the renal absorption of many medications. 

Substances not OCT2 substrates are less likely to interact with this transporter, which 

lowers the possibility of OCT2 activity-related medication interactions and renal 

adverse effects.  

In pharmacology, toxicity describes the extent to which a substance can harm 

humans or animals. For many reasons, managing and understanding toxicity is 

critical, establishing it as a fundamental issue in drug development, environmental 

health, and clinical environments. Hepatotoxicity and the AMES test are commonly 

employed as markers in toxicity assessments. Five chemicals under investigation, 

numbers 6, 9, 16, 18, and 26, showed signs of probable carcinogenicity and 

mutagenicity in the AMES test. 
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Moreover, feruloyl tyramine, capparispine, and isocodonocarpine-noniso 

demonstrated positive hepatotoxicity test findings, indicating a possibility for 

impairing normal liver function. These substances are cytotoxic, so they should be 

used sparingly and in low quantities. The molecules under investigation display 

advantageous pharmacokinetic characteristics, indicating a higher probability of 

exhibiting beneficial drug-like behavior. 
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Table  7 ADMET analysis predictions for selected phytocompounds using the pkCSM 

software 
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1
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2
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4.2 Molecular Docking Calculation  

To validate the docking protocol, the re-docking processes of GRL0617 to the 

active site of PLpro of SARS-COV-2 were preliminary performed as described in the 

com putational m ethod section .  A s depicted in  F igure S1 , the re -docked 

conformations of GRL0617 showed significant overlap with the native co-crystallized 

ligand and interacted with the same critical amino acids characterized by H-bonds 

(Y273 and D302), hydrophobic (G163, V165, R166, S245, A246, Y264, N267 and 

Y268) and π-π (L162, D164 and T301) interactions. These findings underscore the 

efficiency and validity of the docking protocol. 

After the validation of docking procedures,  molecular docking of the 

collected phytochemicals was performed similarly to that of GRL0617, and the 

resulting docking scores are summarized in Table 8. These phytochemicals were 

assessed based on their maximal docking scores, which served as criteria to evaluate 

their potential as drugs. The docking scores of the complexes formed between the 

studied molecules and the PLpro enzyme ranged from 35.0 to 55.0 Notably, feruloyl 

tyramine) scored the highest at 55.31, followed by capparispine (52.8), bergenin 

(51.3), and (3R)–7,4'–dihydroxy–8–methoxyhomoisoflavane (50.5). These scores 

were notably higher than that of GRL0617 (52.5). Consequently, the docking poses of 

these top-scoring ligands within 15 percent were selected for further investigation 

through MD simulations. 
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Table  8 Docking scores (binding energy in kcal/mol) of the phytocompounds against 

SARS-CoV-2 PLpro, through GOLD (as the values appear) for the best docked 

compounds.   

No. Compounds GOLD score 

1 (3R)–6–4–dihydroxy–8–methoxyhomoisoflavane 49.4 

2 (3R)–7,4’–dihydroxy–8–methoxyhomoisoflavane 50.5 

3 (3R)–7–4–dihydroxy–5–methoxyhomoisoflavane 47.5 
4 (Z)–2ß–Hydroxy–14–hydro–ß–santalol 47.1 

5 (Z)–lanceol 49.4 

6 (Z)–α–santalol 47.7 

7 28–Deoxonimbolide 38.1 

8 2R–(Z)–campherene–2,13–diol 46.0 

9 Artemisinin 38.5 

10 Atractylodin 38.2 

11 Bergenin 51.3 

12 Capparispine 52.8 

13 Eurycomanone 38.5 

14 Feruloyl tyramine 55.3 

15 Hinesol 35.8 

16 Hispidulin 46.1 

17 Imperatorin 49.1 

18 Isocodonocarpine–noniso 47.9 

19 Isoimperatorin 47.3 

20 Nimbandiol 42.0 

21 Obacunone 37.4 

22 Oxypeucedanin 47.7 

23 Pectolinarigenin 45.3 

24 Perforaquassin B 41.9 

25 Resveratrol 49.1 

26 Scopoletin 36.5 

27 ß–eudesmol 34.7 

28 GRL0617  52.5 
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4.3 Molecular Dynamics (MD) simulation 

4.3.1 System stability 

Root mean square deviation (RMSD) analysis was used to evaluate the binding 

stabilities of the top four protein-ligand complexes throughout a 100 ns simulation 

period. The results are shown in Figure 22. The ligands continuously stayed inside the 

binding pocket, exhibiting outstanding stability throughout the three simulation runs, 

as seen by the RMSD figure. Low RMSD values, typically between 2.00 and 3.00 Å, 

show little volatility and indicate that the complexes maintained relatively stable 

conformations over time.  

To verify the stability and compactness of the protein-ligand complexes, the 

simulations involved the observation of the radius of gyration or R g. Rg values 

measure the total compactness of the protein structure, giving information on the 

protein's ability to hold its shape during the simulation. Rg values varied by less than 1 

Å during the simulations, with all complexes falling between 23.50 Å and 24.00 Å. 

This slight variation suggests that the protein-ligand complexes maintained their 

structural stability and compactness for the whole simulation time.  

Both RM SD and R g suggested the complexes in their m ost stable and 

equilibrated condition, snapshots taken during the final 20 ns of the simulation 

(between 80 and 100 ns) were chosen for additional examination. The information 

supports that the most representative configurations of the protein-ligand interactions 

serve as the foundation for the final structural evaluations and analyses. The selected 

complexes maintain a strong and stable binding, as confirmed by the stability in the 

RMSD and Rg analyses. This indicates that they are potential candidates for further 

study. 
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Figure  22  RMSD, and Rg profiles for all protein-ligand complexes over time for 

each of the three replicates (Run 1–3). 

4.3.2 Solvated interaction energy (SIE) Binding energy 

The binding strength of all protein-ligand complexes (ΔGbind
SIE

) was initially 

evaluated using the SIE (Solvated Interaction Energy) approach, which utilized 

snapshots from the last 20 nanoseconds of simulation from three independent runs. 

The SIE method estimates binding free energy in solvation by combining Coulomb 

and non-polar interaction components with the desolvation-free energy contribution. 

The results showed that the protein-ligand binding energies were energetically 

favorable across all three independent runs, with energy differences of less than 1.50 

kcal/mol (Figure 23). The most stable binding free energies observed from the three 

runs were approximately -7.13, -7.57, -6.69, and -6.27 kcal/mol for (3R)–7,4'–

dihydroxy–8–methoxyhomoisoflavane, bergenin, capparispine, and feruloyl tyramine, 

respectively. It's important to note that these binding stabilities differ from docking 

energy results, which do not consider structural dynamics and solvation effects. 

However, the differences in binding free energies among the four complexes were 

similar and not easily distinguishable. Therefore, an additional approach is necessary 

to differentiate their potential further. As previously mentioned, the binding free 

energies obtained from the three independent runs for each system showed no 

significant variation. Consequently, the simulation that yielded the most stable 

binding energy for each system was selected as the representative protein -ligand 

complex for further analysis, ensuring the reliability and consistency of the research 
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findings. The results indicated that the binding energies were consistently favorable 

across different simulations, with minimal energy variation, suggesting reliable 

interactions. However, since the energy differences between the ligands were 

minimal, it was challenging to distinguish their relative binding strengths. The 

meticulous process of choosing the simulation with the most stable energy for each 

ligand as the best representation for further analysis was crucial to ensure the 

robustness of our conclusions. 

 
Figure  23 The ΔGbind

SIE
 (kcal/mol) results are based on the SIE method  for all protein-

ligand complexes over time for each of the three replicates (Run 1–3). 

4.3.3 Molecular Mechanics General Born surface area (MM/GBSA) 

Binding free energy  

Previous studies have demonstrated the significant role of the MM/GBSA 

(Molecular Mechanics/Generalized Born Surface Area) method in enhancing the 

accuracy of docking calculations and effectively distinguishing between active and 

inactive molecules [65-67]. In this study, we conducted MM/GBSA calculations to 

estimate the binding free energy for each simulated system, using 100 snapshots from 

the last 20 nanoseconds of the best simulation run identified by the SIE approach. 

While MM/GBSA may not perfectly replicate experimental values, its ability to 

closely approximate these results underscores its usefulness in predicting relative 

binding affinities and understanding molecular interactions, thereby enlightening the 

scientific community. 
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 Table 9 presents the binding free energy and components calculated by the 

MM/GBSA method for all the complexes studied. MM/GBSA offers a more apparent 

distinction between active and inactive compounds than the SIE results. The binding 

free energies for (3R)–7,4'–dihydroxy–8–methoxyhomoisoflavane, bergenin, 

capparispine, and feruloyl tyramine were -14.70, -12.48, -13.11, and -1.02 kcal/mol, 

respectively, with (3R)–7,4'–dihydroxy–8–methoxyhomoisoflavane showing the 

strongest binding affinity to PLpro. All systems demonstrated favorable binding free 

energies except for feruloyl tyramine. Although the ranking of the first three 

compounds differs from  that obtained using the SIE method, both m ethods 

consistently indicate that feruloyl tyramine forms the least stable complex with PLpro 

among the four compounds. It is also noteworthy that the ranking of ligand potential 

differs from that of docking calculations, which typically rely on a single static 

protein conformation and may only be ideal for evaluating some ligands. Utilizing the 

MM/GBSA method to assess the binding free energy of various ligands with the 

PLpro protein provides valuable insights into the stability of these protein -ligand 

interactions, a crucial aspect in drug development. 

 By analyzing snapshots from the best-performing simulation run identified by 

the SIE approach, this study provided valuable predictions about how strongly 

different molecules bind to the target protein, aiding in distinguishing active 

compounds from inactive ones. The MM/GBSA method's contribution to this 

understanding is significant and should be appreciated by the scientific community. 

The findings revealed that (3R)–7,4'–dihydroxy–8–methoxyhomoisoflavane had the 

strongest binding affinity, while feruloyl tyramine exhibited the weakest. Despite 

some differences in compound rankings compared to other methods like SIE and 

traditional docking, the consistent conclusion across methods was that feruloyl 

tyramine was the least stable, suggesting its likely inactivity. This comparison 

underscores the importance of using multiple methods to understand molecular 

interactions comprehensively, providing reassurance about the robustness of our 

study. 
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A detailed analysis of the energy components revealed that van der Waals 

interactions, electrostatic interactions, and non-polar solvation energy contributed 

negatively to the overall binding energy, enhancing the stability of the protein-ligand 

complexes. In contrast, polar solvation energy contributed positively, working against 

binding stability. The van der Waals energy terms were relatively consistent across the 

four systems, ranging from approximately -30.00 to -43.00 kcal/mol. However, the 

contributions from electrostatic interactions varied significantly, ranging from around 

-6.00 to -156.00 kcal/mol. Electrostatic interactions significantly stabilized the 

bergenin and capparispine complexes, contributing most significantly to their negative 

binding energies. In contrast, this stabilizing effect was less pronounced in the (3R)–

7,4'–dihydroxy–8–methoxyhomoisoflavane and feruloyl tyramine complexes. These 

variations in electrostatic contributions likely explain the differences in total binding 

free energies observed among the four complexes. 

Bergenin and capparispine exhibited stronger binding affinity to PLpro, 

primarily through hydrogen bonding interactions with surrounding polar amino acids. 

On the other hand, van der Waals interactions from non-polar residues were a 

significant factor in stabilizing the feruloyl tyramine complex, contributing 

significantly to the total binding free energy. The notable increase in electrostatic 

energy observed in the capparispine complex can be attributed to its positively 

charged nature, allowing it to establish stronger electrostatic interactions than the 

other systems. The focus is dissecting the various energy components contributing to 

the binding stability of different protein-ligand complexes. The negative contributions 

(which lower binding free energy and thus enhance binding stability) primarily come 

from van der Waals, electrostatic interactions, and non-polar solvation energy. 

However, polar solvation energy works against binding stability by contributing 

positively. The electrostatic interactions vary greatly betw een the ligands, 

significantly influencing their overall binding stability. For example, bergenin and 

capparispine benefit most from electrostatic solid interactions, leading to more stable 

binding. 
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Conversely, (3R)–7,4'–dihydroxy–8–methoxyhomoisoflavane and feruloyl 

tyramine have less electrostatic stabilization, resulting in different overall binding 

energies. The analysis also highlights the importance of hydrogen bonding and van 

der Waals interactions in stabilizing these complexes, particularly for bergenin, 

capparispine, and feruloyl tyramine. The distinct energy profiles of these interactions 

explain why some compounds have stronger binding affinities than others (as 

discussed in the following section). 

The non-polar solvation-free energies, which relate to the burial of solvent-

accessible surface area (SASA) as the ligand binds to the protein, had a slightly 

favorable effect on the binding stability. This suggests that the non-polar components 

of the energy specifically, the sum of non-polar solvation energy (ΔGsolv-np) and van 

der Waals interactions (ΔEvdw) played a significant role in stabilizing the complexes 

between PLpro and the ligands. These non-polar forces help the ligand fit snugly into 

the protein's binding site, enhancing overall stability. While the electrostatic 

interactions (ΔEele) between the protein and ligands were generally favorable, they 

were counterbalanced by the polar solvation energy (ΔGsolv-ele), which measures the 

energy cost of dissolving the charged groups in water. When these two terms are 

combined (ΔGsolv-ele + ΔEele), the net electrostatic contribution becomes positive, 

detracting from the binding free energy, making it less favorable. This effect was most 

pronounced in the PLpro/feruloyl tyramine complex, where the highest value of this 

combined electrostatic term resulted in a reduced overall binding free energy 

compared to other PLpro/ligand complexes. This reduction in binding free energy 

indicates a less stable complex, which could have implications for the effectiveness of 

feruloyl tyramine as a PLpro inhibitor.  

Although electrostatic and polar interactions were critical factors in the energy 

differences observed between the complexes, the configurational entropy term (-TΔS) 

also played a role. This term, which reflects the loss of entropy or freedom of 

movement when the ligand binds to the protein, was relatively consistent across all 

systems. The loss of entropy is a measure of the reduction in the ligand's freedom of 

movement when it binds to the protein, and it contributed unfavorably to the binding 



 

 

 
 75 

energy, indicating that binding reduced the ligands' flexibility in an energetically 

costly way.  

Overall, the results suggest that most of the selected phytochemicals, except for 

feruloyl tyramine, show promising potential as inhibitors of PLpro. This finding 

instills hope and optimism in the potential of these phytochemicals in molecular 

biology. However, feruloyl tyramine's less favorable binding characteristics, likely 

due to the unfavorable net electrostatic contribution, underscore the need for further 

investigation to fully understand the molecular interactions that influence ligand 

binding to PLpro. The study reaffirms the potential of most of the phytochemicals 

tested as inhibitors of PLpro, except for feruloyl tyramine, which showed less 

favorable binding due to its unfavorable electrostatic contribution. This finding 

underscores the need for further research to fully understand molecular interactions, 

particularly for ligands that do not exhibit binding solid characteristics. The study's 

findings are significant in molecular biology, as they point to the potential of these 

phytochemicals as PLpro inhibitors and the importance of understanding their binding 

characteristics. 
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Table  9 MM/GBSA binding energy (kcal/mol) components for a given MD run of 

protein-ligand complexes. 

Energy 

conponents 

(kcal/mol) 

(3R)–7,4'–dihydroxy–8–

methoxyhomoisoflavane 

Bergenin Capparispine 

Feruloyl 

tyramine 

∆Eele -26.26 ± 1.13 -63.38 ± 

0.79 

-156.05 ± 

2.43 

-5.97 ± 0.65 

∆Evdw -35.72 ± 0.44 -30.79 ± 

0.42 

-42.54 ± 0.48 -30.79 ± 0.50 

∆EMM -61.98  ± 1.05 -94.17 ± 

0.66 

-198.59 ± 

2.25 

-36.77 ± 0.81 

∆GSol
GB/ele

 33.58  ± 0.90 65.85 ± 

0.40 

169.38 ± 2.10 19.96 ± 0.59 

∆GSol
GB/np

 -4.51  ± 0.02 -4.53 ± 

0.03 

-6.00 ± 0.04 -4.21 ± 0.03 

∆GSol
GB

 29.07 ± 0.90 61.32 ± 

0.40 

163.39 ± 2.08 15.75 ± 0.59 

∆GSol
GB/ele + ∆Eele   7.33  ± 2.03 2.03 ± 1.20 13.33 ± 4.53 13.99 ± 1.25 

∆GSol
GB/np

+∆EvdW   -40.24 ± 0.46 -35.32 ± 

0.44 

-48.54 ± 0.52 -35.01 ± 0.53 

-T∆S 18.21  ± 1.09 20.36  ± 

2.01 

22.09 ± 0.92 20.02 ± 0.39 

∆GTotal
MM/GBSA

 -32.91 ± 0.44 -32.85 ± 

0.47 

-35.21 ± 0.44 -21.02 ± 0.39 

∆GBind
MM/GBSA

 -14.70  ± 0.66 -12.48 ± 

1.54 

-13.11 ± 0.49 -1.02 ± 0.21 
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4.3.4 Understanding the Key Residues in Ligand Binding to SARS-CoV-2 

PLpro 

To identify the critical residues involved in ligand binding to the SARS-CoV-2 

papain-like protease (PLpro), researchers decomposed the MM/GBSA binding free 

energy to assess the interaction energy of each protein residue. This analysis allowed 

for a detailed understanding of how specific amino acids within PLpro contribute to 

the stability of the protein-ligand complexes.  

The interaction spectra and binding modes between the protein and the ligands 

are illustrated in Figure 23 Residues that contributed more than 0.5 kcal/mol to the 

stabilization of the complex are highlighted, with negative energy values indicating 

stabilization (favorable interactions) and positive values indicating destabilization 

(u n fa v o ra b le  in te ra c t io n s ) . F o r  th e  l ig a n d  (3 R ) –7 ,4 '–d ih y d ro x y –8 –

methoxyhomoisoflavane, significant stabilization was provided by residues L162, 

D164, V165, R166, Y264, Y268, and Q269, with energy contributions ranging from 

approximately -1.50 to -2.50 kcal/mol. These interactions involve hydrophobic 

contacts, where nonpolar residues interact with the ligand, π-π stacking, where 

aromatic rings of the protein and the ligand interact, and hydrogen bonding, where 

hydrogen atoms of the protein interact with electronegative atoms of the ligand.  

Additionally, residues P248, Y273, T301, and D302 made smaller contributions 

of around -0.50 kcal/mol. The flexible β-hairpin BL2 loop is fascinating, especially 

residues Y268 and Q269, which play a crucial role in regulating the binding of viral 

protein substrates to PLpro [95]. In the case of the bergenin complex, the primary 

stabilizing residues were R166, M208, A246, P247, P248, Y273, T301, and D302, 

with energy contributions ranging from approximately -1.00 to -4.00 kcal/mol. The 

strongest stabilizing interactions were attributed to residues R166 and D302, which 

form hydrogen bonds with bergenin, enhancing the stability of the complex. For the 

capparispine complex, residues D164, P247, P248, Y264, Y268, and D302 were 

identified as critical stabilizers within the PLpro binding pocket, with energy 

contributions between -2.00 and -4.50 kcal/mol. D302 was particularly significant due 

to its role in forming a salt-bridge interaction between its carboxylate anion and the 

ammonium ion of capparispine. This strong interaction greatly enhances binding 

stability.  
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The feruloyl tyramine complex was stabilized primarily by residues P247, P248, 

Y264, and Y268. These residues played crucial roles in form ing favorable 

interactions, which helped maintain the ligand's stability within the binding pocket of 

the PLpro enzyme. The analysis reveals that specific residues stabilize different 

ligands within the PLpro binding pocket. These findings align with previous studies, 

confirming the importance of these critical residues across various ligands in 

stabilizing protein-ligand complexes. Understanding these interactions is vital for 

designing effective inhibitors targeting SARS-CoV-2 PLpro, as these residues are 

crucial for strong and stable binding [53]. 
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Figure  24 (A) Decomposition of binding energy per residue on SARS-CoV-2 PLpro 

utilizing the MM/GBSA approach.  (B) The 3D structures with energy contributions 

of < 5 kcal/mol of ligands in association with SARS-CoV-2 PLpro are identified and 

colored appropriately. 
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4.3.5 Protein-ligand interactions  
Hydrogen bonds, pivotal in bimolecular systems, were the subject of our 

research. We analyzed their evolution over the last 20 ns of the simulation using the 

cpptraj module. Applying a cutoff distance of 3.5 Å and an angle of 120º, we 

identified these bonds. The binding mode between the protein and ligand complexes 

w as then visualized using B iovia D iscovery Studio, providing a clear and 

comprehensive understanding. Figure 24, a visual representation of our findings, 

illustrates the percentage of hydrogen bond occupancy along with representative 

snapshots. 

Throughout the simulation, strong and stable hydrogen bonds were observed 

b e tw e e n  th e  h y d r o x y l  ( O H )  g r o u p s  o f  ( 3 R ) –7 ,4 '–d ih y d r o x y –8 –

methoxyhomoisoflavane and the key residues R166, Q269, and D302 within the 

PLpro enzyme. These hydrogen bonds persisted consistently, indicating their crucial 

role in maintaining the stability of the ligand within the binding pocket. Residue 

Q269, situated in the BL2 loop of the palm subdomain, was particularly notable for its 

involvement in hydrogen bond formation. This residue has been previously 

recognized for its interaction with other inhibitors, reinforcing its importance in ligand 

binding [53, 96, 97]. Beyond hydrogen bonding, the ligand's aromatic portions 

engaged in π-π stacking interactions with the aromatic residues Y264 and Y273. 

These π-π stacking interactions involve overlapping electron clouds between the 

aromatic rings of the ligand and protein, adding another layer of stability to the 

complex. 

M oreover, (3R )–7,4 '–dihydroxy–8–m ethoxyhom oisoflavane form ed 

hydrophobic interactions with nearby non-polar residues such as L162, G163, V165, 

and P248. These hydrophobic interactions occur as the non-polar regions of the ligand 

and protein come into proximity, reducing their exposure to the aqueous environment 

and contributing to the overall binding stability. In addition to these interactions, π-

alkyl interactions were also observed. These occurred between the aromatic ring of 

(3R)–7,4'–dihydroxy–8–methoxyhomoisoflavane and the side chain of L162, as well 

as between the aromatic moiety of Y268 and the methoxy group of the ligand. These 

π-alkyl interactions enhance the ligand's binding affinity by stabilizing its orientation 

within the binding site. The various types of molecular interactions contribute to the 
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binding stability of (3R)–7,4'–dihydroxy–8–methoxyhomoisoflavane within the 

PLpro enzyme of SARS-CoV-2. Hydrogen Bonds are strong interactions formed 

between the hydroxyl groups of the ligand and specific amino acid residues (R166, 

Q269, and D302) within PLpro. These bonds are critical for the stability of the ligand 

within the protein's binding pocket. The persistence of these hydrogen bonds 

throughout the simulation underscores their importance. Residue Q269 is in a flexible 

loop region of the protein. This residue is essential for binding and forming hydrogen 

bonds with the ligand. In previous studies, its involvement with other inhibitors 

highlighted its role as a critical interaction site within PLpro. These interactions 

collectively contribute to the strong binding affinity and stability of (3R)–7,4'–

dihydroxy–8–methoxyhomoisoflavane within the PLpro enzyme, making it a 

potentially effective inhibitor. 

Bergenin, a potential SARS-CoV-2 PLpro enzyme inhibitor, forms several 

strong hydrogen bonds with critical residues within the PLpro binding pocket, 

particularly R166 and D302. The hydroxyl group (OH) on the aromatic side chain of 

Y273 further stabilizes the interaction with bergenin. A unique π-π interaction, a type 

of hydrophobic interaction, is observed between the benzene ring of bergenin and the 

aromatic residue Y268. Bergenin also establishes non-polar contacts with the residues 

A246, P247, and P248. Additionally, a π-alkyl interaction occurs between the 

methoxy group of bergenin and the aromatic moiety of Y264. These collective 

interactions contribute significantly to the stable binding of bergenin within the PLpro 

binding pocket. 

Capparispine, a potential SARS-CoV-2 PLpro enzyme inhibitor, forms a 

network of salt bridges with the carboxylate groups of residues D164 and D302, 

creating electrostatic solid interactions. One of the NH groups of capparispine also 

participates in a hydrogen bond with the backbone carbonyl of G163. The large cyclic 

ring of capparispine engages in hydrophobic contacts with multiple residues, 

including L162, G163, V165, A246, P247, P248, Y264, and Y273, further stabilizing 

its binding within the pocket. 

In contrast, the feruloyl tyramine complex showed relatively fewer hydrogen 

bonding interactions with PLpro residues, with no hydrogen bonds detected between 

the protein and this ligand. The stabilization of feruloyl tyramine primarily relied on 
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non-polar interactions, including π-π interactions with residues Y264 and Y268, 

hydrophobic interactions with P247 and P248, and alkyl-π interactions with L162. 

This reduced level of interaction likely accounts for the diminished potency of 

feruloyl tyramine against PLpro compared to the other compounds. 

The three selected phytochem icals, including (3R)-7,4 '-dihydroxy-8-

methoxyhomoisoflavane, demonstrated strong interactions with PLpro residues, 

particularly involving the Y268 and Q269 residues of the BL2 loop. However, 

feruloyl tyramine exhibited fewer interactions, likely explaining its reduced efficacy 

against the SARS-CoV-2 PLpro enzyme. The Biological Significance of the 

Phytochemicals of (3R)–7,4'–Dihydroxy–8–Methoxyhomoisoflavane is flavonoid, 

isolated from Dracaena cochinchinensis, also known as dragon's blood (DB), has 

shown potential as an anti-osteoporosis agent [98], Bergenin is isocoumarin found in 

various plants like Ardisia japonica, A . creanata, Bergenia crassifolia ,  B . 

purpurascens, Rodgersia sambucifolia  [99], bergenin exhibits a wide range of 

biological activities, including hepatoprotective effects [100],  antifungal properties 

[101], anti-HIV activity [102], antiarrhythmic potential [103], hypolipidemic effects 

[104], and anticancer properties[105].  Capparispine belongs to the class of 

spermidine alkaloids; capparispine is known for its anti-inflammatory and antioxidant 

activities [106, 107] and   feruloyl Tyramine is a phenylpropanoid compound isolated 

from various plants. Feruloyl tyramine exhibits several biological activities, including 

antimicrobial, antioxidant, anti-melanogenesis, and anticancer effects [108]. 
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Figure  25 Representative 3D structures (Top) and 2D srtructures (Bottom) displaying 

protein-ligand interactions of each simulated system. Hydrogen bond forming 

between protein and ligand is displayed by green dot lines. 
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CHAPTER V CONCLUSIONS 

In conclusion, Thailand is renowned for its rich biodiversity and abundant 

natural resources, particularly its extensive use of medicinal herbs in traditional 

medical treatments. The abundance of medicinal plants has significantly promoted 

research into the therapeutic application of plant extracts. Thai herbs have been 

recognized as a potent source of phytochemicals with the potential to treat viral 

diseases such as SARS-CoV-2. 

The PLpro enzyme of SARS-CoV-2 plays a critical role in the viral replication 

process, making it a key target for developing treatments against SARS-CoV-2 or 

COVID-19. This study employed virtual screening techniques, including Lipinski’s 

rule of five, ADMET prediction, molecular docking, and MD simulations, to 

investigate phytochemical compounds from Thai medicinal herbs. Of the 47 isolated 

phytochemical compounds, 27 adhered to Lipinski’s rule of five criteria. These 

compounds were further analyzed through ADMET prediction and molecular 

docking. The four compounds with the Top15% highest docking scores were (3R)-

7,4'-dihydroxy-8-methoxyhomoisoflavane, bergenin, capparispine, and feruloyl 

tyramine, which were selected for detailed MD simulations. 

The findings revealed that, except for feruloyl tyramine, all other compounds 

established significant interactions with the PLpro enzyme via hydrogen bonds and 

hydrophobic interactions. SIE and MM/GBSA analyses confirmed that (3R)-7,4'-

dihydroxy-8-methoxyhomoisoflavane, capparispine, and bergenin exhibited strong 

binding affinities to SARS-CoV-2 PLpro. Therefore, (3R)-7,4'-dihydroxy-8-

methoxyhomoisoflavane from Dracaena cochinchinensis, bergenin from Ficus 

racemosa L., and capparispine from Capparis spinosa L. show potential as antiviral 

agents derived from Thai medicinal herbs, potentially inhibiting the PLpro enzyme of 

SARS-CoV-2. Although further validation is required, these compounds demonstrate 

promise as effective PLpro inhibitors for treating COVID-19. 

In the future, the results of these simulations could lead to further laboratory 

experiments, such as toxicity studies and in vivo testing, to verify the bioactivity of 

these compounds. Additionally, advanced research into the structural properties of the 

compounds and enhancing their inhibitory efficiency could pave the way for 

developing more effective drugs. Integrating Thai herbal medicine with modern 
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COVID-19 treatments opens new opportunities for improving clinical therapy 

efficacy and advancing the fields of virology and drug development. 

5.1 Future work 

To confirm that the lead compounds can be potential inhibitors targeting 

PLpro of SARS-CoV-2, the following methods and procedures are suggested. 

5.1.1 Protease Assay  
The PLpro activity assay is a biochemical method used to measure the activity 

of the SARS-CoV-2 PLpro and evaluate the inhibitory effects of potential lead 

compounds. It involves preparing a purified PLpro enzyme and a specific substrate, 

typically a fluorogenic or chromogenic peptide that mimics the viral polyprotein 

cleavage site. The assay is set up by combining the enzyme, substrate, and varying 

concentrations of lead compounds in a reaction buffer, followed by incubation at an 

optimal temperature. The increase in fluorescence (or absorbance) is measured, 

indicating the extent of substrate cleavage, which allows for the quantification of 

PLpro activity and the determination of IC50 values for the inhibitors. Controls and 

replicates are essential for validating the results, making this assay critical in the drug 

discovery process targeting SARS-CoV-2. 

5.1.2 Viral Replication Inhibition Assay 

Viral replication inhibition assays are cell-based experiments designed to 

evaluate the efficacy of lead compounds against SARS-CoV-2 by measuring their 

ability to inhibit viral replication in infected cells. In this assay, permissive cell lines, 

such as Vero E6 or HEK293T, are inoculated with the virus and treated with varying 

concentrations of the test compounds. The viral load is assessed using techniques like 

qRT-PCR to quantify viral RNA, plaque assays to count infectious viral particles, or 

ELISA to detect viral proteins. This approach can  determine the inhibitory potency of 

lead compounds and their potential therapeutic effects in a biologically relevant 

setting. 
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5.1.3 Cytotoxicity assays 

Cytotoxicity assays are experimental techniques used to evaluate the toxic 

effects of lead compounds on host cells, essential for determining the safety profile of 

potential therapeutics. These assays measure cell viability and membrane integrity 

following treatment with varying concentrations of compounds. Common methods 

include MTT or XTT assays, which assess metabolic activity by detecting the 

reduction of tetrazolium salts to form a colored product in living cells, and LDH 

release assays that quantify lactate dehydrogenase released from damaged cells. By 

analyzing the extent of cytotoxicity, we can ensure that observed antiviral effects are 

not due to harmful impacts on cell health, aiding in the selection of safe and effective 

compounds for further development. 
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