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ABSTRACT

Chapter 1 briefly introduces violent video understanding and research
questions. Additionally, the objectives of the dissertation and contributions are
described.

Chapter 2 describes a background of violent video understanding using
deep learning techniques and related work. The background includes deep learning
techniques, convolution neural networks, convolution neural network architecture, 3D
Convolutional Neural Networks (3D-CNN), Recurrent Neural Networks (RNN), Deep
feature extraction, deep feature fusion methods, and violent video datasets. Next, a
related work section, which has reviewed research from the past until now, consists of
six main parts as follows: deep learning for video classification, handcrafted features
for violent recognition, violent recognition with 2D-CNN, violent recognition with
3D-CNN, violent recognition with combination of CNN and RNN, and violent
recognition with fusion features.

Chapter 3 proposed a fusion MobileNets-BiLSTM architecture. In the first
part, I proposed using the lightweight MobileNetV 1 and MobileNetV2 to extract the
robust deep spatial features from the video so that only 16 non-adjacent frames were
selected. The spatial features were transferred to the global average pooling, batch
normalization, and time distribution layer. In the second part, the spatial features from
the first part were concatenated and then transferred to a Bidirectional Long Short-
Term Memory (BiLSTM). The proposed fusion MobileNets-BiLSTM architecture
was evaluated on the hockey fight dataset. The experimental results showed that the
proposed method achieved 95.20% accuracy on the test set of the hockey fight
dataset.

Chapter 4 proposed a method to understand violence within video using
deep feature integration with 3D-CNN. I proposed CNN to extract the spatial feature
from the last convolution layer at the frame level. The concatenate operation was
proposed to combine the spatial features of both CNNs at the frame level before being
transferred to the 3D-CNN architecture to learn the spatiotemporal features,
consisting of batch normalization, 3D convolution, dropout layers, global average
pooling layer followed by a fully connected layer. Finally, the softmax was used to
classify as a violent and non-violent video.



Chapter 5 comprises two main sections: the answers to the research
questions and suggestions for future work. This chapter briefly explains the proposed
approaches and answers two main research questions in video understanding.

Keyword : Violent Video Understanding, Violent Video Recognition, Video
Recognition, Convolutional Neural Network, Recurrent Neural Network, Feature
Extraction, Features Fusion Technique
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Chapter 1

Introduction

The advancement of artificial intelligence technology has been developing
rapidly and has been widely applied in various tasks recently. These include health
services, industrial security, surveillance, and assistance systems for individuals with
disabilities. Computer vision is a subsection of artificial intelligence using techniques
that enable computer systems to understand and respond to images or videos in a way
similar to the human visual system. [llustrations of computer vision technology
utilization within health service systems.-for example, monitoring the daily activities
that pose a risk of accidents for elderly individuals. With the system sending an alert
notifying the involved authorities when an older adult is injured from falls or exhibits
symptoms similar to a stroke (Attal et al., 2015; Liu et al., 2016). Furthermore,
computer vision helps to collect information about daily behavior that affects
individual health (Suryadevara & Mukhopadhyay, 2014). For industrial applications,
robots can replace humans to perform tasks that humans cannot perform or to work in
hazardous areas (Dallel et al., 2020). In surveillance systems, applying computer
vision involves identifying unusual incidents like criminal activities, acts of violence,
theft, and accidents. The incidents can happen anywhere, from residential areas and
educational institutions to roads, parking lots, bus terminals, and commercial
establishments such as shopping centers. Computer vision technology ensures that
abnormal events can be detected and classified efficiently. Subsequently, the
surveillance system can notify the relevant individual to stop the incident in real time.
Furthermore, computer vision technology can also be applied to assist individuals
with disabilities (Wu et al.; 2017), serving as an aiding tool or creating equal
opportunities for accessing information and data.

Video understanding is a significant component within the field of computer
vision that has garnered considerable attention. It enables computer systems to
understand and analyze meaningful video information or patterns. Video
understanding is applied to various tasks, for instance, surveillance systems, video
annotation, video recommendation, video search, and related video retrieval (Lee et

al., 2018). Many researchers have proposed a practical approach for effectively



analyzing and processing video for applying various tasks (Xie et al., 2017; B. Zhou
et al., 2017; Zolfaghari et al., 2018). This thesis focuses on violent video classification
using deep learning techniques. Violent behavior refers to aggressive behaviors such
as fighting, smashing, riots, and collisions (Yao & Hu, 2023).

Violent video recognition is a subfield of action recognition since
recognizing violent behavior in video data is to understand some human actions.
Surveillance systems are installed in public and private areas to monitor, collect
evidence, and prevent criminal activities. However, manually monitoring and
analyzing video data from many CCTV cameras in real time can be costly and time-
consuming. Therefore, utilizing machine learning technology for automated crime
scene recognition from the video is very important and assists security systems in
detecting and categorizing various anomalies or violent occurrences, alerting, and
notifying the security monitoring system to respond immediately.

Video violence classification typically consists of two main parts, feature
extraction and classification sections. In the past, many researchers tried to develop
efficient techniques for video feature extraction. Handcraft feature extraction is a
valuable method for video recognition that considers local features. Souza et al.
(2010) proposed feature extraction, namely Local spatiotemporal features, using a bag
of words. Das et al. (2019) used Histogram Orientation Gradient (HOG). Hassner et
al. (2012) and Gao et al. (2016) improved the feature extraction method by
considering the optical flow direction in global feature extraction. Classification is a
technique that involves classifying data into predefined types. Machine learning for
classification, can use Support Vector Machine (SVM), Random Forest, Logistic
Regression, and Neural Networks. Although research on surveillance video
recognition has presented various handcraft feature extractions, these methods have
some limitations. Examples of constraints include the effectiveness of handcrafted
features developed from specific datasets, resulting in the incapability to extract
appropriate video representation and failure to achieve a generalized model.

Many researchers have recently demonstrated deep learning efficiency as a
feature extraction method. Specifically, a convolution neural network (CNN) was
developed for image or video recognition. This is a high-performance network that

can be applied to various tasks. For video recognition work, some researchers have



used 2D-CNN for spatial feature extraction of each frame and then classified the
features with different methods. For example, Carneiro et al. (2019)and Soliman et al.
(2019) used VGG-16 for feature extraction. For learning about time information,
recurrent neural networks (RNN) are also used combined with CNNs to improve
recognition performance, such as LSTM or GRU. Sudhakaran and Lanz (2017) used
2D-CNN to extract hierarchical features from the video frames, which were then
aggregated using the LSTM. Then, they were classified as violent or non-violent with
a fully connected layer. Mumtaz et al. (2022) proposed a multi-scale of VGG-19
architecture for violence video classification. The VGG-19 was used to initialize the
spatial features extractor, followed by the widely followed Bi-LSTM structure for
optimal violent recognition. 3D-CNN is proposed for end-to-end networks, learning
spatial and temporal information. Ji et al. (2013) proposed a 3D-CNN to extract
spatial and temporal features from video data for action recognition. The experimental
results show that the proposed models significantly outperformed 2D-CNN
architecture.

In addition, some research has uses deep learning to learn from different
feature types. Lou et al. (2021) employed frame and audio information to recognize
violent behavior. Carneiro et al. used VGG-16 for a multi-stream that included spatial,
temporal, rhythm, and depth information. The results showed that the feature fusion

method increased the efficiency of violent video recognition.

1.1 Research questions

An essential component of recognizing violence in a video task is
understanding the information to learn and effectively analyze the content within
videos. This process involves extracting significant information, recognizing patterns,
and understanding the visual information in a video. An effective video violence
recognition system has the potential to automate and accurately classify
representatives of violence, particularly within security surveillance systems, to stop
the violence in time and prevent further violence. Therefore, [ aim to improve the
efficiency of violence recognition in videos to enhance the capabilities of security

surveillance systems.



RQ1. Generally, violent video understanding applies Recurrent Neural
Networks (RNN) such as LSTM, BiLSTM, or GRU to learn the feature from
sequential frames within the video data. RNN can distinguish patterns and
movements, accurately classifying actions, or activities in a video. However, some
research has used Convolutional Neural Networks (CNN) to extract deep features
from the individual frame, which received high accuracy for violence recognition
Karisma et al. (2021) and Irfanullah et al. (2022). Therefore, if I utilize CNN to
extract the deep features from video frames and then transfer the received deep
features to RNN to learn information within the video, will this improve the
performance of understanding violent videos?

RQ2. The 2D-CNN outperforms in extracting spatial features within
individual frames, making it well-suited for tasks where static visual patterns hold
pivotal significance, such as image classification and object detection. Conversely,
3D-CNN surpasses 2D-CNN in tasks requiring the incorporation of necessary
temporal dimensions, as it can directly understand spatiotemporal features from video
sequences. This renders 3D-CNN notably advantageous for applications like action
recognition, wherein comprehending temporal alterations and motion is imperative.
Although 2D-CNN demonstrates computational efficiency and is commonly
employed for image-based tasks, 3D-CNN extends its functionalities to video analysis
by seamlessly incorporating temporal information into the learning process.
Therefore, if 2D-CNN are used to extract spatial features from frames and integrate
the obtained features, the features are then transferred to 3D-CNN for spatiotemporal
learning and classified into violent or nonviolent videos. Can the proposed approach
improve the performance of violent video recognition?

To answer all these questions (RQ1 and RQ2), Chapter 3 and Chapter 4 of
this thesis describe the result of this research. Finally, Chapter 5 provides concrete

answers to research questions.

1.2 The objective of this dissertation
This study will focus on two detailed objectives:
1.2.1 Improve violent video recognition by combining CNN and RNN with

deep feature fusion techniques.



1.2.2 Improve violent video recognition by deep feature integration with

three-dimensional convolution neural network (3D-CNN).

1.3 Contribution

The contribution of the dissertation is a novel deep learning technique to
extract robust features and provide the best performance for violent video recognition
system. The work involved experiments on three benchmark violent video datasets of
hockey fight, movie, and violent flow datasets. The contributions of the dissertation
are as follows.

In Chapter 3, I introduced the utilization of MobileNets to extract robust
spatial features; MobileNet has few parameters and a small model size but is still
highly accurate. Additionally, I employed a bidirectional long short-term memory
(BILSTM) to understand the temporal context and acquire information from past and
future video frames. This approach incorporated a concatenation operation to combine
spatial features obtained from MobileNetV1 and MobileNetV2 before being
transferred to the BILSTM network. Furthermore, the classifier for the proposed
architecture was implemented using the softmax function. Hence, we opted for a
selection of 16 non-adjacent frames, although alternative methods were assessed
using 20 and 40 frames. The resulting output was categorized as violent and non-

violent. This chapter is based on the following publication.-

Wimolsree Getsopon and Surinta (2022). Fusion Lightweight Convolutional
Neural Networks and Sequence Learning Architectures for Violence

Classification. ICIC Express Letter Part B: Applications, 13(10), pages 1027-1035.

In Chapter 4, I propose an approach for recognizing violent video content,
employing deep feature integration with three-dimensional convolution. I focus on
conducting feature extraction at the frame level utilizing two distinct Convolutional
Neural Network (CNN) models, specifically MobileNetV1 and MobileNetV2. These
models were applied at the last convolutional layer to extract robust spatial features.
Subsequently, I executed feature vector integration through concatenation operations.
The integrated video feature vector was subjected to a three-dimensional

convolutional process, allowing the model to capture temporal dependencies within



the video data. Finally, the classification of videos as either violent or non-violent was
carried out through a softmax function, enabling the model to make informed
categorizations based on the learned features. To assess the efficacy of this proposed
method, I evaluated three challenging video datasets encompassing violent scenarios,
namely hockey fight, movie, and violent flow. These evaluations validated the
robustness and effectiveness of this approach in the domain of violent video

recognition.



Chapter 2
Background

2.1 Deep Learning

Deep learning is a subset of machine learning that utilizes neural networks to
solve complex problems (Sharifani & Amini, 2023). The basis of deep learning is
inspired by human brain function. Deep learning can learn from sample data and train
model knowledge by automatically recognizing patterns or classifying data. Then, it
provides an answer by predicting the probability value that simple artificial
intelligence techniques cannot extract to correctly infer conclusions from the data.

The structure of the deep learning network comprises input, hidden, and
output layers. The network has multiple hidden layers, and the hidden layers are
composed of several neurons. The primary function of a neuron is to multiply the
input values with the assigned weight generated randomly at the beginning of model
training, sum up the result, and add bias. Then, the results were adjusted with an
activation function such as sigmoid, Tanh, or RELU to get a value between 0 and 1

(Mercioni & Holban, 2023), as shown in Figure 1.

s

Input layer Hidden Iayer1 H»dden layer2 Hldden layer3 Output layer

Figure 1 An example of a deep learning network.

= Violent

® Non-violent

Many different kinds of deep learning networks have been proposed. They

are efficient for various applications, such as Convolution Neural Networks (CNN)



for image processing, Recurrent Neural Networks (RNN) for sequence data

processing, Natural Language Processing (NLP), and audio processing.

2.2 Convolutional Neural Network

Convolutional neural networks (CNN) are a type of deep learning proposed
by LeCun et al. (2015). CNN are the most significant and effective forms of deep
neural networks (Zafar et al., 2022) and are extensively employed in image processing
applications that simulate human vision processing images by considering parts of the
image with filters. The filter will extract various features of the image, called
convolution operation. Then, the convolution result in the previous layer will be the
input in the next layer. The strength of convolutional neural networks is that they can
automatically extract features without human intervention (Alzubaidi et al., 2021).
The convolutional neural network structure consists of a convolution layer, a pooling

layer, and a fully connected layer, as shown in Figure 2.

Input Layer Conv Layer-1 Pooling Layer-1 Conv Layer-2 Pooling Layer-2 Conv Layer-3 Pooling Layer-3 FCL

Figure 2 Illustrate of the Convolutional Neural Network structure.

2.2.1 Convolution layer

The convolution layer is a layer that transforms the input data to
processing with filters to extract outstanding features related to the image. It is
divided by the width, height, and color characteristics of the image as W X H X D,
where W and H are image width and image height, respectively, and D is the color
dimension of the image. For example, an RGB image can be divided into three
dimensions: red, green,-and blue. Characterization of an image 1s performed by
calculating the dot product between the matrix and the filter. Convolution takes the
weights of the filters together and shifts the filter until it reaches every region in the
image with a stride that determines the step to move the filter. The result obtained by
the convolution layer equals the number of filters applied. The result is called a

feature map, as shown in Figure 3. In addition, padding can be used to increase the



margins where the borders of the image are meaningful, as shown in Figure 4. The

equation for convolution operation is:
I _ -1 l l
h= (2057 ® wi+bi) Q)
Where Ijl=1 is the output with m X n size, ® indicates a convolution operator, w;;

represents convolution kernels and b; is bias value.
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Figure 3 The example of a convolution operator.
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Figure 4 Example of a convolution operator with padding.

2.2.2 Pooling layer
The pooling layer is used to reduce the size of the features to bring
only the essential information, most often the next layer after the convolution. The
pooling layer can help to learn invariant features, reduces overfitting, and reduces
computational complexity by down sampling the feature maps (Nirthika et al., 2022).
Typically, the CNNs classify the pooling method into two types. (1) Local pooling is
the first method to display feature maps by pooling data from small local regions. (2)

Global pooling, which creates a scalar value representing the image from the feature



10

vector for each feature across the feature map (Zafar et al., 2022). The widely used
pooling techniques are max pooling and average pooling (Boureau et al., 2010) , both
used in local and global pooling layers. The max pooling technique identifies the
biggest element in each pooling region (Singh et al., 2021) and discards other
irrelevant information. The equation for max pooling is:

finax (X) = max; {(x;}}, (2)
where N represents pooling region. An example of the max pooling technique gives
the input data size of 4x4 and a filter size of 2x2 with a stride of 2. The maximum

value is selected as the output, as shown in Figure 5.

5|6
_-_-_-"_‘—‘—-—. —— _
2|8 | % |}

1
—~—
1

2x2 Max pooling
Stride 2

Figure 5 Illustration of max pooling.

The average pooling layer reduces the dimension of the features map
by calculating the average value of a pool region, which does not consider the
importance of a specific element in the pooling region . Mostly, average pooling is
used as the global pooling operator to capture the contribution of all the features
(Nirthika et al., 2022). The average pooling layer is usually used after a convolutional

layer. The equation for average pooling is:
1
favg(x) =N Iivzlxi (3)
An example of the average pooling, the average pooling applied in patches of feature

map with a stride of 2 is shown in Figure 6. (average pooling involves calculating the

average for each patch).



11

-‘H"‘“\--...
2 [Tz [T
h\-\-*"‘--\_._‘_‘_‘-‘_
s |6 1] s \
_-_-_-_'_‘—'—-—._-_-_-_"“‘—-—-_._
2 |8 [F 2 —_|* |3
3711 512
2x2 Average pooling
Stride 2

Figure 6 Illustration of average pooling layer.

2.2.3 Fully connected layer
The fully connected layer is the last layer of the convolution neural
network and consists of many neurons that are interconnected. The fully connected
layer connects to the complete output by flattening into a vector of dimension 1 X m
before entering the classification process. The equation for fully connected layer is:

X(l)utput = f(X""'x D'+ BY) 4)

2.3 Convolutional neural network architecture
A Convolution neural network produces an effective model when trained
with a sufficient training data and appropriate functions. CNN architectures are used
quite often because they can learn the features of the problems automatically. CNN
architectures include, MobileNetV1 (Howard et al., 2017), MobileNetV2 (Sandler et
al., 2018), NASNetMobile (Zoph et al., 2018), and ResNet50V2 (He et al., 2016).
2.3.1 MobileNetV1 (Howard et al., 2017)

MobileNetV1 is a lightweight convolutional neural network
architecture for highly efficient image classification on mobile and embedded devices
with limited resources. Howard et al. (2017) introduce MobileNetV1 in 2017 based on
the concept of depthwise separable convolution, which consists of two separate
layers: depthwise convolution and pointwise convolution. Depthwise convolution
applies a single filter to each input channel, while the pointwise convolution with a
1 X 1 convolution was performed to change the dimension and create a linear output,
as shown in Figure 7. This concept reduces the computational cost significantly

compared to traditional convolutional layers.
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Figure 7 Illustrate of the depthwise separable convolution (Howard et al., 2017).

2.3.2 MobileNetV2

MobileNetV2 is the improved version of MobileNetV1. Two layers
were added in the MobileNetV2 architectures: an inverted residual and a linear
bottleneck, to enhance memory efficiency (Sandler et al., 2018). The inverted residual
block contained a convolution layer, depthwise convolution, and convolution layer,
with one stride. First, a pointwise (1x1) convolution is used to expand the dimensional
input feature map to a higher dimensional with ReL U6 applied. Next, a depth-wise
convolution is performed using 3x3 kernels, followed by ReLU®6 activation. Finally,
the spatially filtered feature map is reduced dimensionally using another pointwise
convolution, and the linear is-used instead of ReLU to avoid information loss. The
shortcut connection was connected between each residual block the same way as in

the residual network, as shown in Figure 8.
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Figure 8 The structural of MobileNetV2 (Sandler et al., 2018).
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2.3.3 NASNetMobile (Zoph et al., 2018)

NASNetMobile is the lightweight version of NASNet. It was designed
to explore the best convolutional layer on a small dataset, such as the CIFAR-10
dataset, and then transfer the best layer by stacking the layers together to a large
dataset, such as ImageNet (Zoph et al. 2018). To search for the best convolutional
layer, it searches from many sets of convolutional operations, for example, identity,
3x3 convolution, 3x3 depthwise convolution, 3x3 average pooling, and 3x3 dilated
convolution, using a recurrent neural network (RNN). NASNet consist of two main
cells stacked together: normal and reduction cells. Although the normal and reduction
cells were stacked together, the NASNet architecture could be adjusted by repeating

many normal cells with N times.

Input
224,224,3

X

=
X
=

Normal Cell
Normal Cell
Softmax

Normal Cell

Figure 9 The structural of MobileNetV2 (Sandler et al., 2018).

2.3.4 ResNet50V2 (He et al., 2016)

ResNet50V2 is a modified version of ResNet50 that performs better
than the original ResNet50 and ResNet101 on the ImageNet dataset. The difference
between the residual block in the original ResNet and the modification ResNetV?2 is
the number of the convolution operation. The original residual block contained the
weight layer, BN, ReLU, weight layer, and BN, respectively. Before combining to the
following layer, the ReLU function was performed. While the modified residual block
in ResNetV2 contains BN, ReLU, weight layer, BN, ReLU, and followed by weight
layer. Hence, it adds to the following layer without applying the ReL.U function. The
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structure of the ResNet50V2 architecture consists of 50 convolutional layers, as

shown in Figure 10.
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Figure 10 illustrates the ResNet50V2 architecture (He et al., 2016).

2.4 3D Convolution (Ji et al., 2013)

Three-dimensional convolutional neural networks (3D-CNN) recognize 3D
images or video data, which differs from 2D convolutions for image classification. Ji
et al. (2013) proposed the first 3D-CNN for action recognition, which extracts
features from spatial and temporal dimensions by performing 3D convolutions with
multiple adjacent frames. The dimension of input data for 3D convolution is F x W x
H x D, where F is the video frame, W is the width of each frame, H is the height of
each frame, and D is the color dimension of the image, such as the RGB system. The
3D kernel is used for convolution operations to the multiple contiguous frames
together. The convolution shifts the kernel using a stride as the shift step. In addition,
the padding layer can be used to increase the area of the video frame when it has
necessary elements at the edges of the frame. The output layers of convolution

becomes a cube consisting of output values, as shown in Figure 11.
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Figure 11 The structure of 3D convolution (Ji et al., 2013).
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2.4.1 C3D (Tran et al., 2014)

C3D is a deep three-dimensional convolutional neural network for
spatiotemporal feature learning of video data. C3D proposed by Tran et al. (2014), can
learn both spatial features and temporal features from continuous frames by using 3D
convolution and 3D pooling operation. The architecture of C3D consists of 8
convolutions, 5 max-pooling, and 2 fully connected layers, followed by a softmax
output layer. All 3D convolution kernels are size 3x3x3 with stride 1 in both spatial
and temporal dimensions. The convolution has a number of filters such as 64, 128,
256,256,512, 512, 512 and 512. All pooling kernels are 2x2x2, except for pooll is
1x2x2. The fully connected layer has 4096 output units. The architecture of C3D is
shown in Figure 12.
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Figure 12 The architecture of C3D (Tran et al., 2014).

2.5 Recurrent Neural Network architecture

Recurrent Neural Network (RNN) is a network that forwards the output data
from the hidden layer of the previous time step as the input data for the next time step
as shown in Figure 13. RNN- is applied to time series data or sequence data, for
example, including language translation, speech recognition, handwriting recognition,
video understanding, and generating image descriptions. An example of a recurrent
neural network is the Long Short-Term Memory (LSTM), Bidirectional Long Short-
Term Memory (BiLSTM), and the Gate Recurrent Unit (GRU)).
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Figure 13 Recurrent Neural Network.

2.5.1 Long Short - Term Memory (LSTM)

LSTM is a type of artificial neural network developed to address the
issue of vanishing information when dealing with long data sequences over extended
periods. LSTM was proposed by Hochreiter and Schmidhuber (1997) in 1997, LSTM
is designed based on gating mechanisms to control the flow of information and the
state within the LSTM units during operation. The approach minimizes losing crucial
information or keeping unnecessary data when dealing with extended sequences. The
architecture of LSTM consists of four fundamental components including cell state,

input gate, forget gate, and output gate, as shown in Figure 14.
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Figure 14 Long Short - Term Memory architecture (Hochreiter & Schmidhuber,
1997).
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2.5.1.1 Cell state is core memory of the LSTM, the cell state, enables
the network to retain information over long sequences. The cell state can store and
modify data, essential for keeping context across different time steps.

2.5.1.2 Input gate decides which information from the current input and
the previous time step should be stored in the cell state. The gate selectively updates
the cell state with new data, enabling the network to adapt to changing patterns.

2.5.1.3 Forget gate considers if information should be discarded from
the cell state. By screening out unessential data, LSTM avoids information overload

and ensures that the cell state remains concise.
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2.5.1.4 Output gate handles the amount of information extracted from
the cell state to generate the output. This controlled flow of information helps in

producing accurate predictions or classifications.
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Figure 15 Long Short - Term Memory cell (Hochreiter & Schmidhuber, 1997).

2.5.2 Bidirectional Long Short-Term Memory (Bi-LSTM) (Graves &
Schmidhuber, 2005)

Bi-LSTM was proposed by Graves and Schmidhuber (2005) and
developed as an extension of the LSTM. Because LSTM processes data in one
direction only. The Bi-LSTM difference from LSTM enables the capture of context
from both directions in sequential data, including forward and backward directions.
The Bi-LSTM architecture consists of two LSTM layers, including one processing the
sequence in the forward direction and the other in the backward direction. The outputs
from both layers are then combined to provide a comprehensive representation of the

sequence data.

Output Layer Vel Ve yﬁ“
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Backward Layer

Input X1 X, X+

Figure 16. Bidirectional Long Short-Term Memory architecture (Graves &
Schmidhuber, 2005).
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2.5.3 Gate Recurrent Unit (GRU) (Cho et al., 2014)

GRU is a type of recurrent neural network architecture introduced by
Cho et al. (2014) to address some of the limitations of traditional recurrent neural
networks, such as the vanishing gradient problem and the difficulty of capturing long-
range dependencies in sequences. GRU has the same function as the LSTM network
but has a simplified architecture with fewer parameters, making it computationally
less intensive and often easier to train. The previous sequence information is
controlled by reset and update gates, as shown in Figure 17. Further, the update gate
combines the input and forget gates into a single gate. The GRU network has fewer
hyperparameters to adjust. Thus, it trains the model faster than the LSTM network
(Toharudin et al., 2020).
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Figure 17 Gate Recurrent Unit architecture. (Cho et al., 2014)

2.6 Deep features extraction

Feature extraction is a critical step in machine learning, as it involves
transforming raw data into a more suitable structure for model training and analysis.
The CNN models are widely used for feature extraction, pre-trained to extract
features, such as the MobileNet model, and the ResNet model trained in big data, such
as ImageNet. The advantage of this method is that it can use the existing classical
model, which has been pre-trained by many data (Lu et al., 2023). CNN model can
learn meaningful representations from the input data autonomously, and it can extract
different levels (low, medium, and high) of features from raw data at the difference

convolution layer , as shown in Figure 18. In the CNN model, the first layers discover
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low-level features, such as edges, lines, and corners. The other layers discover mid-
level and high-level features, for instance, structures, objects, and shapes (LeCun et

al., 2015).

Input

Deep feature

Figure 18 Deep feature extraction using CNN.

For video recognition, deep feature extraction is mostly used to extract the
essential features at the frame level. Then, the resulting deep features are sent to
sequenced data models learning such as LSTM or Bi-LSTM to understand essential

features between frames and can be used to classify videos effectively.

2.7 Deep features fusion method

Integrating deep features involves combining distinct features extracted from
different sources, such as features extracted from diverse convolutional layers or
features derived from different models. These features are merged to create new
representations that perform as description of the data. Subsequently, these integrated
features are utilized to train classification models for subsequent tasks. Fusing
features from multiple sources offers several advantages over learning from a single
feature set (He et al., 2016). For instance, features extracted from various
convolutional layers capturing different feature levels can be integrated to create a
more comprehensive representation of the input data. Integrating deep features
facilitates the creation of enriched and more informative representations that enhance
classification performance. The methods for deep feature fusion include addition and

concatenation operations (J. Liu et al., 2022). The addition operation corresponds to
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an increased information for the features describing the image. However, the

dimensions describing the image do not increase, as shown in Figure 19.
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Figure 19. Feature fusion using addition operation.
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Figure 20. Feature fusion using concatenation operation.

In contrast, concatenation operation refers to a merger of the number of channels, and
the number of channels refers to the sum of Feature (X1) to Feature (Xu) channels, as

shown in Figure 20.

2.8 Violent dataset
This section describes violent video datasets that are widely used in violence

recognition. The dataset used for violent videos was collected from various sources
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such as sports games, YouTube, movie, and CCTV. Each dataset has a different
resolution of videos, people, and scenes. I can explain each data set as follows.
2.8.1 Hockey fight dataset (Bermejo et al., 2011)

Bermejo et al. (2011) proposed a hockey fight dataset in 2011 collected
from National Hockey League hockey games. The dataset consists of 1,000 videos,
which are divided into 500 violent videos and 500 nonviolent videos. The video
consists of 41 frames and a resolution of 720x576 pixels. A sample frame from the

hockey fight dataset is shown in Figure 21.
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Figure 21 Samples of hockey fight dataset.

2.8.2 Movie dataset (Bermejo et al., 2011)

The movie dataset proposed by Bermejo et al. (2011) consists of 200
videos collected from action movie. The violence class consists of 100 videos
collected from action movie scenes, while the nonviolence class was collected from
other publicly available action recognition datasets that do not contain violent action.
The duration of each video clip is around 2 seconds. The sample frame from the

movie dataset is shown in Figure 22.
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Figure 22 Samples of movie dataset.

2.8.3 Violent flow dataset (Hassner et al., 2012)

In 2012, Hassner et al. (2012) proposed the violent flow dataset
consisting of 246 videos that contain crowds with scenes of a fighting between
people. The videos were collected from violent situations that occured in football
matches. The dataset is divided into 123 violent videos and 123 nonviolence videos.
The videos in this dataset range from 1.04 seconds to 6.53 seconds. A sample frame

from the violent flow dataset is shown in Figure 23.
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Figure 23 Samples of violent flow dataset.

2.8.4 RWF2000 dataset (Cheng et al., 2021)
Cheng et al. (2021) proposed the RWF2000 dataset which collected
real-world fighting videos from YouTube, consisting of 2,000 real-world video clips,
surveillance cameras, and social media. Half of the videos include violent behaviors,

while others depict nonviolent activities. For violence videos include, any form of
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subjectively identified violent actions such as fighting, robbery, explosion, hooting,
blood, and assault. The duration of each video clip is around 5 seconds with 30 FPS.

A sample frame from the RWF2000 dataset is shown in Figure 24.
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Figure 24 Sample of RWF2000 dataset.

2.8.5 UCF crime dataset (Sultani et al., 2018)

Sultani et al. (2018) proposed the UCF crime dataset as a long
untrimmed video collection of 1,900 real-world surveillance videos, comprising 950
for violent and 950 nonviolent videos. Videos in this dataset usually have a duration
from 1 to 10 minutes. The dataset consists of 13 types of regular activities and violent
classes: abuse, arrest, arson, assault, traffic accident, burglary, explosion, fight,
robbery, burglary, shooting, theft, shoplifting, and vandalism. The number of videos in
each category and an example video of the UCF crime dataset are shown in Table 1

and Figure 25, respectively.

Table 1 A number of videos in each category of UCF-crime dataset.

Classes videos Classes video
Abuse 50 Road accident 150
Arson 50 Robbery 150
Arrest 50 Shooting 50
Assault 50 Shoplifting 50
Burglary 100 Stealing 100
Explosion 50 Vandalism 50
Fighting 50 Normal 950

Total 1,900
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Figure 25 Samples of UCF crime dataset.

2.9 Related work
2.9.1 Deep learning for video classification.

Deep learning techniques are essential and successful tools in video
classification tasks. The advantage of the deep learning model is the ability to
automatically recognize and classify the videos accurately. Video recognition differs
from image recognition because it can realize various input data, while image
classification is performed on images. ur Rehman et al. (2023) categorized the video
classification task as a uni-modal or multi-modal video classification. The uni-modal
recognizes video from single input data, such as text, audio, or visual information. In
contrast, multi-modal classification is a combination of text, audio, or visual
information. Some research has resulted in methods being proposed based on a single
modal for video classification. Yadav and Vishwakarma (2020) propose a deep affect-
based movie genre classification framework. This proposed method involves cropping

video frames with faces and ignoring the rest in a preprocessing step. Then, the spatial
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features were extracted via the InceptionV4 network to obtain robust features. The Bi-
LSTM and LSTM were added to help in generating an effective feature. The final
feature was passed to softmax classification to obtain probabilities. Finally, a stacked
ensemble was used for classifying a movie's trailer. The result indicated that the
proposed method outperforms all the state-of-the-art methods significantly.

Ramesh and Mahesh (2022) proposed a framework based on deep
learning to classify sports videos using sports video as an input. First, the frame
extraction process converts the input videos into frames and reduces noise with the
fuzzy adaptive median filtering technique. Then, an enhanced threshold-based frame
difference algorithm is applied to identify the keyframe. Finally, CNN is utilized for
feature extraction and classification. The result shows that this framework offers
improved performance with less computational expense, and feature extraction
architectures using CNN can outperform hand-crafted features. Z. Liu et al. (2022)
presented a pure transformer backbone architecture for video recognition
implemented through a spatiotemporal adaptation of the Swin Transformer, which
achieves state-of-the-art performance on benchmark datasets.

Recently, multi-modal video classification has gained attention for
video classification. Some research utilizes characteristics of video, audio, and text
attributes to improve more efficient results than incorporating only one feature. Gao et
al. (2019) proposed a framework for efficient action recognition in video that
considers jointly frame and audio. The image frame captures most of the appearance
information within the video, while the audio provides important dynamic
information. The pair of images and audio were selected to perform efficient video-
level action recognition. Tahir et al. (2020)extracted features of frame, movement, and
audio information of video scenes through VGG-19. They further extracted movement
features with the BiLSTM model. All features are concatenated and forwarded to a
fully connected neural network to detect the disturbed and fake embedded content in
videos. The result shows that the combined features outperform the individual
features.

Also, Lou et al. (2021) proposed a fusion of auditory and frame-level
features through the CNN-LSTM for violence recognition. The result proved that the

fusion feature method obtained better recognition results and improved the accuracy
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of violent behavior recognition. Pratama et al. (2023) proposed violence recognition
using a two-stream 3D convolution network, which used video frame and optical flow
as input. Ma et al. (2023)proposed a two-stream inflated 3D convolution network for
human behavior recognition that learns action features directly from RGB and optical
flow inputs. The results showed that the proposed method achieved the highest
performance on UCF-101 and HMDB-51 datasets by reducing misclassification by
57% and 33%, respectively. Wang et al. (2023) proposed a two-stream deep learning
architecture for video violent activity detection. The RGB frames and optical flow
data were used as inputs for each stream to extract the spatiotemporal features of
videos. After that, the spatiotemporal features from the two streams were
concatenated and fed to the classifier for the final decision.

2.9.2 Hand crafted features for violent recognition

Recognition of violence in surveillance video used a handcrafted
approach for feature extraction based on images. Then aggregate the features were
aggregated using encoding strategies and machine learning applied as a classifier (Li
et al., 2019). Some research has considered spatiotemporal descriptors around an
interesting point to recognize the violence in surveillance video. Souza et al. (2010)
presented a violence detector based on local spatiotemporal features with a bag of
visual words and a support vector machine. The results confirm that motion patterns
are crucial to distinguish violence from regular activities compared to visual
descriptors in the space domain. Bermejo et al. (2011)introduced a fight dataset and
used space-time interest points and motion scale-invariant feature transform method
to extract spatial-temporal features. Then, the feature vector was sent to the support
vector machine classifier.

Similarly, Xu et al. (2014)used the motion scale-invariant feature
transform method to extract the low-level description of a query video. The kernel
density estimation is exploited for feature selection to obtain the highly discriminative
video feature. A sparse coding method with a max pooling procedure generates a
discriminative high-level video representation from local features. The result showed
that the proposed method outperformed violence detection in crowded and non-
crowded scenes. Das et al. (2019) proposed a system to detect violence from video,

applied a histogram of oriented gradient as a feature descriptor to extract features



27

from the images, and employed various classifier models and a majority voting
technique to decide whether a video clip contains violence or not. The result showed
that the system is robust enough to detect violence in different surveillance situations.
Several researchers have proposed methods for global feature extraction, such as
Hassner et al. (2012)presenting a violent flow feature descriptor based on optical flow
magnitude changes between adjacent violent video frames. Gao et al. (2016)
improved the violent flow feature descriptor to use the orientation information of
optical flow, a namely oriented violent flow which considers both magnitude and
orientation information. The features are encoded into the bag of word representation
and a support vector machine for violence in the video classifier. However, the hand-
crafted features are usually dataset dependent and do not generalize well (Wang et al.,
2023).
2.9.3 Deep learning for violent recognition
Many approaches have been proposed to recognize violent video,
which is categorized into 2D-CNN, 3D-CNN, combination of CNN and RNN, and
fusion of features approaches.
2.9.3.1 Violent recognition with 2D-CNN
The image-based approach utilizes a two-dimensional
convolution neural network (2D-CNN) for frame-level feature extraction. 2D-CNN
can capture spatial features from individual frames of video. The resulting
discriminative features are then classified using a state-of-the-art classification model
such as SVM. Some researchers have developed convolutional neural networks
(CNNs) for performing violent video recognition. Irfanullah et al. (2022) proposed
real-time violence detection in surveillance videos using convolutional neural
networks. This research compares the performance of different CNN models such as
AlexNet, VGG-16, GoogleNet, and MobileNet for violence recognition. The result
indicated that the MobileNet model outperformed the other models regarding
accuracy, loss, and computation time. Khan et al. (2019) presented a violence
detection approach using deep learning. The video was segmented into shots and
selected representative frames with a maximum saliency score. Then, the selected
frames were learned by a lightweight deep learning model and classified as depicting

violence or non-violence. Keceli and Kaya (2017) used a pre-trained CNN for deep
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high-level features extraction that applied an optical flow as the input of the network
and classified violent activities by SVM and subspace k-nearest neighbor (SkKNN).
Karisma et al. (2021)used a pre-trained VGG16 model for the feature extraction
method and classified it using the support vector machine (SVM) algorithm with the
linear kernel. VGG16 extracted 4,096 features and was used as the input to the SVM.
The experimental results showed that the VGG16 combined with SVM achieved an
accuracy of 96.4%.
2.9.3.2 Violent recognition with 3D-CNN

From the above, 2D-CNN is performed on individual frames
without considering the temporal information between adjacent frames (Lin et al.,
2019), especially for video recognition tasks that consider the time information
involved. Therefore, further developments will extend the capabilities from 2D-CNN
to 3D-CNN to extract appropriate video features. 3D-CNN can analyze both spatial
and temporal information. Several 3D-CNN architectures have been proposed to
sustain more factual video recognition performance. Ji et al. (2013) proposed a 3D-
CNN to extract spatial and temporal features from video data for action recognition.
The experimental results showed that the proposed models significantly outperformed
2D-CNN architecture. Su et al. (2022) employed the X3D network to detect violence
captured by surveillance cameras. The X3D network is a 3D-CNN that is designed for
activity recognition and fine-tuned to detect violence in real time. The 3D kernels are
designed to deal with information from both the spatial and temporal domains in the
same manner. The experimental result demonstrates that our modified model
outperforms most other violence/detection methods with simple hyperparameter
adjustments.

Alharthi et al. (2023) examined various deep-learning models
to enhance abnormal behavior detection on the massive Hajj crowd dataset. To extract
spatiotemporal features from a video containing anomalous behavior, pre-trained C3D
models are employed. The obtained spatiotemporal features are fed to fully connected

layers that are trained to classify the video into one of the seven abnormal classes or

the normal class. The result shows that the C3D model outperformn VGG-16 and the

other research approaches. Maqgsood et al. (2021) proposed a framework for
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recognizing anomaly videos by learning spatiotemporal features using a deep 3 -
dimensional convolutional network. The experiment was trained on the University of
Central Florida (UCF) Crime dataset. The proposed approach consists of 3D feature
extraction and spatial augmentation by the proposed 3D ConvNet. The result shows
that the 3D ConvNet outperforms significantly from the state-of-the-art method on
anomalous activity recognition having 82% AUC. Jahlan and Elrefaei (2022)
proposed a novel approach using the fusion technique to detect violence. First, both
Alexnet and SqueezeNet networks are followed by Convolution Long Short-Term
Memory (ConvLSTM) to extract robust features from the video. Then, the obtained
features were fused and fed into the max-pooling layer, fully connected layer, and
softmax classifier.
2.9.3.3 Violent recognition with combination of CNN and RNN

Another method for violent video recognition is using RNN to
encourage performances with spatial and temporal features, which jointly consider
information about the previous and current frames. The survey of Morshed et al.
(2023) found that current approaches based on RNN often use LSTM to handle
lengthy action sequences because this architecture may avoid the overall
disappearance of gradient issues. For violent video recognition, many studies apply
CNN for spatial feature extraction and then employ RNN for temporal feature
extraction in video recognition. Sudhakaran and Lanz (2017) use frame difference as
input of a 2D-CNN to extract hierarchical features from the video frames and then
aggregated them using the convLSTM layer. Then they were classified as violence or
non-violence with a fully connected layer. The experimental result showed that a deep
neural network trained on the frame difference performed better than a model trained
on raw frames.

Soliman et al. (2019) proposed the pre-trained VGG-16 model
on ImageNet to extract spatial and LSTM to extract temporal features before being
classified by a fully connected layer. Experiments on standard violent data sets
showed that the model outperformed the state-of-the-art approach. Besides, they
created a real-life violence situations (RLVS) dataset for fine-tuning the model,
achieving the best accuracy of 88.2% on the hockey fight dataset. Sumon et al. (2019)
demonstrated the efficiency of the deep learning method by using CNN, LSTM and
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combining CNN with LSTM. The experiment on violent video datasets found that the
CNN model with transfer learning performed better than LSTM and CNN-LSTM
models. Naik and Gopalakrishna (2021) proffered the deep neural network model
Mask Region-based Convolutional Neural Network (Mask RCNN) to detect a single
person in the video and extract interest points. Then the extracted features were fed to
LSTM for feature learning across a time series frame. The results showed that the
model had excellent performance.

Some researchers have applied bidirectional LSTM to improve

model performance by combining CNN with BiLSTM. Mumtaz et al. (2022) proposed

a multi-scale of VGG-19 architecture for violence video classification. The VGG-19
was used to initialize the spatial features extractor, followed by the widely followed
Bi-LSTM structure for optimal recognition of violent. Hanson et al. (2019) proposed a
spatiotemporal encoder to detect video violence. First, each video frame was extracted
as feature maps with the VGG13 network. Then the feature maps were passed to
BiConvLSTM to extract the temporal information by passing forward and backwards
in time. Finally, elementwise maximization was applied to represent the video and
classified as violent or non-violent in the video. The testing accuracy achieved
96.96% on the hockey fight dataset, 100% on the movie dataset, and 90.6% on the
violent flow dataset.
2.9.3.4 Violent recognition with fusion features.

Some research uses deep learning to learn from various features
type. Jahlan and Elrefaei (2022) apply the feature fusion technique to recognize
violence, in which the features were fusion obtained from AlexNet, SqueezNet, and
LSTM. Correspondingly, Tahir et al. (2020) extracted the features from the VGG-19
and BiLSTM model and then combined all features with concatenation for violence
recognition in YouTube videos. P. Zhou et al. (2017) constructed ConvNets, namely
FightNet, to model long-term temporal structures for recognizing violence. The input
consists of an RGB image, optical flow, and acceleration field to extract the motion
information better. Their approach demonstrated that deep ConvNets could capture

more essential features and detect violence accurately.
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Carneiro et al. (2019) used VGG-16 for a multi-stream that
includes spatial, temporal, rhythm, and depth information. The model achieved an
accuracy of 89.10% on the hockey fight dataset and 100% on the movie dataset. The
results showed that multi-stream methodology increased the efficiency of violent
video recognition. Lou et al. (2021) proposed a method for an autoencoder mapping
method for auditory-visual information fusion. The model comprised four parts:
visual feature extraction, auditory feature extraction, autoencoder model, and full
connection recognition model. CNN was used to extract frame level features and
auditory features. Next, the frame level feature and auditory features were sent to
LSTM network to process temporal relationship of the features. Then, the visual
features and the auditory features were fused with the concatenate method. Finally,
the full connection model was used to identify violent behavior. The result showed

that the proposed method improved the performance of violent behavior recognition.
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Chapter 3
Fusion Lightweight CNNs and Sequence Learning Technique

Stopping violent incidents in real-life is more dangerous for ordinary people.
It may harm people's lives. Calling the police is the best choice to stop the violence.
We should have an automatic system to recognize violence and warn the police on
time. This paper proposes a method to classify violent incidents from video. However,
classification of violent videos faces many challenging problems, such as video
length, quality, and angles and orientations of the recording devices. The proposed
method is called fusion MobileNets-BiLSTM architecture. In the first part, we
propose to use the lightweight MobileNetV 1 and MobileNetV2 to extract the robust
deep spatial features from the video so that only non-adjacent 16 frames were
selected. The spatial features were transferred to the global average pooling, batch
normalization, and time distribution. In the second part, the spatial features from the
first part were concatenated and then sent to create the deep temporal features using
the bidirectional long short-term memory (BiLSTM). The proposed fusion
MobileNets-BiLSTM architecture was evaluated on the hockey fight dataset. The
experimental results showed that the proposed method provides better results than the
existing methods. It achieved 95.20% accuracy on the test set of the hockey fight
dataset.
3.1 Introduction

Video surveillance systems are essential to save human life and reduce the
risks of becoming a victim of crime (Lejmi et al., 2020) (Lejmi, Ben Khalifa, and
Mahjoub 2020). A crime can happen anywhere and anytime, causing damage to life
and property. Most public or private places have established video surveillance
systems to monitor human activity and prevent crime. However, using human
monitoring through video surveillance may not stop the incident. Therefore, applying
computer vision technology to video surveillance systems is crucial to identify in real-
time and warn related agencies when an abnormal event occurs. The need is to
recognize violent activities such as fighting, punching, and kicking from a person or

crowd. It is imperative to understand video and efficiently apply it to the real world.
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The main contributions of the proposed architecture are presented in the following.
We proposed the lightweight MobileNets to extract the deep spatial features and
bidirectional long short-term memory (BiLSTM), which is a recurrent neural network,
to learn from the sequence video frames and extract the temporal features. We
proposed the concatenating operation to combine the spatial features that were
extracted using the MobileNetV1 and MobileNetV2 before sending the spatial
features to the BILSTM network. The softmax function was used as the classifier of
the proposed architecture. Hence, we selected keyframes which were the only 16 non-
adjacent frames. However, other methods were examined with 20 and 40 frames. In
this paper, all 16 keyframes were input to the proposed fusion lightweight CNNs and
sequence learning architecture. The output was classified as violence and non-
violence.

The remainder of this chapter is organized as follows. Section 3.2
summarizes the overview of related work. Section 3.3 describes the proposed fusion
lightweight CNNs and sequence learning architecture. The violence video dataset is
explained in Section 3.4. The experimental setup, and experimental results are

presented in Section 3.5. The conclusion and future work are given in Section 3.6.

3.2 Related work

Nowadays, deep learning is developing rapid detection and recognition of
violence in surveillance video. When comparing deep learning methods with
traditional methods, deep learning methods have strong feature expression ability and
minor limitations (Jiaxin et al., 2021). Some researchers have developed
convolutional neural networks (CNNs) for performing violent video recognition
(Kreuter et al., 2020; Lejmi et al., 2020; Siregar & Mauritsius, 2021). Khan et al.
(2019) presented a violence detection approach using deep learning. The video was
segmented into shots and selected representative frames with a maximum saliency
score. Then, the selected frames were learned by a lightweight deep learning model
and classify them as violence or non-violence. Keceli and Kaya (2017) used a pre-
trained CNN for deep high-level features extraction that applied an optical flow as the
input of the network and classified violent activities by SVM and subspace k-nearest

neighbor (SkNN). Karisma et al. (2021) used a pre-trained VGG16 model for the
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feature extraction method and classified it using the support vector machine (SVM)
algorithm with the linear kernel. VGG16 extracted 4,096 features and was used as the
input to the SVM. The experimental results showed that the VGG16 combined with
SVM achieved an accuracy of 96.40%.

Some studies have proposed combining CNN and LSTM networks with
learning sequence data from video. Soliman et al. (2019) proposed an end-to-end deep
neural network model for recognizing violence in video. The VGG 16 was used for
spatial feature extraction, followed by LSTM for extracting the temporal features.
Then, the fully connected and softmax layers were used as classification. Their
method achieved the best accuracy of 95.10% on the hockey fight dataset. Ditsanthia
et al. (2018)proposed a new visual feature descriptor, called multi-scale convolutional
features, to partition the video frame into different regions and extract deep features.
Then, the features were pooled together to obtain a meaningful feature vector. Finally,
the frame-level features were fed into the BILSTM to classify violence from the
video.

Carneiro et al. (2019)focused on the using a multi-stream of VGG-16
networks and investigating conceivable feature descriptors of a video, including
spatial, temporal, rhythmic, and depth information. Then, the outputs were classified
using the ensemble method. Peixoto et al. (2020)proposed a fusion model based on
visual and audio feature representation to tackle violence detection in video. First, the
video frame features were extracted using C3D, CNN-LSTM, and InceptionV4,
whereas the audio features were calculated using four standard audio feature extractor
methods. Then, the different visual and audio features vectors were fused with a
concatenation operation: Finally, A random forest and a softmax function were used as
classifiers. The result showed that the classification accuracy increased 6% when
combining visual and audio features. Lou et al. (2021) proposed an autoencoder
mapping method for auditory-visual information fusion, using a CNN-LSTM
architecture for feature extraction. Then, the visual and auditory features were
integrated into the same shared subspace using an autoencoder model. Next, the
output from autoencoder mapping was combined with the concatenation method.
Finally, the softmax function was used to identify violent behavior. The result showed

that their proposed method improved the performance of violent behavior recognition.
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In the above studies, CNN extracted only spatial features. However,
information sent to create the deep learning model for video classification is
insufficient (Chen et al., 2021), although many studies use the RNN architecture to
learn from the sequence data and increase the performance of the violence
recognition. Therefore, for the surveillance system to recognize more accurately, the
feature-fusion method receives more attention because the combination of features

can significantly improve the efficiency of violence recognition.

3.3 Fusion Lightweight CNNs and Sequence Learning Architecture

In this section, we present the fusion lightweight CNNs and sequence
learning architecture to classify violent incidents from videos.

Overview of the architecture, we divided the proposed architecture into two
main parts. For the first part, the deep spatial features are extracted from the violence
videos using lightweight MobileNetV 1 and MobileNetV2. In addition, we removed
the two last layers of MobileNetV1 and V2 and replaced them with global average
pooling (GAP), batch normalization (BN), and time distribution layers. Hence, the
deep spatial features from MobileNetV 1l and V2 were connected with the
concatenating operation. For the second part, we proposed the bidirectional long
short-term memory (BiLSTM), which is a sequence learning architecture, to learn
from the sequence features and extract the robust temporal features. The framework of
the proposed architecture is shown in Figure 26. The details of each part are described

in the following sections.
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Figure 26 lllustration of the fusion lightweight MobileNets and BiLSTM architecture
for violence video recognition.
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3.3.1 Convolutional Neural Network Architectures. CNN is generally used
for video recognition tasks because it effectively captures spatial information within
video frames. CNN uses convolutional filters capable of capturing features such as
edges, textures, and object shapes, which are crucial for understanding the content of
individual frames. In this thesis, we are interested in lightweight neural network
architectures with few parameters but still have high performance, including
MobileNetV1, MobileNetV2, NASNetMobile, and ReNet50V2. The details of the

CNN architectures are as follows.

3.3.1.1 MobileNetV1 is the lightweight CNN architecture, has a small
number of parameters because the depthwise separable convolution operation was
invented (Howard et al., 2017). Depthwise convolution was applied to each channel.
Then, the pointwise convolution with a 1x1 convolution was performed to change the
dimension and create a linear output. In the MobileNetV1 architecture, the depthwise
separable convolution was attached to the convolution operation in every layer.
Further, the BN and rectified linear unit (ReLU) activation function was combined
after each convolution. The model of the MobileNetV1 is much smaller than VGG16
and GoogLeNet.

3.3.1.2 MobileNetV2 is the improved version of MobileNetV 1. Two
layers were added in the MobileNetV2 architectures: an inverted residual and a linear
bottleneck, to enhance memory efficiency (Sandler et al., 2018). The inverted residual
block contained a convolution layer, depthwise convolution, and convolution layer,
respectively, with one stride. The shortcut connection was connected between each
residual block the same way as in the residual network. The linear bottleneck block
also contained the same layer as the inverted residual layer, but the stride was set as
two.

3.3.1.3 NASNetMobile is the lightweight version of the NASNet. It
was designed to explore the best convolutional layer on a small dataset, such as the
CIFAR-10 dataset, and then transfer the best layer by stacking the layers together to a
large dataset, such as ImageNet (Zoph et al., 2018). To search for the best
convolutional layer, it searches from many sets of convolutional operations, for

example, identity, 3x3 convolution, 3x3 depthwise convolution, 3x3 average pooling,
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and 3x3 dilated convolution, using a recurrent neural network (RNN). NASNet
consisted of two main cells were stacked together: normal and reduction cells.
Although the normal and reduction cells were stacked together, the NASNet
architecture could be adjusted by repeating many normal cells with N times.

3.3.1.4 ResNet50V2 is a modified version of ResNet50 that performs
better than the original ResNet50 and ResNet101 on the ImageNet dataset (He et al.,
2016). The difference between the residual block in the original ResNet and the
modification ResNetV2 is the number of the convolution operation. The original
residual block contained the weight layer, BN, ReLU, weight layer, and BN,
respectively. Before combining to the following layer, the ReLU function was
performed. While the modified residual block in ResNetV2 contains BN, ReL U,
weight layer, BN, ReLU, and followed by weight layer. Hence, it adds to the
following layer without applying the ReLU function. For my experiments, we
removed the last two layers of each CNN architecture before extracting the deep

spatial features. A summary of the CNN architectures is presented in Table 2.

Table 2 A number of parameter of CNN architectures.

CNN Architectures No. of Parameters
MobileNetV1 42 M
MobileNetV2 3.2M
NASNetMobile 53 M
ResNet50V2 25.6 M

3.3.2 Sequence Learning Architectures. For violent video understanding,
using only CNN cannot capture long-term dependencies within sequence data due to
the involvement of spatial information with convolutional operations. At the same
time, RNN is designed to handle and effectively capture temporal dependencies in
sequential data, emphasizing the importance of data sequence. RNN uses shared
weights across different time steps, enabling it to capture dependencies across
sequences effectively. In this study, the sequence information of 16 keyframes that

were extracted from the violent video was first extracted using the CNNs and then
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transferred to the sequence learning architectures. The brief details of the sequence
learning architectures are as follows.

3.3.2.1 Long short-term memory (LSTM) was designed by Hochreiter
and Schmidhuber (1997) to overcome the error of back-flow problems. LSTM has a
memory block, which is a set of recurrently connected blocks, multiplicative units:
input, output, and forget gates. The advantage of the LSTM network is that it was
proposed to deal with long sequential data, including video, speech, and long text
data. The gates were designed to keep or forget information while training the LSTM
network. The LSTM learned from the sequence information and extracted the robust
temporal features.

3.3.2.2 Bidirectional LSTM (BiLSTM) is a sequence learning
architecture that processes sequence information in two directions (Graves &
Schmidhuber, 2005). It consists of two independent LSTM networks: forward state
and backward state. The forward state takes the input in a forward direction. At the
same time, the backward state takes in a backward direction. The outputs of the two
states are connected to the same output.

3.3.2.3 Gated Recurrent Unit (GRU) was introduced by Cho et al.
(2014) and has the same function as the LSTM network. The previous sequence
information is controlled by reset and update gates. The reset and update gates were
designed to control the previous sequence information. Further, the update gate
combined the input and forget gates into a single gate. The GRU network has fewer
hyperparameters to adjust. Thus, it trains the model faster than the LSTM network
(Toharudin et al., 2020).
3.4 Violent Video Datasets

We evaluated the proposed method on a benchmark violent video dataset that

was collected from hockey games of the national hockey league (NHL) in North
America, namely the hockey fight dataset (Bermejo et al., 2011). The hockey fight
dataset includes two classes and contains 500 violent videos and 500 without
violence. Each hockey video consists of 41 frames with 720x576 pixels resolution.

Examples of violent and non-violent videos are shown in Figure 27.
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Figure 27 Some examples of (a) violent video and (b) non-violent video of
the hockey fight dataset.

3.5 Experiment Setup and Results
3.5.1 Experiment Setup

We implemented the proposed framework using Keras API based on
the TensorFlow backend. All experiments were performed on Windows OS with Intel
Core 19, 32GB of RAM, and NVIDIA RTX2070 GPU. I first used a pre-trained model
of four state-of-the-art CNN architectures to train on the hockey fight dataset,
including MoblileNetV1, MobileNetV2, ResNet50V2, and NASNetMobile. The
hyperparameters of the CNNs were set as follows: SGD optimizer, the momentum of
0.9, batch size of 4, and train with 100 epochs. We also performed different learning
rates (0.01, 0.01, 0.001, 0.0001, and 0.00001) to find the lowest loss value while
training. To extract the deep features, I then deleted the last layer of each architecture,
which was the fully connected (FC) and softmax layers and replaced it with three
layers: global average pooling (GAP), batch normalization (BN), and time distribution
layers. Second, the deep features were sent to the recurrent neural networks (RNNs),
including LSTM, GRU, and BiLSTM. The softmax function was used as a classifier.
The hockey fight dataset was divided into training and test sets that contained 750 and
250 videos, respectively.

3.5.2 Experiments with Frames Selection

To show the performance of the CNN and RNN architecture on the

hockey fight dataset, we proposed to use the MobileNetV2 architecture to train and
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extract deep features from all frames, which was 40 frames for each video.
Subsequently, the deep features were combined with the LSTM network, called
MobileNetV2-LSTM. We trained the MobileNetV2-LSTM model for 12 hours and 19
minutes. The result showed that it achieved 93.73% accuracy on the test set.

Existing violence recognition systems were designed to extract 16, 20,
and 40 frames from the video (Carneiro et al., 2019; Ditsanthia et al., 2018; Keceli &
Kaya, 2017; Soliman et al., 2019). In this experiment, we trained MobileNetV2-
LSTM by choosing only 16 frames from the video. Consequently, we experimented
on choosing the key frame from different frame numbers (seeTable 3). As a result, the
computational time was reduced and was three times faster than when training with
40 frames. It trained approximately four hours. The accuracy results of different frame
numbers are shown in Table 3. I compared four keyframe numbers (see Table 3,
Experiments 1-4). It can be seen from Table 3 that frame numbers 5, 7, 9, ..., 35,
which are 16 frames, are the best keyframes in our experiments on the hockey fight

dataset. It obtained 88.80% on the test set.

Table 3 Experimental results with different frames using MobileNetV2-LSTM.

Experiments Frame Numbers Accuracy (%)
1 1-16 83.20
2 13 -28 87.60
3 25-40 88.00
4 57,9, ..,35 88.80

Discussion of Experiments with Frames Selection. We found that the
best performance was obtained when selecting non-adjacent frames. However, when
the non-adjacent frames were selected, the CNN-LSTM model was trained from the
redundant information. For the hockey fight dataset, we then selected every two
frames. Also, training the CNN-LSTM model using 16 keyframes was much faster
than training with the whole frames. An example of the adjacent and non-adjacent

frames is illustrated in Figure 28.
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Figure 28 lllustration of the (a) adjacent and (b) non-adjacent frames of
the hockey fight dataset.

3.5.3 Experiments with different CNN architectures.

As with the experimental results described above, the best frames were
selected from the frames selection experiment, including 16 frames of frame numbers
5,7,9, ..., 35. We evaluated the performance of the CNNs and LSTM using four state-
of-the-art CNN architectures: MobileNetV1, MobileNetV2, ResNet50V2, and
NASNetMobile. The different learning rates were examined and only the best
learning rate was reported for each CNN in this experiment. For evaluation, the
training set was used for 5-fold cross-validation (5-cv) to avoid overfitting and the test
set was for final evaluation.

We present the experimental results with various CNN architectures
combined with the LSTM network in Table 4. MobileNetV2-LSTM achieved an
accuracy of 92.76% with cross-validation on the hockey fight dataset and 91.60% on
the test set. Results also significantly outperformed the other CNN-LSTM models (t-
test, p<'0.05). The MobileNetV2-LSTM spent around 21 minutes and 7 seconds for
the training and test times, respectively. In contrast, the very deep networks
(ResNet50V2 and NASNetMobile) performed worse on accuracy, computation, and
biggest model size than others. MobileNetV2-LSTM has the best FLOPS value of 77
and the fewest parameters of 13M, G is 10° and M is 10° to measure the computing

performance.
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Table 4 The average accuracy (%) and the standard deviation of CNN architectures
combined with the LSTM network obtained on cross-validation and test sets.

Models Learning 5-CV Test | Training | Testing | Model | FLOPS | Params
Rate Accuracy|  Time Time
(%) (~mins) | (~sec/video) | Size 6) ™)
ResNet50V2- 0.01 77.33 77.60 33 11 170 893 9.4
LST™M +0.0472
NASNetMobile | 0.0001 82.67 87.60 31 34 94 147
-LSTM +0.0550
MobileNetV1- 0.00001 92.00 92.00 22 5 89 146
LSTM +0.0354
MobileNetV2- 0.0001 92.76 91.60 21 7 86 77
LSTM +0.0369

We found that the proposed CNN-LSTM architectures can address the
overfitting problem because the accuracies of the 5-cv and test set were not different.
With the MobileNetV2 architecture, a very small learning rate value was used to
reach the lowest loss value. Further, the computational time decreased when the
lightweight CNNs (MobileNetV1 and V2) were performed. In the following
experiments, MobileNetV1 is proposed in combination with different RNN
architectures: LSTM, BiLSTM, and GRU.

3.5.4 Experiments with Fusion MobileNets and RNN Architectures

To examine the effect of the combination between MobileNets and
RNN architectures, we combine the deep features extracted using MobileNetV1 and
MobileNetV2 with concatenating and adding operations. Then, the deep combination
features were transferred to the RNN architectures and classifier with a softmax
function. Furthermore, the proposed model was trained with 1,000 epochs.

We present the accuracy results of the combined operations, including
concatenating and adding, as shown in Table 5. We also compared the fusion
MobileNet and RNN architecture results with the experiments in Section 3.5.2. The
fusion MobileNet and RNN models outperformed the single CNN models by
approximately 2% on the test set. However, they spent much more training time,
because they had to train on both MobileNet architectures. It can be seen from Table 5
that the concatenating operation created robust deep features with the size of 16x2048

and achieved better accuracy when combining MobileNet models with BILSTM
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architecture. It achieved an accuracy of 95.20% on the test set of the hockey fight
dataset.

Furthermore, we use the FLOPS to measure computing recognition
performance. The BILSTM with the concatenating feature has a slightly higher
FLOPS value than the others, equal to 252.53G. However, the adding operation
created only 16x1024 deep features and achieved 94.80% accuracy when combined
with RNNs. The performance was slightly decreased (only around 0.4%) when
compared with concatenating operation. Most importantly, the testing time shown was

almost equal.

3.5.5 Discussion of Experiments with fusion MobileNets and

RNN Architectures.

When using the combined operations: concatenating and adding, the
deep feature sizes of the concatenating operation were larger one time than the adding
operation. However, the training time was different, by only about one hour. The
fusion MobileNet and RNN architectures can be used to classify violence from real-
time because it is recognized quickly and with high accuracy. So, extending the

complex architecture does not affect the recognition time.

Table 5 The accuracy (%) and computational times of violence recognition
experiments on the hockey fight dataset.

Combined RNNs Test Training Testing FLOP | Params Model
operations Acce time time (G) M) Size
(%) (h:m) (~sec/video) (MB)
Concatenating | LSTM 94.80 3:38 3 252.26 34 104
(16 x2048) BiLSTM 95.20 8:44 5 252.53 69 208
GRU 94.00 4:6 2 252.26 26 80
Adding LSTM 94.80 3:22 2 252.26 26 72
(16 x1024) BiLSTM 94.80 7:35 4 252.26 52 136
GRU 94.40 3:36 2 252.26 20 52
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3.6 Comparison of the Fusion MobileNets and BiLSTM architecture and the
Existing Methods.
This section presents the experimental results of various methods, as shown

in Table 6.

Table 6 The comparison of the proposed method with existing methods.

Methods No. of Frames Data splitting Testing
Train:Test accuracy
(%) (%)
Multiscale convolutional features 40 80:20 83.19

(Ditsanthia et al., 2018)

salient frame extraction and MobileNet N/A 75:25 87.00
(Khan et al., 2019)

Short-term traffic flow prediction 20 80:20 88.20
(Soliman et al., 2019)

Multi-stream CNN 40 90:10 89.10
(Carneiro et al., 2019)

Optical flow and AlexNet 20 80:20 94.40
(Kegeli & Kaya, 2017)

Our Proposed Method 16 75:25 95.20

Table 6 compares the results of our proposed method with the existing

methods on the hockey fight dataset. It shows that our proposed fusion MobileNets-

BiLSTM architecture outperformed the existing methods with an accuracy of 95.20%.

As a result, the existing method trained their models with more frames than our

proposed method. The existing method trained with 20 and 40 frames, while our model
trained with 16 frames. We also trained the model with less training set than the other

methods, except research (Khan et al., 2019).

3.7 Conclusions

In this research, we proposed the fusion MobileNets-BiLSTM framework to

recognize violent events from the sport of hockey. First, MobileNetV1 and

MobileNetV2 were selected, which are lightweight convolutional neural networks
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(CNNs), that aim to extract the robust deep features and then convert the deep
features to perform with the bidirectional long short-term memory (BiLSTM) by
adding three layers: the global average pooling, batch normalization, and time
distribution. Second, the concatenating operation was proposed to fuse the robust
deep features that are extracted by the lightweight MobileNets before transferring
them to the BILSTM network. For the hockey videos, we extracted video frames by

selecting only 16 frames that were non - adjacent to avoid the proposed architecture
training from the redundant information. Interestingly, the results showed that
selection with the non-adjacent frames outperforms other selection frame methods.

Furthermore, our results showed better accuracy than the results presented in existing

works. The proposed fusion MobileNets-BiLSTM framework achieved an accuracy of
95.20% on the test set of the hockey fight dataset.

In future research, we first aim to reduce the training and testing time by
decreasing the video frames. For this, we will study the instance selection method
(Olvera-Lopez et al. 2010). Second, we found that applying the optical flow (Kegeli &

Kaya, 2017) showed the appropriate results. We will also propose the optical flow

method for selecting the non-adjacent frames.



46

Chapter 4
Violence recognition with 3D-CNN

The technology of surveillance systems has been developing rapidly. Many
places install surveillance cameras for the security of unusual events that may occur.
However, monitoring violent events requires manual work and time to analyze
historical files, which does not allow immediate action to stop the incident. Deep
learning is a powerful technique that can extract important features for discriminative
recognition. It can also construct models with high accuracy for application in various
domains. In this work, we proposed an effective method for recognizing violent
videos using deep learning techniques. The proposed method comprises two main
parts, the deep feature extraction and integration part and the 3D convolution part. For
the deep feature extraction, we used MobileNetV1 and MobileNetV2 to extract spatial
features from individual frames separately. Then, the obtained features are integrated
with concatenate operation before passing through the 3D convolution. The 3D
convolution considers temporal information between adjacent feature frames and
performs violent classification using softmax. The performance of the proposed
method is evaluated using three violence datasets, including hockey fight, movie, and
violent flow. The result achieves an accuracy of 97.60%, 100%, and 96.77%,
respectively. The result indicates that the proposed method is efficient compared to

other proposals for violent recognition.
4.1 Introduction

Recently, the surveillance system has been developing rapidly. Various
locations have cameras installed to monitor abnormal events, including surveillance
of theft in the mall, attacks in the park, patient behavior tracking in hospitals, and
detection of elderly falls (Rajavel et al., 2022; X. Yang et al., 2022). However,
detecting abnormalities is a human manual for analyzing and detecting visual
information. Therefore, detecting abnormal events using humans must be more
accurate and impractical (Jahlan & Elrefaei, 2022). Sometimes, anomaly detection

occurs after a strange event has occurred, and it is impossible to notify in time.
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Unusual circumstances include physical abuse, punching, robbery, robbery, accidents,
etc. For the safety of human beings and the avoidance of violence. Therefore, an
automated surveillance system is crucial developed to monitor human behavior at risk
of violence from surveillance cameras. However, it is challenging to differentiate the
violence in the video since similar to a typical gesture. Violent activity contains
different activities such as fighting, beating, punching, and attacking people.
However, Video recognition differs from image recognition in that each video
requires multiple frames to extract features. Therefore, videos with high frame rates
are also time-consuming. In addition to different viewpoints, scale, video resolution,
the number of people in the area, the crowd scene, and the dynamic scene will
significantly affect the recognition performance, making action recognition more
challenging to capture practical and discriminative features.

Many researchers proposed methods to improve the effectiveness of video
violence recognition (Das et al., 2019; Gao et al., 2016; Souza et al., 2010). In
literature, the basic process of violent recognition is divided into feature extraction
and classification. Several years ago, feature extraction used a hand-craft method
consisting of local and global feature extraction to recognize the violence in
surveillance video. For example, Souza et al. (2010) proposed a violence detector
based on the local spatiotemporal feature. Das et al. (2019) used a histogram of
oriented gradients method to extract the edges of gradient and orientation in localized
portions of an image. Some studies proposed methods for global feature extraction.
For example, Gao et al. (2016) improved the violent flow feature descriptor to use the
orientation information of optical flow, namely oriented violent flow which considers
both magnitude and orient information. The obtained features are then encoded into
the bag of words. Finally, a classifier, such as a support vector machine, is adopted to
recognize the violence in the video.

Deep learning is a core technology popularly applied to many fields within
machine learning today due to its learning capabilities from the given data (Sarker,
2021). A convolutional neural network (CNN) is one of the most influential networks
for deep learning. Many researchers employed CNN for robust deep feature
extraction. Khan et al. (2019) proposed lightweight deep learning to extract spatial

features of frames and classified them by the softmax function. Carneiro et al. (2019)
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proposed pre-trained VGG-16 to generate spatial features, temporal features, rhythm
features, and depth information of video for violence detection. The result showed
that the method improves the recognition efficiency derived from learning from
training models. Also, Soliman et al. (2019)proposed the pre-trained VGG-16 and
long short-term memory (LSTM) to extract spatial and temporal features of the video,
respectively. In addition, other research applied 3D-CNN for spatiotemporal
extraction, such as Ullah et al. (2019) using 3D- CNN to learn complex sequential
patterns to predict violence in surveillance video streams to achieve good recognition
performance. Li et al. also obtained an effective recognition model when using 3D-
CNN for spatiotemporal feature extraction for multiplayer violence.

This research proposed a method to recognize violent video using deep
feature integration and three-dimension convolution. First, each frame extracted
features with two CNN models, including MobileNetV1 and MobileNetV?2, at the last
convolution layer. Then, we integrated the features vector with concatenate operation
to represent the video feature vector. The video feature was learned with the proposed
three-dimensional convolution. Finally, we use a softmax function to classify violent
or non-violent videos. We perform on three challenge violent recognition in video
datasets, namely hockey fight, movie, and violent flow, to verify the effectiveness of

our method.

4.2 Related work
4.2.1 Recognition of violence in surveillance video

In an early study, recognition of violence in surveillance video focused
on a handcrafted approach for feature extraction, which can distinguish violence from
nonviolence. Then, aggregate the features using encoding strategies and apply
machine learning as a classifier (Liet al., 2019). A histogram of oriented gradients
(HOG) extracts features from an image. The technique is used to count the
occurrences of the gradient in'the localized portions of an image. Dalal and Triggs
(2005) applies a histogram of gradient orientation features for person detection and
uses SVM as a classifier, which achieves good results. Correspondingly, Patil et al.
(2017) used a histogram of gradient orientation feature descriptor to extract features

and an SVM classifier to recognize human activities, providing good recognition
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results with a minimum number of false detections. Sun et al. (2019) proposed a
multi-view maximum entropy discriminant model to extract scale-invariant feature
transform, histogram of oriented gradient, local binary patterns, and color histogram
features from the image and combine various features for violence recognition of
static images. Das et al. (2019) proposed a system to detect violence from video,
applied HOG as a feature descriptor to extract features from the images, and
employed various classifier models and a majority voting technique to decide whether
a video clip contains violence. The result shows the system is robust enough to detect
violence in different surveillance situations.

With the continuous development of violence recognition, many
studies have analyzed motion features to encounter motion in video frames. Souza et
al. (2010) presented a violence detector based on local spatiotemporal features with a
bag of visual words and a support vector machine. The results confirm that motion
patterns are crucial to distinguish violence from regular activities compared to visual
descriptors in the space domain. Hassner et al. (2012) present a violent flow feature
descriptor based on optical flow magnitude changes between adjacent violent video
frames. Gao et al. (2019) improved the violent flow feature descriptor to use the
orientation information of optical flow, namely oriented violent flow, which considers
both magnitude and orient information. The features are encoded into the bag of word
representation and a support vector machine for violence in the video classifier.

Bermejo et al. (2011) introduced a fight dataset and used space-time
interest points and motion scale-invariant feature transform method to extract spatial-
temporal features. Then, the feature vector is sent to the support vector machine
classifier. Similarly, Xu et al. (2014) used the motion scale-invariant feature transform
method to extract the low-level description of a query video. The kernel density
estimation is exploited for feature selection to obtain the highly discriminative video
feature. A sparse coding method with-a max pooling procedure generates a
discriminative high-level video representation from local features. The result shows
that the proposed method outperforms violence detection in crowded and non-

crowded scenes.
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4.2.2 Deep neural networks

Deep learning has recently been widely used to train deep neural
networks as robust feature extractors for violence recognition (Khan et al., 2019; Tian
et al., 2021; P. Zhou et al., 2017). A convolutional neural network (CNN) is a deep
learning architecture that extracts valuable information using convolution operation
(Tyagi et al., 2022). Khan et al. (2019) presented a violence detection scheme for
movie. The frame is selected based on the saliency score and applied by MobileNet to
classify violence and non-violence. Then, all non-violence scenes are combined
sequentially to generate a violence-free movie. This method obtained recognition
performance of 87.00%, 99.5%, and 97.0% on the hockey fight, the movie dataset,
and violence scene detection datasets, respectively. Some research uses deep learning
to learn from various features type (Tian et al., 2021; P. Zhou et al., 2017).

P. Zhou et al. (2017) constructed ConvNets, namely FightNet, to model
long-term temporal structures for recognizing violence. The input consists of an RGB
image, optical flow, and acceleration field to extract the motion information better.
Their approach demonstrates that deep ConvNets could capture more essential
features and detect violence accurately. Carneiro et al. (2019)used VGG-16 for a
multi-stream that includes spatial, temporal, rhythm, and depth information. The
model achieved an accuracy of 89.10% on the hockey fight dataset and 100% on the
movie dataset. The results showed that multi-stream methodology increased the
efficiency of violent video recognition. Celard et al. (2023) proposed the CNN to
recognize and classify violent events. This research evaluated the computational
performance of the CNN architectures for automatic violence recognition, such as
SqueezeNet, Inception, MobileNetV 1, MobileNetV2, and NASNetMobile. The
experiment shows that a high classification accuracy of 92.05% can be achieved using
mobile architectures compared to VGG16, InceptionV3, and ResNet50 architecture.

Moreover, considering spatial and temporal feature extraction using
2D-CNN followed by long short-term memory (LSTM) (Hanson et al., 2019; Naik &
Gopalakrishna, 2021; Soliman et al., 2019; Sudhakaran & Lanz, 2017; Sumon et al.,
2019). Sudhakaran and Lanz (2017) use frame difference as input of a 2D-CNN to
extract hierarchical features from the video frames and are then aggregated using the

convLSTM layer. Then classify violence or non-violence with a fully connected layer.
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The experimental result shows that a deep neural network trained on the frame
difference performs better than a model trained on raw frames. Soliman et al. (2019)
proposed the pre-trained VGG-16 model on ImageNet to extract spatial and LSTM to
extract temporal features before being classified by a fully connected layer.
Experiments on standard violent data sets show that the model outperforms the state-
of-the-art approach. Besides, they created a real-life violence situations (RLVS)
dataset for fine-tuning the model, achieving the best accuracy of 88.2% on the hockey
fight dataset.

Sumon et al. (2019) demonstrated the efficiency of the deep learning
method by using CNN, LSTM and combining CNN with LSTM. The experiment on
violent video datasets finds that the CNN model with transfer learning has performed
better than LSTM and CNN-LSTM models. Naik and Gopalakrishna (2021) proffered
the deep neural network model Mask Region-based Convolutional Neural Network
(Mask RCNN) to detect a single person in the video and extract interest points. Then
the extracted features were fed to LSTM for feature learning across a time series
frame. The results showed that the model had excellent performance. Hanson et al.
(2019) proposed the spatiotemporal encoder to detect video violence. First, each video
frame was extracted as feature maps with the VGG13 network. Then the feature maps
were passed to BiConvLSTM to extract the temporal information by passing forward
in time and reverse. Finally, elementwise maximization is applied to represent the
video and classified as violent or non-violent in the video. The testing accuracy
achieved 96.96% on the hockey fight dataset, 100% on the movie dataset, and 90.6%
on the violent flow dataset.

4.2.3 Spatial and temporal feature extraction

Feature extraction is an important step in deep learning, extracting
essential features from the input data and reducing the dimension and computational
cost (Humeau-Heurtier, 2019). Traditional video recognition is usually based on the
geometric features manually extracted from video frames, which are difficult to apply
to complex scenarios and cannot gain high accuracy recognition and robustness. Deep
learning is outstanding at extracting spatial features of images and extracting features
of frames for video when compared to machine learning (Pu et al., 2022). The feature

extraction in video recognition tasks differs from image recognition, which can use
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spatial feature extraction independently, which needs to be improved to sustain the
learning effectively. Thus, temporal features are mainly considered to analyze
information regarding the duration of adjacent frames.

Various researchers have proposed several spatial and temporal feature
extraction methods for video recognition. Sun et al. (2022) proposed a deep learning
model for user-generated content video quality assessment that extracts both a spatial
and temporal feature. The spatial features extracted from the end-to-end model
employed raw video frame pixels as input. The temporal features extractor uses a pre-
trained action recognition network to represent motion information. Then, the
multilayer perception layer network is used to regress into chunk-level quality scores,
and the temporal average pooling strategy is adopted to obtain the video-level quality
score. The experimental results show that the proposed model outperforms five
popular user-generated content video quality assessment databases.

J. Yang et al. (2022) introduce a recurrent vision transform framework
to achieve the video action recognition task. The recurrent vision transform
framework can capture spatial and temporal features by attention gate and recurrent
execution. The attention gate can build interaction between the current frame input
and the previous hidden state. The result demonstrates that the recurrent vision
transform framework can achieve state-of-the-art performance on various datasets for
the video recognition task. Some researchers combined convolutional neural networks
and long short-term memory models to recognize the video frame sequence. Chen et
al. (2023) used the VGG16 and LSTM network to recognize video-recorded actions
performed in a traditional Chinese exercise. The result shows that the CNN-LSTM
recognition model outperforms manually extracted features in the conventional action
recognition model, and the CNN model is more effective in improving classification
accuracy.

For violent video recognition, the convolutional network has extraction
ability for the deep features from low-level to high-level features. Some research used
deep learning to extract the spatial features from video frames after the preprocessing
step, such as Sharma et al. Sharma and Sungheetha (2021) proposed a hybrid
framework based on a fusion of CNN and SVM to detect abnormal incidents in video

surveillance. This proposed method consists of data preprocessing using the
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background subtraction technique, spatial features extraction using the CNN
architectures, and classification by SVM. The experimental result demonstrates that
the proposed method provides good accuracy, higher efficiency, and less loss than
other combination and single classifiers. Many researchers proposed an approach for
spatial and temporal feature extraction in recognition of violent video.

Vosta and Yow (2022) introduce a model for detecting abnormal events
in a surveillance camera using CNN and LSTM. This research divided the video into
20 frames and extracted essential features of each frame with ResNet50. The extracted
features are fed into the ConvLSTM network, and normal and abnormal events are
classified on the UCF-crime dataset. The results show that the proposed method
achieved 81.71% AUC, higher than the C3D model on the same dataset. Jahlan and
Elrefaei (2022) proposed a novel approach using the fusion technique to detect
violence. First, both Alexnet and SqueezeNet networks are followed by Convolution
Long Short-Term Memory (ConvLSTM) to extract robust features from the video.
Then, the obtained features were fused and fed into the max-pooling layer, fully
connected layer, and softmax classifier.

Recent studies have developed models that extract spatiotemporal
features from 3D convolution neural networks (Hu et al., 2020). Maqgsood et al.
(2021) proposed a framework for recognizing anomaly videos by learning
spatiotemporal features using a deep 3-dimensional convolutional network. The
experiment was trained on the University of Central Florida (UCF) Crime dataset. The
proposed approach consists of 3D feature extraction and spatial augmentation by the
proposed 3D ConvNet. The result shows that the 3D ConvNet outperforms the state-
of-the-art method on anomalous activity recognition, having 82% AUC. Pratama et al.
(2023) proposed the two-stream 3D ResNet-18 network for violence video
classification. The two-stream 3D-CNN has two inputs, including RGB and the
optical flow frame of the video. Each stream is separately trained with different
configurations for extracting temporal information using 3D convolution and 3D
pooling. Then, combine the output of both streams, achieving an accuracy of 90.5%
on the RWF-2000 dataset. The result indicates that the 3D ResNet-18 shows robust

performance in video-based violence classification.
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Keceli and Kaya (2017) proposed an approach for automatically
classifying violent video using a combination of a three-dimensional convolutional
neural network and transfer learning. The proposed approach consists of three main
parts, including person detection, spatial feature extraction, and temporal feature
extraction. Person detection involves detecting and removing frames that do not
contain a person. Then, AlexNet is used to extract features from a fully connected
layer with a dimension of 4096. The extracted features of the individual frame are
concatenated to construct a feature volume and are reshaped as two-dimensional
before feeding to a 3D-CNN model, designed to capture the temporal features from
the video and classify them by softmax layer. The experimental results show that

better results are obtained than LSTM and biLSTM.

4.3 Proposed framework

Input Feature Extraction Features Features 3D convolution Global Fully Output
average  connected
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Figure 29 The proposed framework deep features integration with 3D convolutional
to recognize the violent video.

This section describes the proposed deep features integration with 3D
convolution to recognize the violent video. We divided the proposed framework into
frame-level deep feature extraction and integration and deep feature learning with 3D
convolution. First, the frame-level deep features were extracted with two pre-trained
CNN models from the last convolution layer, which are MobileNetV 1 and
MobileNetV2. Next, the obtained features were integrated with concatenate operation
to represent the video-level feature. Then, the video-level features were learned with

the proposed 3D convolution consisting of batch normalization, 3D convolution, and
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dropout layers. In addition, we employ a global average pooling layer, which is an
effective pooling operation to reduce the total number of deep features, followed by a
fully connected layer. Finally, the softmax function classified each video-level feature
as a violent and nonviolent video. The proposed framework is shown in Figure 31.
4.3.1 Deep features extraction

Deep feature extraction is the main task to find out the robust features.
The 2D-CNN model was widely used to be an effective extractor for image and video
recognition. We consider the deep feature extraction in the frame level for violent
video which each frame was extracted by the two pre-trained 2D-CNN models

including MobileNetV1 and MobileNetV2, explained structure as follows.

4.3.1.2 MobileNetV1 (Howard et al., 2017)

MobileNetV1 is a streamlined architecture that uses depthwise
separable convolutions to build lightweight deep convolutional neural networks. It
provides an efficient model for mobile and embedded vision applications. Standard
convolutions both filtering and combining input to produce a new representation.
However, MobileNetV 1 split convolution into two layers called the depthwise
separable convolutions, including depthwise convolution and pointwise convolutions
separately. The standard convolution kernels are DxxDgxMxN where Dxx Dk is a
dimension of the kernel, M is a number of channels, and N is the number of outputs.
The computational cost of the standard convolution is DxkXDgxMXNxDgxDr where
DexDr is the feature map size, as illustrated in Figure 30 (a).

The depthwise convolution kernels are DxxDgxM where M is
channels of input. The output of a depthwise convolution is a features map of each
input channel, as illustrated in Figure 30(b). In pointwise convolutions, is a combining
layer for creating new features by 1x1 convolution kernel; as illustrated in Figure
30(c). The network layer of MobileNetV1 starts with the convolution layer, followed
by 13 depthwise separable convolution layers. A Batch Normalization (BN) and
Rectified Linear Unit (ReLU) activation function follow all layers in the network.
Subsequently, the Global Average Pooling layer is used for reducing extracted feature

map size. Finally, the reduced feature map is fed into a fully connected layer and
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classification by a softmax activation function. The structure of the MobileNetV1 is

illustrated in Figure 31 (a).
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Figure 30 show (a) the standard convolution kernel (b) the depthwise convolution
kernel and (c) pointwise convolution kernel. (Howard et al., 2017)

4.3.1.2 MobileNetV2 (Sandler et al., 2018)

MobileNetV2 is also a lightweight CNN architecture for
mobile devices. MobileNetV2 proposed the concept of inverted residuals and linear
bottlenecks based on MobileNetV 1. The inverted residual concept has three separate
convolutions. First, a pointwise (1x1) convolution is used to expand the dimensional
input feature map to a higher dimensional with ReLU6 is applied. Next, a depth-wise
convolution is performed using 3%3 kernels, followed by ReLU®6 activation. Finally,
the spatially filtered feature map is reduced dimensional using another pointwise
convolution, and the linear is used instead of ReLU to avoid information loss. Figure
31 (b) show the structure of MobileNetV2. The first layer of MobileNetV?2 is the
convolution layer, followed by 19 residual bottleneck layers that consist of expanding
convolution, depthwise convolution, and projection convolution. The Batch

Normalization layer and ReLU®6 activation function are applied to all layers except the
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projection convolution layer. The last two layers are the global average pooling to

reduce feature map size and softmax classifier.

L Eottlanack —P Bratlensck _)| Convolution }—b| Avg Pooling }—)| Convolation }—b
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Figure 31 The structural of CNN (a) MobileNetV1 and (b) MobileNetV?2
(Howard et al., 2017, Sandler et al., 2018)

In addition, 3D-CNN is used as the extractor for video-level features to
observe the difference in performance. 3D-CNN has the ability to model temporal
information better than 2D-CNN due to 3D convolution and pooling operations. 3D
convolution and pooling operations are performed spatial and temporal, whereas 2D-
CNN only learn spatially.

3D convolution is performed over multiple frames cascaded in the temporal
dimension. The 3D convolution operation as shown in (1) and the obtained feature

map is shown in equation (1).

n n n n
COTlV(I, K)x,y,z — 21:1 jgl Zk‘;v1 151 Ki,j,k,l: Ix+i—1,y+j—1,z+k—1,k (1)

where the kemel K(f, fu, fu,nc) convolve with the image I(ng,ny, ny,ne) of
different size but of similar number of channels n, and generate a feature map

Feat_map(of, oy, 0w, Z). The fz, fr, fu represent the frame, height, and width of the
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kernel. The o, oy, oy, Z represent the frame, height, width, and number of filters of
output feature map. And ng, ny, ny, denote the frame, height, and width of the given

image.

Featmap(op,omow.2) = (lnF-'-ip_f 1 1J ! lnH+szp_f + 1J ’ lnw+szp_f + 1J 'Z) @

Convolutional three-dimension (C3D) architecture is the preferred architecture for
video recognition. The details of the architecture C3D are as follows.
4.3.1.3 C3D (Tran et al., 2014)

C3D is a deep three-dimension convolutional neural network
for spatiotemporal feature learning of video data. The C3D can learn both spatial
features and temporal features from continuous frames by using 3D convolution and
3D pooling operation. The architecture of C3D consists of 8 convolutions, 5 max-
pooling, and 2 fully connected layers, followed by a softmax output layer. All 3D
convolution kernels are size 3x3x3 with stride 1 in both spatial and temporal
dimensions. The convolution has a number of filters such as 64, 128, 256, 256, 512,
512,512 and 512 respectively. All pooling kernels are 2x2x2, except for pooll is
1x2x2. The fully connected layer has 4096 output units. The architecture of C3D as
shown in Figure 4. The number of parameters and FLOPS of C3D pre-trained model
which were trained on Sports-1M dataset (Maqgsood et al., 2021) with input size
16x112x%112 as shown in Table 7.

Filter 64 128 256 256 512 512 512 512 —

4096 4096

@ 3D Convolution @ Max pooling ﬁFully commected @ Softmax

Figure 32 The architecture of C3D (Tran et al., 2014).

Table 7 The number of the parameters in all layers of C3D architecture.

Layer Input size Output Size Parameter (M)

Convl 16x112x112x3 16x56x56%64 0.005

Conv2 16x56x56x64 8x28x28x128 0.22
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Layer Input size Output Size Parameter (M)
Conv3a,3b 8x28x28%128 4x14x14x256 2.65
Conv4a,4b 4x14x14x256 2x14x14x512 10.62
Conv5a,5b 2x14x14x512 2XTxTx512 14.16

Fc6 4096 33.56
Fc7 4096 16.78
Total 78
FLOPS (G) 521

4.3.2 Three - dimensional convolution neural network (3D-CNN)

Generally, 2D-CNN is suitable for image processing and

practical in extracting only spatial features. When applied to video, it works with

RNN-based networks to understand sequential data, while 3D-CNN is designed for

video analysis, providing both spatial and temporal information in video. Therefore,

we proposed a 3D-CNN architecture consisting of the batch normalization layer, 3D

convolution layer, dropout layer, and global average pooling layer. The kernel sizes in

the 3D convolution layers are 1x2x2, a stride of 1, and the filters are 1024. Next, we

use the global average pooling layer to reduce the feature size to 512, followed by a

fully connected layer. Finally, the output of the last layer is then passed to a dense

layer of 2 neurons with a softmax activation function for violent or non-violent

classification. The proposed 3D convolutional neural network structure, parameter,

and FLOPS are shown in Table 8.

Table 8 Network architecture of the proposed 3D convolutional neural network.

Layer Kernel Input size Output Size Parameter

g (FxWxHxD) (FxWxHxD) ™M)

Batch Normalization = 16x7%7x2048 16x7x7x2048 0.008

3D Conv 1x2x2 16x7x7x2048 16x6x6x1024 8.389

Batch Normalization - 16x6x6x1024 16x6x6x1024 0.004
Dropout - 16x6x6x1024 16x6x6x1024 -
Global Average Pooling - 16x6x6x1024 512 -

Fully connected - 512 2048 2.099

Softmax - 2048 2 0.004
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Layer Kernel Input size Output Size Parameter
e (FxWxHxD) (FxWxHxD) ™M)
Total 10.504
FLOPS (G) 521

4.4 Violence Datasets

We evaluate our proposed approach on three benchmark violent video
datasets, including hockey fight, movie, and violent flow datasets. The datasets were
categorized into two classes: violent and non-violent classes. The hockey fight and
violent flow are collected from sporting events such as hockey and soccer. At the
same time, the movie dataset is collected from movie that have violent scenes. We
describe the details of each data set as shown below.

4.4.1 Hockey fight dataset (Souza et al., 2010)

The hockey fight dataset contains 500 video clips for the fight and 500
without the fight. It was collected from hockey games of the National Hockey league
in which each video consists of 41 frames and a resolution of 720x576 pixels. The
dataset is categorized into training and testing from the perspective of two classes,
including violence and non-violence. The sample frame from the hockey fight dataset

is shown in Figure 33.
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Figure 33 Samples of hockey fight dataset, (a) violence video and
(b) non-violence video.

4.4.2 Movie dataset (Souza et al., 2010)
The movie dataset consists of 200 videos collected from action movie.
The violence class 100 videos were collected from action movie scenes, while the
non-violence was collected from other publicly available action recognition datasets
that do not contain violent action. The duration of each video clip is around 2s. The

sample frame from the movie dataset is shown in Figure 34.
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Figure 34 Samples of movie dataset, (a) violence video and (b) non-violence video.
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4.4.3 Violent flow dataset (Bermejo et al., 2011)
The violent flow dataset consists of 246 videos that contain crowds of
scenes of fight between persons. The videos were collected from violent situations
that occur in football matches. The sample frame from the violent flow dataset is

shown in Figure 35.

Figure 35 A samples of violent flow dataset, (a)violence and (b) nonviolence video.

4.5 Experimental results and discussion

This section explains the proposed deep features concatenate and 3D
convolution for violent recognition. This research works on violence datasets
consisting of hockey fight, movie and violent flow. First, we exploit the effectiveness
of feature extraction with a pre-trained CNN model, including MobileNetV 1,
MobileNetV2, and C3D. Second, we assume'that combining the deep features and
learning through 3D-CNN will enable violent video recognition effectively.
Accordingly, we combine the frame-level deep feature to produce robust deep features
at the video level. Third, our proposed 3D convolution for violent recognition learned
the deep features obtained. Finally, we compare our method with other violence

recognition methods.
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4.5.1 Experimental setting

The proposed method is implemented by the Python programming
language based on Keras API with TensorFlow as backend. All experiments were
performed on Intel(R) Xeon(R) 2.00 GHz CPU, Tesla T4 GPU, and RAM 26 GB. We
trained our models using the Stochastic Gradient Descent (SGD) optimizer with
different learning rates (0.01, 0.001, and 0.0001). The momentum of the SGD was set
to 0.9. The batch size is set to 4 and 8, and the model training 500 epochs. For
violence recognition on each video, we decided to use 16 frames as input to reduce
computational time. The datasets are randomly divided into 75% training and 25%

testing. The following metrics are used for defining the performance of classification

SUCCESS:

TP
= TR (3)

TN
3§ = TN+FP’ 4)

TP+TN
Acc = — % (5)
TP+TN+FP+FN

above equations TP is true positive, FP is false positive, FN is false negative, R is true
positive rate (sensitivity), S is true negative rate (specificity) and Acc is accuracy.
Accuracy is the ratio of the number of correct predictions to the total number of test
samples (between 0—1). It indicates how well a model performs, as in equation 5.
Moreover, we used the receiver operating characteristic (ROC) and
area under the curve (AUC) techniques to evaluate the classification performance.
The ROC represents the relation between true positive rate (sensitivity) and false
positive rate (1- specificity). True positive rate defines a classifier test performance as
accurately categorizing positive instances among all available positive samples
throughout the test step, as in equation 3. The false positive rate determines the
proportion of false-positive findings compared to the total negative samples available
through the test step, as in equation 4. The AUC is used for binary classification and
indicates how well a model discriminates between positive and negative target
classes. This value is the area under the ROC curve. The best optimal classifier has a

value of AUC close to 1.
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4.5.2 The result of violent recognition with MobileNetV1, MobileNetV2,

and C3D
To assess the efficiency of the pre-trained CNN model in recognizing
violence within video content, we experimented with MobileNetV1 and MobileNetV2
on three violent video datasets. First, we use 16 non-overlapping frames and select
frames by skipping one frame at a time to reduce data redundancy. The selected
frames are sized 16x224x224x3, where 16 represents the number of frames, 224
represents width and height, and 3 describe channels. We retrained both MobileNetV1
and MobileNetV2 models on the three datasets separately and replaced the final layer
with softmax for classifying violent or nonviolent video. We compared the results in
different batch sizes of 4 and 8 and learning rates of 0.01, 0.001, 0.0001, and 0.00001.
First, MobileNetV 1 are evaluated on three datasets. On the hockey
fight, the model can achieve performance with 95.99% accuracy when using a batch
size of 8 and a learning rate of 0.01,0.001, and 0.0001. On the movie, the model can
achieve performance with 98.00% when using a batch size of 4 and a learning rate of
0.001. On violent flow, the model can achieve performance with 91.94% accuracy for

all batch sizes and a learning rate setting, as shown in Table 9.

Table 9 Evaluation of the violent recognition results using MobileNetV']

Dataset Batch size Learning Accuracy Training Testing
rate Time (hr.) Time (ms)

Hockey fight 4 0.01 94.80 0.58 2
0.001 95.99 0.59
0.0001 95.20 0.58
0.00001 95.20 0.58

8 0.01 95.99 0.53 2
0.001 95.99 0.53
0:0001 95.99 0.53
0.00001 95.60 0.53

Movie 4 0.01 95.99 0.11 1
0.001 98.00 0.11
0.0001 93.99 0.11
0.00001 93.99 0.11
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Dataset Batch size Learning Accuracy Training Testing
rate Time (hr.) Time (ms)

8 0.01 92.00 0.11 1
0.001 93.99 0.11
0.0001 95.99 0.11
0.00001 92.00 0.11

Violent flow 4 0.01 91.94 0.14 1
0.001 91.94 0.14
0.0001 91.94 0.14
0.00001 91.94 0.14

8 0.01 91.94 0.13 1
0.001 91.94 0.13
0.0001 91.94 0.13
0.00001 91.94 0.13

shows the experiment results with MobileNetV2. On the hockey fight, the model

achieved an accuracy of 95.99% when using a batch size of 4 and a learning rate of

0.00001. On the movie, the model can achieve performance with 98.00% for all batch

sizes and a learning rate setting. On violent flow, the model can achieve performance

with 91.94% accuracy when using a batch size of 8 and a learning rate of 0.01.

Table 10 Evaluation of the violent recognition results using MobileNetV?2

Dataset Batch size Learning Accuracy Training Testing
rate Time (hr.) Time (ms)

Hockey fight 4 0.01 95.60 0.68 3
0.001 95.20 0.69
0.0001 95.20 0.68
0.00001 95.99 0:53

8 0.01 95.20 0.60 3
0.001 95.20 0.61
0.0001 95.20 0.61
0.00001 95.20 0.59

Movie 4 0.01 98.00 0.17 2
0.001 98.00 0.17
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Dataset Batch size Learning Accuracy Training Testing
rate Time (hr.) Time (ms)

0.0001 98.00 0.17
0.00001 98.00 0.16

8 0.01 98.00 0.16 2
0.001 98.00 0.15
0.0001 98.00 0.16
0.00001 98.00 0.17

Violent flow 4 0.01 87.10 0.17 2
0.001 88.71 0.16
0.0001 87.10 0.16
0.00001 88.71 0.16

8 0.01 91.94 0.15 2
0.001 82.26 0.15
0.0001 87.10 0.15
0.00001 88.71 0.15

In addition, we merged all datasets to create a larger dataset. Also, we split

the data into 75% training and 25% testing and used a random split to avoid bias. We

also trained MobileNetV 1 and MobileNetV2 to classify violent videos separately. As

in the experiment above, we configure the batch size and learning rate parameters.

The models are evaluated with three testing datasets, including hockey fight, movie,

and violent - flow. Table 11 shows that MobileNetV1 achieved the highest accuracy of

96.40% when using a batch size-of 4 and a learning rate of 0.0001. For the movie

dataset, the model achieved the highest accuracy of 98.00% when using a batch size

of 8 and a learning rate of 0.00001. Finally, the experiment result in - Table 12 shows

that MobileNetV2 achieved the highest accuracy of 95.59%, 92%, and 83.87% on

hockey fight, movie, and violent flow datasets, respectively.

Table 11 Testing accuracy of feature-extraction with the MobileNetV'1, trained with

merging all datasets and testing with separate datasets.

Dataset

Batch size

Learning
rate

Accuracy
(%)

Training
Time (hr.)

Testing
Time (ms)
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Dataset Batch size Learning Accuracy Training Testing
rate (%) Time (hr.) Time (ms)

Hockey fight 4 0.01 94.80 0.81 3
0.001 94.40 0.81
0.0001 96.40 0.79
0.00001 94.40 0.78

8 0.01 94.40 0.76 2
0.001 95.20 0.76
0.0001 95.20 0.75
0.00001 94.40 0.75

Movie 4 0.01 93.99 0.81 2
0.001 89.99 0.81
0.0001 87.99 0.79
0.00001 92.00 0.78

8 0.01 95.99 0.76 1
0.001 89.99 0.76
0.0001 93.99 0.75
0.00001 98.00 0.75

Violent flow 4 0.01 80.65 0.81 1
0.001 82.26 0.81
0.0001 79.03 0.79
0.00001 82.26 0.78

8 0.01 79.03 0.76 1
0.001 79.03 0.76
0.0001 79.03 0.75
0.00001 82.26 0.75

Table 12 Testing accuracy of feature-extraction with the MobileNetV2, trained with

merging all datasets and testing with separate datasets

Dataset Batch size Learning Accuracy Training Testing
rate Time (hr.) Time (ms)
Hockey fight 4 0.01 93.99 0.93 3
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Dataset Batch size Learning Accuracy Training Testing
rate Time (hr.) Time (ms)

0.001 95.59 0.93
0.0001 94.40 0.92
0.00001 95.59 0.91

8 0.01 95.20 0.84 3
0.001 95.20 0.85
0.0001 94.80 0.84
0.00001 95.20 0.86

Movie 4 0.01 89.99 0.93 2
0.001 92.00 0.93
0.0001 89.99 0.92
0.00001 89.99 0.91

8 0.01 87.99 0.84 2
0.001 87.99 0.85
0.0001 92.00 0.84
0.00001 89.99 0.86

Violent flow 4 0.01 82.26 0.93 2
0.001 82.26 0.93
0.0001 77.42 0.92
0.00001 80.65 0.91

8 0.01 82.26 0.84 2
0.001 82.26 0.85
0.0001 83.87 0.84
0.00001 79.03 0.86

In addition, we also experimented with pre-trained 3D-CNN models to discover the

performance of spatial and temporal features. We selected the pre-trained C3D

architecture, which was trained with a large video dataset such as the sportM1 dataset.

The input of C3D was fixed to be a sequence of 16 frames and a size of 112x112x3,

where 112x112 represents width and height, and 3 represents dimension. Then, we

define the classification layer according to the dataset into two classes violence and
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nonviolence. Next, the C3D model was trained on three violent video datasets,
including the hockey fight, the movie, and the violent flow dataset. Finally, the model
was trained with different batch sizes of 4 and 8 and learning rates of 0.0001 and

0.00001, as shown in Table 13.

Table 13 The accuracy results with C3D on three datasets.

Dataset Batch | Learning rate Training Testing Testing Model
size time time accuracy size

(hr.) (ms.) (%)

Hockey fight 4 0.0001 1.87 13 76.40 297.7MB
0.00001 1.75 72.80
8 0.0001 1.48 70.80
0.00001 1.95 72.80
Movie 4 0.0001 0.24 13 86.00
0.00001 0.37 82.00
8 0.0001 0.24 84.00
0.00001 0.38 84.00
Violent - flow 4 0.0001 0.52 13 70.97
0.00001 0.50 72.58
8 0.0001 0.48 70.97
0.00001 0.47 75.81

Table 13 shows the testing accuracy of the C3D model for video-level feature
extraction. The C3D achieved 76.40%, 86.00%, and 75.81% testing accuracy on the
hockey fight, movie, and violent flow datasets, respectively. Unfortunately, C3D
experimental results are less accurate than 2D-CNN feature extraction. Therefore,
comparing the accuracy between violent video recognition with MobileNetV 1,
MobileNetV2 and C3D model, it was found that MobileNetV 1 and MobileNetV?2

model was still more accurate than the C3D model.

4.5.3 Deep features integrate with 3D convolutional neural network (3D-
CNN).
Leverage the robust spatial feature extraction capability of 2D-CNN

and 3D-CNN to learn temporal information between adjacent frames. In this
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experiment, we employed MobileNetV1 and MobileNetV2 to extract spatial features
from individual frames separately. The obtained features were extracted from the last
convolution layer before the pooling layer with a size of 7x7x1024. We integrated the
features from MobilNetV1 and MobileNetV2 with concatenate for representing
individual frames. The integrated feature is larger than the original size of 7x7x2048.
The combined features were passed through the proposed 3D convolution for spatial
and temporal feature learning. To find the most suitable 3D convolution for violence
recognition, we experimented with the proposed five different 3D convolutions, as

shown in Table 14.

Table 14 The five-difference 3D convolution structures.

Model Modell Model2 Model3 Model4 ModelS
Input Deep Feature (16x7x7x2048)
Batch Normalization (16x7x7x2048)
Conv3D Conv3D Conv3D Conv3D Conv3D
(1024) (512) (1024) (1024) (1024)
K (1x2x2) K (1x2x2) K (1x2x2) K (1x2x2) K (1x2x2)
Batch Conv3D (512) | Conv3D (512) | Conv3D (512) | Conv3D (512)
normalization K (1x2x2) K (1x2%2) K (1x2x2) K (1x2x2)
Dropout (0.2) Bat_ch . Bat.ch . Bat.ch . Bat.ch .
normalization | normalization | normalization | normalization
GAP (1024) Dropout (0.2) | Dropout (0.2) GAP (512) Dropout (0.2)
Dense (2048) GAP (512) GAP (512) Dense (2048) GAP (512)
Dense (2) Dense (2048) Dense (1024) Dense (2) Dense (2048)
Dense (2) Dense (2) Dense (2)
Params 10,499,074 6,303,746 11,019,778 11,547,138 11,547,138
FLOPS 521 431 575 575 575
(&)

The hyperparameters are set with different values to achieve optimal
performance, including batch size (4 and 8) and learning rate (0.01, 0.001, and
0.0001). The models were trained with 500 epochs. We reported the evaluation

metrics regarding testing accuracy, training time, testing time, and model size for
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different 3D convolution on the hockey fight, movie, and violent flow datasets,

respectively.

Table 15 Performance of the 3D convolution with integrated deep features

on hockey fight dataset.
Model Learning Batch size of 4 Batch size of 8 Model
rate size
Training Testing Acc. Training time | Testing Acc. (MB)
time (hr.) time (ms.) (%) (hr.) time
(ms.) (%)
Model 1 0.01 2.06 10 97.20 2.20 10 96.00 | 80.17
0.001 2.05 10 96.00 2.11 10 95.20
0.0001 2.06 10 95.60 2.03 10 96.40
Model 2 0.01 1.27 6 95.60 1.26 6 96.40 | 48.17
0.001 1.27 6 96.00 1.26 6 95.20
0.0001 1.29 6 96.00 1.26 6 96.00
Model 3 0.01 2.06 11 95.60 2.27 11 95.60 | 84.15
0.001 2.07 11 96.40 2.29 11 95.60
0.0001 2.09 11 96.00 2.29 11 95.60
Model 4 0.01 2.03 11 96.00 2.26 11 95.60 | 88.17
0.001 2.06 11 95.60 2.29 11 95.60
0.0001 2.06 11 96.40 2.12 10 95.60
Model 5 0.01 2.38 11 96.00 2.29 10 96.00 | 88.17
0.001 2.39 11 95.60 2.31 10 96.00
0.0001 2.38 11 95.60 2.36 10 95.60

Table 15 presents the recognition performance of five different 3D
convolution structures (modell — model5) on the hockey fight dataset. The result
shows that modell achieved the highest accuracy with 97.20% when using a batch
size of 4 and a learning rate set of 0.01. The model takes training time about 2 hours,

and the testing time is about 10 milliseconds.

Table 16 Performance of the 3D convolution with integrated deep features

on movie dataset.

Model Learning Batch size of 4 Batch size of 8 Model size




72

rate Training Testing Acc. | Training | Testing Acc. (MB)
time time time time
(hr) (ms.) (%) (hr) (ms.) (%)
Model 1 | 0.01 0.47 9 97.37 0.47 11 97.37 80.17
0.001 0.48 9 97.37 0.47 11 100.00
0.0001 0.48 9 97.37 0.47 11 97.37
Model 2 | 0.01 0.26 6 96.00 0.26 6 96.00 48.17
0.001 0.26 5 96.00 0.25 6 94.00
0.0001 0.27 6 96.00 0.27 6 96.00
Model 3 | 0.01 0.52 11 96.00 0.52 11 96.00 84.15
0.001 0.52 11 96.00 0.52 11 96.00
0.0001 0.53 11 94.00 0.53 11 96.00
Model 4 | 0.01 0.42 11 96.00 0.42 11 96.00 88.17
0.001 0.42 11 96.00 0.42 11 96.00
0.0001 0.43 11 94.00 0.47 11 94.00
Model 5 | 0.01 0.45 9 96.00 0.44 11 96.00 88.17
0.001 0.45 9 96.00 0.45 11 94.00
0.0001 0.47 9 92.00 0.48 11 96.00

Table 16 presents the recognition performance on the movie dataset.

The result shows that the 3D convolution with the integrated deep feature can achieve

the highest accuracy of 100% on model 1 using a batch size of 4 and a learning rate

set of 0.01. The model takes about 0.47 hours to train, and the test time for a sample is

about 11 milliseconds.

Table 17 Performance of the 3D convolution with integrated deep features on violent

flow dataset.
Model | Learning Batch size 4 Batch size 8 Model Size
rate (MB)
Training Testing Acc. Training Testing Acc.
time (hr.) time (ms.) (%) time time (ms.) (%)
(hr.)
Model 1 | 0.01 0.47 9 95.65 0.46 11 93.48 80.17
0.001 0.46 9 95.65 0.46 11 95.65
0.0001 0.47 9 93.48 0.46 11 96.77
Model 2 | 0.01 0.32 6 87.10 0.30 5 91.94 48.17
0.001 0.32 6 93.55 0.31 6 93.55
0.0001 0.34 6 90.32 0.32 6 91.94
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Model Learning Batch size 4 Batch size 8 Model Size
rate (MB)
Training Testing Acc. Training Testing Acc.
time (hr.) time (ms.) (%) time time (ms.) (%)
(hr.)
Model 3 | 0.01 0.54 11 91.94 0.52 11 93.55 84.15
0.001 0.53 11 91.94 0.53 11 91.94
0.0001 0.55 11 91.94 0.53 11 93.55
Model 4 | 0.01 0.54 11 93.55 0.53 11 91.94 88.17
0.001 0.55 11 93.55 0.52 11 93.55
0.0001 0.53 11 93.55 0.53 11 93.55
Model 5 | 0.01 0.56 9 91.94 0.55 11 93.55 88.17
0.001 0.56 9 90.32 0.55 11 93.55
0.0001 0.56 9 93.55 0.58 11 93.55

Table 17 presents the performance of the 3D convolution with an
integrated deep feature model on the violent flow dataset. The result shows that
Modell achieved the highest accuracy of 96.77% when using a batch size of 8 and
learning rate 0.0001. The model takes about 0.46 hours to train, and the test time for a
sample is about 11 milliseconds.

Moreover, we extract deep features from the 2D-CNN model, which is
trained by merging all datasets. The obtained deep features were integrated and
learned spatial and temporal features by 3D convolution also. The difference in batch
size and learning rate are compared. Then, the models were evaluated recognition
performance with testing split on hockey fight, movie, and violent flow. Table 18
presents the performance of 3D convolution with integrated deep features (merged all
dataset) on the hockey fight dataset. The result shows that modell achieved the
highest accuracy of 97.60% when using a batch size of 8 and a learning rate of 0.001.
The model takes about 2.24 hours to train, and the test time for a sample is about 11

milliseconds.

Table 18 Performance of the 3D convolution with integrated deep features(merged all
datasets) on the hockey fight dataset.

Model Learning Batch size 4 Batch size 8 Model
rate size
Training Testing Acc. Training Testing Acc. (MB)

time (hr.) time (ms.) (%) time (hr.) time (ms.) (%)
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Model Learning Batch size 4 Batch size 8 Model
rate size

Training Testing Acc. Training Testing Acc. (MB)
time (hr.) time (ms.) (%) time (hr.) time (ms.) (%)

Model 1 | 0.01 2.35 11 95.60 2.06 11 96.80 | 80.17
0.001 2.35 11 96.40 2.24 11 97.60
0.0001 2.39 11 96.00 2.32 11 96.80

Model 2 | 0.01 1.27 11 96.00 1.28 8 96.40 | 48.17
0.001 1.27 11 95.60 1.25 8 96.40
0.0001 1.31 11 96.40 1.28 8 96.40

Model 3 | 0.01 2.05 11 96.00 2.37 11 9440 | 84.15
0.001 2.07 11 89.60 2.36 11 84.40
0.0001 2.11 11 88.80 2.37 11 87.20

Model 4 | 0.01 2.03 11 96.40 2.07 11 9520 | 88.17
0.001 2.11 11 96.40 2.12 11 96.40
0.0001 2.10 10 96.00 221 11 96.00

Model 5 | 0.01 2.38 11 95.60 2.29 11 95.60 | 88.17
0.001 2.39 11 95.60 231 11 96.00
0.0001 2.38 11 96.00 2.33 11 96.40

Table 19 presents the performance of 3D convolution with deep features integrated on

the movie dataset. The modell achieved accuracy of 100% with batch size 4 and a

learning rate of 0.0001. The model takes about 2.24 hours to train, and the test time

for a sample is about 11 milliseconds. Whereas the recognition performance of the

proposed 3D convolution model with features extracted from merging all dataset on

the violent flow dataset shows that the highest accuracy obtained was 93.55%. The

model was trained with a batch size of 4 and learning rate 0.01, as shown in Table 20.

Table 19 Performance of the 3D convolution with integrated deep features(merged all
datasets) on movie dataset.

Model Learning Batch size 4 Batch size 8 Model
rate size
Training Testing Acc. Training Testing Acc. (MB)
time (hr.) | time (ms.) (%) time (hr.) time (ms.) (%)
Model 1 | 0.01 0.44 11 98.00 0.47 11 98.00 80.17
0.001 0.47 11 96.00 0.47 11 96.00
0.0001 0.47 11 100.00 0.47 11 96.00
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Model Learning Batch size 4 Batch size 8 Model
rate size

Training Testing Acc. Training Testing Acc. (MB)
time (hr.) time (ms.) (%) time (hr.) time (ms.) (%)

Model 2 | 0.01 0.26 6 98.00 0.26 6 96.00 48.17
0.001 0.26 6 98.00 0.26 6 96.00
0.0001 0.27 6 96.00 0.27 5 96.00

Model 3 | 0.01 0.42 11 98.00 0.42 11 96.00 84.15
0.001 0.43 11 98.00 0.42 11 98.00
0.0001 0.44 11 96.00 0.45 11 96.00

Model 4 | 0.01 0.42 11 98.00 0.42 11 98.00 88.17
0.001 0.42 11 98.00 0.42 11 96.00
0.0001 0.44 11 96.00 0.46 11 96.00

Model 5 | 0.01 0.43 11 98.00 0.43 11 96.00 88.17
0.001 0.43 11 98.00 0.43 11 96.00
0.0001 0.44 11 98.00 0.47 11 98.00

Table 20 Performance of the 3D convolution with integrated deep features (merged
all datasets) on violent flow dataset.

Model | Learning Batch size 4 Batch size 8 Model size

rate (MB)
Training Testing Acc. | Training Testing Acc.
time (hr.) time (ms.) (%) | time (hr.) | time (ms.) (%)

Model 1 | 0.01 0.51 11 93.55 0.72 11 88.71 80.17
0.001 0.51 11 88.71 0.72 11 90.32
0.0001 0.51 11 85.48 0.72 11 87.10

Model 2 | 0.01 0.32 5 87.10 0.31 6 88.71 48.17
0.001 0.33 6 88.71 0.31 5 88.71
0.0001 0.34 5 87.10 0.32 6 88.71

Model 3 | 0.01 0.52 11 90.32 0.52 11 90.32 84.15
0.001 0.52 11 85.48 0.52 11 87.10
0.0001 0.52 11 87.10 0.53 11 87.10

Model 4 | 0.01 0.52 10 93.55 0.52 11 90.32 88.17
0.001 0.52 11 87.10 0.52 11 90.32
0.0001 0.52 11 87.10 0.53 11 90.32

Model 5 | 0.01 0.53 11 91.94 0.53 11 88.71 88.17
0.001 0.53 11 88.71 0.53 11 88.71
0.0001 0.53 11 87.10 0.55 11 88.71
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4.5.4 Performance metrics

The proposed method was evaluated using well-known classification
metrics, including receiver operating characteristics(ROC), area under curve (AUC),
precision-recall curve, area under (precision-recall) curve(AUC-PR), training and
validation loss, and confusion matrix. The receiver operating characteristics (ROC)
curve and area under the curve (AUC) are performed for accuracy of five different
3D-CNN models are illustrated in Figure 36. The AUC value of model 1 is better than
other models, 0.99, 1.00, and 0.98 on hockey fight, movie, and violent flow

respectively.
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Figure 36 Receiver operating characteristic (ROC) curve and area under the curve
(AUC) for each 3D-CNN model (a) on the hockey fight dataset, (b) on the

movie dataset, and (c) on violence flow dataset.

Also, we used the precision-recall curve to evaluate the performance of

violent video recognition. Figure 37 demonstrates that the model 1 is a better

classifier than other models, with the area under the precision-recall curve (AUC-PR)

at 0.9956 on the hockey fight dataset. Almost every model performs well for the

movie dataset, with an AUC-PR equal to 1, except model 2, with the lowest AUC-PR

equal to 0.9963. Finally, for the violent flow dataset, the graph shows that model 1 has
the highest AUC-PR of 0.9864 compared to the other models.
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Figure 37 Precision recall curve and area under the precision recall curve (AUC-PR)
for each 3D-CNN model (a) on hockey fight dataset, (b) on movie dataset,
and (c) on violent flow dataset.
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Figure 38 Training and validation loss of our proposed model on the (a) hockey fight
dataset, (b) movie dataset, and (c) violent flow dataset.

The confusion metrics for the test dataset, in Figure 39, represents the correct and
incorrect classification of each class on hockey fight, movie, and violent flow
datasets. From the confusion metric, the proposed model on the movie dataset
performed well in classified violent videos. Besides, the confusion metric on the
hockey fight and the violent flow dataset obtained high true positives and true
negatives. We have presented some examples of videos that wrongly predicted (false
positives and false negatives) the hockey fight and violent flow dataset in Figure 40

and Figure 41 respectively.
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Figure 39 The confusion matric of test datasets (a) on hockey fight dataset, (b) movie

dataset, and (c) violent flow dataset.
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Figure 40 Example of missing video prediction on hockey fight dataset, (a) false

negative prediction and (b) false positive prediction.
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(b)

Figure 41 Example of missing video prediction on violent flow dataset,

(a) false negative prediction and (b) false positive prediction.

4.6 Discussion
4.6.1 Violent recognition with MobilebileNetV 1, MobileNetV2, and C3D

We utilized CNN to evaluate the effectiveness of recognizing violent
videos. The result shows that MobileNetV 1 and MobileNetV2 can accurately
recognize violent videos with high accuracy values on three datasets. The results were
obtained by training the model with different batch sizes and learning rates to find an
optimal model. For MobileNetV1, Setting the batch size value cannot be confirmed to
affect the classification accuracy and testing time.

However, the training time may be reduced using a larger batch size.
The learning rate of the model affects learning on hockey fight and movie datasets. In
contrast, the different learning rates do not affect the violent recognition performance
on the violent flow dataset. For the testing time, MobileNetV 1 takes less time than
MobileNetNetV2 with all datasets, which are 1, 2, and 2 milliseconds on hockey
fight, movie, and violent flow, respectively. Therefore, MobileNetV 1 is faster than
MobileNetV2 for violent video recognition with the same accuracy.

Then, we experiment with training the model by merging all datasets to
compare the training model with a single dataset. The results show that the
performance of MobileNetV1 on hockey fight is better for merging all datasets than

the training model without merging. For the movie dataset, the recognition results of
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merging all datasets were not different from using training separate datasets. For
violent flow, the recognition performance of the merging dataset was lower than that
of the model without the merging dataset. On the other hand, the recognition
performance of MobileNetV2 using training by merging all datasets decreased in all
datasets. We discussed the differences in the number of videos of each dataset with
those different characteristics. When the datasets were merged for model training and
then tested with separate datasets, it caused the recognition performance. The hockey
fight dataset comprised 1,000 videos, whereas movie and violent flow had 200 and
246, respectively.

Additionally, we search for a pre-trained model that can learn spatial and
temporal features by importing video data from multiple frames simultaneously. We
used the C3D model for the training model on three datasets. Unfortunately, C3D
experimental results are less accurate than 2D-CNN. Therefore, comparing the
accuracy of violent video recognition with MobileNetV1, MobileNetV2, and the C3D
model, it was found that the MobileNetV1 and MobileNetV2 models were still more
accurate than the C3D model. This may be because the C3D model requires more
frame or spatial features to learn, which further increases computational time and
model size.

4.6.2 Deep feature integration with 3D-CNN

We used the capabilities of MobileNetV1 and MobileNetV2 for
significant spatial feature extraction from the video frame at the last convolution
layer. The spatial features of individual frames extracted from different CNNs are
combined to create a more discriminative feature representation. We proposed 3D
convolution to learn spatial and temporal from the concatenated features that
produced an excellent performance.

The experimental results clearly show that the performance recognition
is better in the feature integration and 3D convolution method than individual
MobileNetV1 and MobileNetV2 for all datasets. We conclude that the proposed 3D
convolution with the concatenation of features from various 2D-CNNs benefits
overcoming the limitation of a single 2D-CNN and producing outstanding

performance.
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When exploring the impact of object size on the proposed model, the
training dataset encompasses diverse object sizes depicted in videos captured from
varying perspectives, including high angles, side angles, and close-up angles is shown
in Figure 42. The findings of the experimental results reveal that the model exhibits
the ability to recognize violent videos captured from high angles, except for videos
where the camera angle is so far away that it is impossible to distinguish it visually.
Therefore, the size of the objects in the video does not affect the recognition

performance of violent videos.
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Figure 42 Example of violent video with different camera angles: (a) very long shot,
(b) medium-close-up shot, and (c) close-up shot.
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When considering the overall experimental results, it is indicated that the proposed
approach achieved high accuracy on all datasets. Thus, we assume that the proposed
approach can be applied to unseen datasets categorized as violent or non-violent
video. At the same time, additional training is required when applied to differently

classified datasets.

4.6 Comparison

The comparison of the proposed method with state-of-the-art methods based
on the accuracy of violent recognition on three standard datasets is presented in this
section. Table 21, Table 22 and Table 23 show the experimental results of the hockey
fight, movie and violent flow datasets that our proposed outperformed the state-of-
the-art method. The proposed method achieved 97.60%, 100% and 96.77% accuracy,
respectively. The research in Table 21 has divided the dataset into training 80% and
testing 20%. Therefore, an extended experiment was shown that split the dataset for
training and testing to 80% and 20%, respectively. The accuracy of the proposed
slightly increased is 98% from 96.77%, more than research (Jahlan & Elrefaei, 2022).



Table 21 A comparison of the proposed method with the state-of-the-art methods on
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hockey fight dataset.
Ref. Method No. of Classifier Data Splitting Testing
Frame (Train/Test) Accuracy

(%) (%)
(Khan et al., 2019) MobileNet N/A softmax 75/25 87.00
(Soliman et al., 2019) | VGG16+LSTM 20 LSTM 80/20 88.20
(Carneiro et al., 2019) | Multi-Stream 40 SVM 90/10 89.10
(Ullah et al., 2019) 3D-CNN 16 softmax 75/25 96.00
(Hanson et al., 2019) | VGG13+BiConvLSTM 20 FC 80/20 96.96
(Jahlan & Elrefaei, AlexNet,SqueezNet and 20 softmax 80/20 97.00

2022) ConvLSTM
Proposed 16 softmax 75125 97.60

Table 22 A comparison of the proposed method with the state-of-the-art methods on

movie dataset.

Ref. Method No. of Classifier Data Splitting Testing
Frame (Train/Test) Accuracy
(%) (%)
(Carneiro et al., Multi-Stream 40 SVM 90/10 100.00
2019)
(Hanson et al., VGG13+BiConvLSTM 20 FC 80/20 100.00
2019)
(Atallah Almazroey | Keyframe+AlexNet 50 SVM 80/20 100.00
& Kammoun
Jarraya, 2021)
(Jahlan & Elrefaei, AlexNet,SqueezNet and 20 softmax 80/20 100.00
2022) ConvLSTM
Proposed 16 softmax 75125 100.00

Table 23 A comparison of the proposed method with the state-of-the-art methods on

violent flow dataset.

Ref. Method No. of Classifier Data Splitting Testing
Frame (Train/Test) Accuracy
(%) (%)
(Soliman et al., VGG16+LSTM 20 LSTM 80/20 90.01
2019)
(Hanson et al., VGG13+BiConvLSTM 20 FC 80/20 90.60
2019)
(Jahlan & Elrefaei, AlexNet,SqueezNet and 20 softmax 80/20 96.00
2022) ConvLSTM
Proposed 16 softmax 80/20 98.00
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Ref. Method No. of Classifier Data Splitting Testing
Frame (Train/Test) Accuracy
(%) (%)
75/25 96.77

4.7 Conclusions

In this research, proposed a deep feature integration and three-dimensional
convolution for violence recognition. The 16 non-overlapping were captured for
representative frames of each video as input to the CNN model for feature extraction.
The proposed method was tested on three benchmark datasets, including hockey fight,
movie, and violent flow. The recognition accuracy, confusion metric, ROC, and
precision recall curve are presented to evaluate classifier models. In the first part, we
used the pre-trained CNN model on the ImageNet dataset, including MobileNetV1
and MobileNetv2, to classify violent video. The results show that the two CNN
models can be no different in classifying video violence with an accuracy of 95.99%,
98.00%, and 91.94% for the hockey fight, movie, and violent flow datasets,
respectively. Then, we merged all the datasets to retrain the above CNN model to
classify video violence. Unfortunately, the results of this experiment were not better
than using separate datasets. In addition, we also used the C3D to recognize violent
video, which is the pre-trained model using 3D convolutional networks. The
experimental results show that the model achieved a lower accuracy score than
MobileNetV1 and MobileNetV2. The model size is large, and it is also the most time-
consuming part of network training.

We leverage the advantages of the 2D-CNN model and the 3D-CNN to extract
robust spatial and spatiotemporal features from the video. The video frames extracted
the robust features from the last convolution layer in MobilNetV1 and MobileNetV2
separately. Then, we integrated the obtained features with concatenate to create
explicit feature representation. The integrated features were used as input for the
proposed 3D convolution instead of the video frame and classified by softmax to
violent video. We experiment with the different 3D convolution structures. In our
work, we proved that the proposed method performs better than a single use of
MobileNetV 1, MobileNetV2, and C3D with 97.60%, 100% and 96.77% accuracy on

hockey fight, movie, and violent flow datasets, respectively. The experimental results
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demonstrated that the proposed method performs better than the existing methods and
has the capability to classify violent videos effectively.

In future work, will focus on a keyframe extraction method to enhance the
performance of the deep learning model for violence classification in surveillance
video. Keyframe extraction is a process to capture important image frames to reduce
data redundancy for training. Furthermore, we intend to study different features
including optical flow, audio (Carneiro et al., 2019). Develop a deep learning model
for accurately different types of violent activity, such as robbery, burglary, assault in

UCF-CRIME dataset (Sultani et al., 2018).
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Chapter 5

Discussion

This thesis aims to propose deep learning approaches to improving violent
video recognition. In the findings of this research, we contribute two main types of
research. I first proposed an approach that integrates lightweight CNNs and sequence
learning, employing MobileNetV1 and MobileNetV2 for robust deep feature
extraction. The deep features were combined through concatenation and processed
using bidirectional long short-term memory (BiLSTM) to discern violent or non-
violent videos. Additionally, a focused effort was made to enhance efficiency by
reducing the number of frames for training and feature extraction on the hockey fight
dataset. Second, a novel method was introduced to enhance the accuracy of violent
video recognition by integrating deep features with a 3D Convolutional Neural
Network (3D-CNN), leveraging the advantages of MobileNets for spatial feature
extraction at the frame level. The proposed 3D-CNN was designed for spatiotemporal
feature learning to preserve crucial temporal information between frames. The
effectiveness of the proposed method is evaluated across three benchmark datasets:
hockey fight, movie, and violent flow.

I will now briefly describe and discuss the challenges of violent video
recognition using a deep learning approach.

Chapter 3. Achieving precision in identifying violence within videos
requires high accuracy and a significant amount of computational time due to
processing multiple video frames. I concurrently optimized for accuracy and
recognition time conditions to solve this challenge. I propose the fusion lightweight
CNN and sequence learning approach for violent video recognition. First, | propose
five different frame selections using MobileNet and LSTM to classify violent videos.
The experimental results found that using 16 non-adjacent frames resulted in the
highest accuracy. Second, I propose four different CNN architectures for deep feature
extraction and sent the deep feature to LSTM to classify violent video. The
experimental results show that MobileNet+LSTM achieved the highest accuracy on
the hockey fight dataset. Moreover, MobileNet+LSTM had the smallest model size
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and the least computation time. Third, [ used MobileNetV1 and MobileNetV2 to
extract the robust deep feature from the video frame. Then, the deep features are fused
with concatenating and adding operations to generate the video representation features
before transfer into RNN architecture.

I proposed three different RNN architectures: LSTM, BiLSTM, and GRU. I
trained the combination of fusion MobileNet and RNN architecture with 1,000
epochs. The experimental results indicated that the fusion MobileNet and RNN model
outperform the single CNN models by approximately 2% on the hockey fight dataset.
Consequently, the concatenating operation achieved better accuracy when combining
MobileNet with BILSTM because the deep feature size of the concatenating operation
was larger one time than the adding operation.

Although the proposed architecture requires a longer time due to the training
from both MobileNets, the testing time remains the same. Therefore, it can be
concluded that the fusion MobileNet and RNN architecture can be applied to classify
violence because it is recognized quickly with high accuracy, and extending the
complex architecture does not affect the recognition time.

Chapter 4. I focus on enhancing the efficiency of violent video recognition
by integrating deep features with the 3D-CNN approach. First, I propose
MobileNetV1 and MobileNetV2 for leveraging spatial feature extraction from video

frames. The spatial features were integrated with concatenate operation for a more

robust video feature representation, encouraged by the fusion MobileNets-BiLSTM

described in Chapter 3. Second, the integrated spatial features were transferred into
the proposed 3D-CNN to capture spatial and temporal features within the video data. I
proposed five different 3D-CNN architectures with different structures with the same
input feature. I trained the proposed architecture with 500 epochs, different batch
sizes, and learning rate settings. I evaluate the proposed model with three benchmark
datasets: hockey fight, movie, and violent flow.

The proposed 3D-CNN architecture achieved the highest accuracy values,
comprising batch normalization, 3D convolution, dropout, and a global average
pooling, fully connected layers followed by a softmax function to classify violent or

non-violent videos. The experimental result shows that the integrated deep feature
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with the 3D-CNN approach outperformed the single MobileNet by approximately 2%
on three datasets. Also, the proposed method can improve the performance of violent

video recognition by approximately 3% compared to the method MobileNet-BiLSTM.

51 Answers to The Research Questions

According to the research questions (RQ) in Chapter 1, I explain the
improvement of violent video recognition using deep learning with two solutions. In
this section, I briefly answer each research question.

Objective 1. I aim to research deep learning studies that improve violent
video recognition performance by combining CNN and RNN with deep feature fusion
techniques.

Research Question 1. Generally, violent video understanding applies
Recurrent Neural Networks (RNN) such as LSTM, BiLSTM, or GRU to learn the
feature from sequential frames within the video data. RNN can distinguish patterns
and movements, accurately classifying actions, or activities in video. However, some
research used Convolutional Neural Networks (CNN) to extract deep features from
the individual frame, which received high accuracy for violent recognition (Karisma
et al., 2021) and (Irfanullah et al.,2022). Therefore, if I utilize the CNN to extract the
deep features from video frames and then transfer the received deep features to RNN
to learn information within the video, will this improve the performance of
understanding violent videos?

To find the answer to RQ1, I focused on a state-of-the-art CNN and RNN
model. The frame selections and number of input frames are also considered to reduce
redundant information. The deep feature fusion technique was applied to combine the
deep features from different architectures to understand violent video and improve the
performance of violent video recognition. Will these methods encourage enhancing
the performance of violent video recognition?

To answer RQ1, I first focused on the video frame selection to reduce the
number of frames and redundant information for training and feature extraction.
Using 16 non-adjacent frames resulted in the highest accuracy. Second, lightweight
MobileNets were used for deep feature extraction due to the lower computation time

and higher accuracy than ResNet50V2 and NASNetMobile. The obtained deep



92

features were fused with concatenating operations to leverage information from both
MobileNets before being transferred to RNN architecture, including LSTM, BiLSTM,
and GRU. Finally, the fused deep feature was transferred to BILSTM to learn features
from violent videos and classify them into violent or non-violent videos. The result
showed that the accuracy increased by approximately 2% on the hockey fight dataset
when combining the deep feature with concatenating and sending it to BiLSTM.
Considering testing time indicates that network expansion does not affect the
performance of violent video recognition. Consequently, I can combine lightweight
MobileNet and Bi-LSTM with the deep feature fusion technique to improve the
performance of violent recognition while maintaining recognition time.

Objective 2. I aim to research deep learning approaches that improve violent
video recognition by deep feature integration with three-dimensional convolution
neural network (3D-CNN)

Research Question 2. the 2D-CNN outperforms in extracting spatial
features within individual frames, making it well-suited for tasks where static visual
patterns hold pivotal significance, such as image classification and object detection.
Conversely, 3D-CNN surpasses 2D-CNN in tasks requiring the incorporation of
necessary temporal dimensions, as it can directly understand spatiotemporal features
from video sequences. This renders 3D-CNN notably advantageous for applications
like action recognition, wherein comprehending temporal alterations and motion is
imperative. Although 2D-CNN demonstrates computational efficiency and is
commonly employed for image-based tasks, 3D-CNN extends its functionalities to
video analysis by seamlessly incorporating temporal information into the learning
process. Therefore, If 2D-CNN is used to extract spatial features from frames and
integrate the obtained features. Then, the features are transferred to 3D-CNN for
spatiotemporal learning and classified into violent or nonviolent videos. Can the
proposed approach improve the performance of violent video recognition?

To find the answer to RQ2, I will use 2D-CNN to extract spatial and
integrated features with concatenating operations. Then, these features are transferred
to 3D-CNN to learn spatiotemporal features and classify violent or non-violent

videos.
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To answer RQ2, I proposed a deep features integration and 3D convolution
for violence recognition. First, I extracted the spatial features with CNN from the
video frame. These features were integrated with concatenating operations to enhance
more information representations. I focus on the 3D convolution architecture, which
capability captured spatiotemporal information by considering multiple frames in
video. The effectiveness of the proposed method was evaluated on three benchmark
datasets hockey fight, movie, and violent flow datasets.

The proposed approach demonstrated an approximate 2% increase in the
recognition performance of violent videos across all datasets when compared to a
single CNN. Moreover, compared to a single 3D-CNN, the proposed approach
exhibited significant improvements, with performance improvements of
approximately 27%, 16%, and 29% on the hockey fight, movie, and violent flow
datasets, respectively. These results emphasize the capability of the 3D-CNN to

enhance the recognition performance of violent videos. Moreover,

5.2 Future work

In this dissertation, I proposed novel deep feature extraction techniques to
improve the performance of video understanding based on violent video. Several
future works present in the following could be used as a direction for recognizing
video violence tasks. I described frame selection, challenges, and applications of up-
to-date deep learning models.

The frame selection is a critical procedure for selecting essential input data for
training in the deep learning model. Researchers considered reducing the number of
sample frames for selecting keyframes to reduce the redundant information and
computation cost while making the developed model efficient such as adaptive frame
selection (Tao & Duan, 2023).

Moreover, researchers can further improve responses to many challenges of
violence video recognition, such as recognition of different types of violence, human
occlusion, or audio signals in conjunction with image frames. For different types of
violence, it is challenging to differentiate violent behavior including robbery, burglary,
assault in the UCF-CRIME dataset (Sultani et al., 2018) . For human occlusion, an

object may be obscuring a violent incident, resulting in difficulty distinguishing
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whether it is violent or not due to only part of the scene being visible (Aldayri &
Albattah, 2022). Audio signals are also considered along with frames to improve
classification accuracy, such as cries for help, shouts, or gunshots (Lou et al., 2021).
Recently, there have been deep learning models that can recognize videos
efficiently. Therefore, the researcher studies other recent models or techniques, such

as the Transformer model or attention mechanism technique (Vaswani et al., 2017).
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