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ABSTRACT 

  

Chapter 1 briefly introduces violent video understanding and research 

questions. Additionally, the objectives of the dissertation and contributions are 

described. 

Chapter 2 describes a background of violent video understanding using 

deep learning techniques and related work. The background includes deep learning 

techniques, convolution neural networks, convolution neural network architecture, 3D 

Convolutional Neural Networks (3D-CNN), Recurrent Neural Networks (RNN), Deep 

feature extraction, deep feature fusion methods, and violent video datasets. Next, a 

related work section, which has reviewed research from the past until now, consists of 

six main parts as follows: deep learning for video classification, handcrafted features 

for violent recognition, violent recognition with 2D-CNN, violent recognition with 

3D-CNN, violent recognition with combination of CNN and RNN, and violent 

recognition with fusion features. 

Chapter 3 proposed a fusion MobileNets-BiLSTM architecture. In the first 

part, I proposed using the lightweight MobileNetV1 and MobileNetV2 to extract the 

robust deep spatial features from the video so that only 16 non-adjacent frames were 

selected. The spatial features were transferred to the global average pooling, batch 

normalization, and time distribution layer. In the second part, the spatial features from 

the first part were concatenated and then transferred to a Bidirectional Long Short -

Term Memory (BiLSTM). The proposed fusion MobileNets-BiLSTM architecture 

was evaluated on the hockey fight dataset. The experimental results showed that the 

proposed method achieved 95.20% accuracy on the test set of the hockey fight 

dataset. 

Chapter 4 proposed a method to understand violence within video using 

deep feature integration with 3D-CNN. I proposed CNN to extract the spatial feature 

from the last convolution layer at the frame level. The concatenate operation was 

proposed to combine the spatial features of both CNNs at the frame level before being 

transferred to the 3D-CNN architecture to learn the spatiotemporal features, 

consisting of batch normalization, 3D convolution, dropout layers, global average 

pooling layer followed by a fully connected layer. Finally, the softmax was used to 

classify as a violent and non-violent video. 
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Chapter 5 comprises two main sections: the answers to the research 

questions and suggestions for future work. This chapter briefly explains the proposed 

approaches and answers two main research questions in video understanding. 

 

Keyword : Violent Video Understanding, Violent Video Recognition, Video 

Recognition, Convolutional Neural Network, Recurrent Neural Network, Feature 

Extraction, Features Fusion Technique 
 

 

 



 

 

 
 F 

ACKNOWLEDGEMENT S 
 

ACKNOWLEDGEMENTS 

  

I would like to thank my esteemed supervisor - Assistant Professor Olarik 

Surinta, Ph.D. for his invaluable supervisor, support, and tutelage during the course of 

my Ph.D. degree. My gratitude extends to the Faculty of Business Administration and 

Information Technology, Rajamangkala University of Technology ISAN Khon Kaen 

Campus for the funding opportunity to undertake my studies at the Faculty of 

Informatics, Mahasarakham University. Additionally, I would like to thank my friend, 

lab mates, colleagues, and researcher team for a cherished time spent together in the lab, 

and  in  social setting. M y appreciation also goes out to  m y fam ily for their 

encouragement and support throughout my studies. 

  

  

Wimolsree  Getsopon 
 

 

 



 

 

 

TABLE OF CONTENTS 

 Page 

ABSTRACT .................................................................................................................. D 

ACKNOWLEDGEMENTS ........................................................................................... F 

TABLE OF CONTENTS .............................................................................................. G 

List of Table ................................................................................................................... I 

List of Figure................................................................................................................. K 

Chapter 1 ........................................................................................................................ 1 

Introduction .................................................................................................................... 1 

1.1 Research questions .............................................................................................. 3 

1.2 The objective of this dissertation ......................................................................... 4 

1.3 Contribution ......................................................................................................... 5 

Chapter 2 ........................................................................................................................ 7 

Background .................................................................................................................... 7 

2.1 Deep Learning ..................................................................................................... 7 

2.2 Convolutional Neural Network ............................................................................ 8 

2.3 Convolutional neural network architecture ....................................................... 11 

2.4 3D Convolution (Ji et al., 2013) ........................................................................ 14 

2.5 Recurrent Neural Network architecture ............................................................. 15 

2.6 Deep features extraction .................................................................................... 18 

2.7 Deep features fusion method ............................................................................. 19 

2.8  Violent dataset ................................................................................................... 20 

2.9 Related work ...................................................................................................... 24 

Chapter 3 ...................................................................................................................... 32 

Fusion Lightweight CNNs and Sequence Learning Technique ................................... 32 

3.1 Introduction ........................................................................................................ 32 

3.2 Related work ...................................................................................................... 33 

  



 

 

 
 H 

3.3 Fusion Lightweight CNNs and Sequence Learning Architecture ...................... 35 

3.4 Violent Video Datasets ....................................................................................... 38 

3.5 Experiment Setup and Results ........................................................................... 39 

3.6 Comparison of the Fusion MobileNets and BiLSTM architecture and the 

Existing Methods. .............................................................................................. 44 

3.7 Conclusions ........................................................................................................ 44 

Chapter 4 ...................................................................................................................... 46 

Violence recognition with 3D-CNN ............................................................................ 46 

4.1 Introduction ........................................................................................................ 46 

4.2 Related work ...................................................................................................... 48 

4.3 Proposed framework .......................................................................................... 54 

4.4 Violence Datasets ............................................................................................... 60 

4.5 Experimental results and discussion .................................................................. 62 

4.6 Comparison ........................................................................................................ 85 

4.7 Conclusions ........................................................................................................ 87 

Chapter 5 ...................................................................................................................... 89 

Discussion .................................................................................................................... 89 

5.1 Answers to The Research Questions ................................................................. 91 

5.2 Future work ....................................................................................................... 93 

REFERENCES ............................................................................................................ 95 

BIOGRAPHY ............................................................................................................ 103 

 



 

 

 

List of Table 

 Page 

Table 1 A number of videos in each category of UCF-crime dataset. ......................... 23 

Table 2  A number of parameter of CNN architectures. .............................................. 37 

Table 3 Experimental results with different frames using MobileNetV2-LSTM. ....... 40 

Table 4 The average accuracy (%) and the standard deviation of CNN architectures 

combined with the LSTM network obtained on cross-validation and test sets. .......... 42 

Table 5 The accuracy (%) and computational times of violence recognition 

experiments on the hockey fight dataset. ..................................................................... 43 

Table 6  The comparison of the proposed method with existing methods. .................. 44 

Table 7 The number of the parameters in all layers of C3D architecture. ................... 58 

Table 8 Network architecture of the proposed 3D convolutional neural network. ...... 59 

Table 9 Evaluation of the violent recognition results using MobileNetV1 ................. 64 

Table 10 Evaluation of the violent recognition results using MobileNetV2 ............... 65 

Table 11 Testing accuracy of feature-extraction with the MobileNetV1, trained with  

merging all datasets and testing with separate datasets. .............................................. 66 

Table 12 Testing accuracy of feature-extraction with the MobileNetV2, trained with  

merging all datasets and testing with separate datasets ............................................... 67 

Table 13 The accuracy results with C3D on three datasets. ......................................... 69 

Table 14 The five-difference 3D convolution structures. ............................................ 70 

Table 15 Performance of the 3D convolution with integrated deep features                     

on hockey fight dataset. ............................................................................................... 71 

Table 16 Performance of the 3D convolution with integrated deep features ............... 71 

Table 17 Performance of the 3D convolution with integrated deep features on violent 

flow dataset. ................................................................................................................. 72 

Table 18 Performance of the 3D convolution with integrated deep features(merged all 

datasets) on the hockey fight dataset. .......................................................................... 73 

Table 19 Performance of the 3D convolution with integrated deep features(merged all 

datasets) on movie dataset. .......................................................................................... 74 

  



 

 

 
 J 

Table 20 Performance of the 3D convolution with integrated deep features (merged all 

datasets) on violent flow dataset. ................................................................................. 75 

Table 21 A comparison of the proposed method with the state-of-the-art methods on 

hockey fight dataset. .................................................................................................... 86 

Table 22 A comparison of the proposed method with the state-of-the-art methods on 

movie dataset. .............................................................................................................. 86 

Table 23 A comparison of the proposed method with the state-of-the-art methods on 

violent flow dataset. ..................................................................................................... 86 

 



 

 

 

List of Figure 

 Page 

Figure 1  An example of a deep learning network. ........................................................ 7 

Figure 2 Illustrate of the Convolutional Neural Network structure. .............................. 8 

Figure 3 The example of a convolution operator. .......................................................... 9 

Figure 4 Example of a convolution operator with padding. .......................................... 9 

Figure 5 Illustration of max pooling. ........................................................................... 10 

Figure 6 Illustration of average pooling layer. ............................................................. 11 

Figure 7 Illustrate of the depthwise separable convolution (Howard et al., 2017). ..... 12 

Figure 8 The structural of MobileNetV2 (Sandler et al., 2018). .................................. 12 

Figure 9 The structural of MobileNetV2 (Sandler et al., 2018). .................................. 13 

Figure 10 illustrates the ResNet50V2 architecture (He et al., 2016). .......................... 14 

Figure 11 The structure of  3D convolution (Ji et al., 2013). ....................................... 14 

Figure 12 The architecture of C3D (Tran et al., 2014). ............................................... 15 

Figure 13 Recurrent Neural Network. .......................................................................... 16 

Figure 14 Long Short - Term Memory architecture (Hochreiter & Schmidhuber, 

1997). ........................................................................................................................... 16 

Figure 15 Long Short - Term Memory cell (Hochreiter & Schmidhuber, 1997). ........ 17 

Figure 16. Bidirectional Long Short-Term Memory architecture (Graves & 

Schmidhuber, 2005). .................................................................................................... 17 

Figure 17 Gate Recurrent Unit architecture. (Cho et al., 2014) ................................... 18 

Figure 18 Deep feature extraction using CNN. ........................................................... 19 

Figure 19. Feature fusion using addition operation. .................................................... 20 

Figure 20. Feature fusion using concatenation operation. ........................................... 20 

Figure 21 Samples of hockey fight dataset. ................................................................. 21 

Figure 22 Samples of movie dataset. ........................................................................... 22 

Figure 23 Samples of violent flow dataset. .................................................................. 22 

Figure 24 Sample of RWF2000 dataset. ...................................................................... 23 

  



 

 

 
 L 

Figure 25 Samples of UCF crime dataset. ................................................................... 24 

Figure 26 Illustration of the fusion lightweight MobileNets and BiLSTM architecture       

for violence video recognition. .................................................................................... 35 

Figure 27 Some examples of (a) violent video and (b) non-violent video of .............. 39 

Figure 28 Illustration of the (a) adjacent and (b) non-adjacent frames of ................... 41 

Figure 29 The proposed framework deep features integration with 3D convolutional to 

recognize the violent video. ......................................................................................... 54 

Figure 30 show (a) the standard convolution kernel (b) the depthwise convolution 

kernel and (c) pointwise convolution kernel. (Howard et al., 2017) ........................... 56 

Figure 31 The structural of CNN (a) MobileNetV1 and (b) MobileNetV2  (Howard et 

al., 2017; Sandler et al., 2018) ..................................................................................... 57 

Figure 32 The architecture of C3D (Tran et al., 2014). ............................................... 58 

Figure 33 Samples of hockey fight dataset, (a) violence video and ............................ 61 

Figure 34 Samples of movie dataset, (a) violence video and (b) non-violence video. 61 

Figure 35 A samples of violent flow dataset, (a)violence and (b) nonviolence  video.

...................................................................................................................................... 62 

Figure 36 Receiver operating characteristic (ROC) curve and area under the curve 

(AUC) for each 3D-CNN model (a) on the hockey fight dataset, (b) on the movie 

dataset, and (c) on violence flow dataset. .................................................................... 77 

Figure 37 Precision recall curve and area under the precision recall curve (AUC-PR) 

for each 3D-CNN model (a) on hockey fight dataset, (b) on movie dataset, and (c) on 

violent flow dataset. ..................................................................................................... 78 

Figure 38 Training and validation loss of our proposed model on the (a) hockey fight 

dataset, (b) movie dataset, and (c) violent flow dataset. .............................................. 79 

Figure 39 The confusion matric of test datasets (a) on hockey fight dataset, (b) movie 

dataset, and (c) violent flow dataset. ............................................................................ 80 

Figure 40 Example of missing video prediction on hockey fight dataset, (a) false 

negative prediction and (b) false positive prediction. .................................................. 81 

Figure 41 Example of missing video prediction on violent flow dataset, ................... 82 

Figure 42 Example of violent video with different camera angles: (a)  very long shot, 

(b) medium-close-up shot, and (c) close-up shot. ........................................................ 85 

 



 

 

 

Chapter 1 

Introduction 

 

 The advancement of artificial intelligence technology has been developing 

rapidly and has been widely applied in various tasks recently. These include health 

services, industrial security, surveillance, and assistance systems for individuals with 

disabilities. Computer vision is a subsection of artificial intelligence using techniques 

that enable computer systems to understand and respond to images or videos in a way  

similar to the human visual system. Illustrations of computer vision technology 

utilization within health service systems.-for example, monitoring the daily activities 

that pose a risk of accidents for elderly individuals. With the system sending an alert 

notifying the involved authorities when an older adult is injured from falls or exhibits 

symptoms similar to a stroke (Attal et al., 2015; Liu et al., 2016). Furthermore, 

computer vision helps to collect information about daily behavior that affects 

individual health (Suryadevara & Mukhopadhyay, 2014). For industrial applications, 

robots can replace humans to perform tasks that humans cannot perform or to work in 

hazardous areas (Dallel et al., 2020). In surveillance systems, applying computer 

vision involves identifying unusual incidents like criminal activities, acts of violence, 

theft, and accidents. The incidents can happen anywhere, from residential areas and 

educational institutions to roads, parking lots, bus terminals, and commercial 

establishments such as shopping centers. Computer vision technology ensures that 

abnormal events can be detected and classified efficiently. Subsequently, the 

surveillance system can notify the relevant individual to stop the incident in real time. 

Furthermore, computer vision technology can also be applied to assist individuals 

with disabilities (Wu et al., 2017), serving as an aiding tool or creating equal 

opportunities for accessing information and data. 

 Video understanding is a significant component within the field of computer 

vision that has garnered considerable attention. It enables computer systems to 

understand and analyze m eaningful video inform ation or patterns. Video 

understanding is applied to various tasks, for instance, surveillance systems, video 

annotation, video recommendation, video search, and related video retrieval  (Lee et 

al., 2018). Many researchers have proposed a practical approach for effectively 
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analyzing and processing video for applying various tasks (Xie et al., 2017; B. Zhou 

et al., 2017; Zolfaghari et al., 2018). This thesis focuses on violent video classification 

using deep learning techniques. Violent behavior refers to aggressive behaviors such 

as fighting, smashing, riots, and collisions (Yao & Hu, 2023). 

 Violent video recognition is a subfield of action recognition since 

recognizing violent behavior in video data is to understand some human actions. 

Surveillance systems are installed in public and private areas to monitor, collect 

evidence, and prevent criminal activities. However, manually monitoring and 

analyzing video data from many CCTV cameras in real time can be costly and time-

consuming. Therefore, utilizing machine learning technology for automated crime 

scene recognition from the video is very important and assists security systems in 

detecting and categorizing various anomalies or violent occurrences, alerting, and 

notifying the security monitoring system to respond immediately. 

 Video violence classification typically consists of two main parts , feature 

extraction and classification sections. In the past, many researchers tried to develop 

efficient techniques for video feature extraction. Handcraft feature extraction is a 

valuable method for video recognition that considers local features. Souza et al. 

(2010) proposed feature extraction, namely Local spatiotemporal features, using a bag 

of words. Das et al. (2019) used Histogram Orientation Gradient (HOG). Hassner et 

al. (2012) and Gao et al. (2016) improved the feature extraction m ethod by 

considering the optical flow direction in global feature extraction. Classification is a 

technique that involves classifying data into predefined types. Machine learning for 

classification, can use Support Vector Machine (SVM), Random Forest, Logistic 

Regression, and Neural Networks. Although research on surveillance video 

recognition has presented various handcraft feature extractions, these methods have 

some limitations. Examples of constraints include the effectiveness of handcrafted 

features developed from specific datasets, resulting in the incapability to extract 

appropriate video representation and failure to achieve a generalized model. 

             Many researchers have recently demonstrated deep learning efficiency as a 

feature extraction method. Specifically, a convolution neural network (CNN) was 

developed for image or video recognition. This is a high-performance network that 

can be applied to various tasks. For video recognition work, some researchers have 
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used 2D-CNN for spatial feature extraction of each frame and then classif ied the 

features with different methods. For example, Carneiro et al. (2019)and Soliman et al. 

(2019) used VGG-16 for feature extraction. For learning about time information, 

recurrent neural networks (RNN) are also used combined with CNNs to improve 

recognition performance, such as LSTM or GRU. Sudhakaran and Lanz (2017) used 

2D-CNN to extract hierarchical features from the video frames, which were then 

aggregated using the LSTM. Then, they were classified as violent or non-violent with 

a fully connected layer. Mumtaz et al. (2022) proposed a multi-scale of VGG-19 

architecture for violence video classification. The VGG-19 was used to initialize the 

spatial features extractor, followed by the widely followed Bi-LSTM structure for 

optimal violent recognition. 3D-CNN is proposed for end-to-end networks, learning 

spatial and temporal information. Ji et al. (2013) proposed a 3D-CNN to extract 

spatial and temporal features from video data for action recognition. The experimental 

results show that the proposed models significantly outperform ed 2D-CNN 

architecture. 

             In addition, some research has uses deep learning to learn from different 

feature types. Lou et al. (2021) employed frame and audio information to recognize 

violent behavior. Carneiro et al. used VGG-16 for a multi-stream that included spatial, 

temporal, rhythm, and depth information. The results showed that the feature fusion 

method increased the efficiency of violent video recognition. 

1.1  Research questions 

 A n essential com ponent of recognizing violence in a video task is 

understanding the information to learn and effectively analyze the content within 

videos. This process involves extracting significant information, recognizing patterns, 

and understanding the visual information in a video. An effective video violence 

recognition  system  has the potential to  au tom ate and accurately classify 

representatives of violence, particularly within security surveillance systems, to stop 

the violence in time and prevent further violence. Therefore, I aim to improve the 

efficiency of violence recognition in videos to enhance the capabilities of security 

surveillance systems. 
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 RQ1. Generally, violent video understanding applies Recurrent Neural 

Networks (RNN) such as LSTM, BiLSTM, or GRU to learn the feature from 

sequential fram es within the video data. RN N can distinguish patterns and 

movements, accurately classifying actions, or activities in a video. However, some 

research has used Convolutional Neural Networks (CNN) to extract deep features 

from the individual frame, which received high accuracy for violence recognition 

Karisma et al. (2021) and Irfanullah et al. (2022). Therefore, if I utilize CNN to 

extract the deep features from video frames and then transfer the received deep 

features to RNN to learn information within the video, will this improve the 

performance of understanding violent videos? 

 RQ2. The 2D-CNN outperforms in extracting spatial features within 

individual frames, making it well-suited for tasks where static visual patterns hold 

pivotal significance, such as image classification and object detection. Conversely, 

3D-CNN surpasses 2D-CNN in tasks requiring the incorporation of necessary 

temporal dimensions, as it can directly understand spatiotemporal features from video 

sequences. This renders 3D-CNN notably advantageous for applications like action 

recognition, wherein comprehending temporal alterations and motion is imperative. 

Although 2D-CNN demonstrates computational efficiency and is commonly 

employed for image-based tasks, 3D-CNN extends its functionalities to video analysis 

by seamlessly incorporating temporal information into the learning process. 

Therefore, if 2D-CNN are used to extract spatial features from frames and integrate 

the obtained features, the features are then transferred to 3D-CNN for spatiotemporal 

learning and classified into violent or nonviolent videos. Can the proposed approach 

improve the performance of violent video recognition? 

 To answer all these questions (RQ1 and RQ2), Chapter 3 and Chapter 4 of 

this thesis describe the result of this research. Finally, Chapter 5 provides concrete 

answers to research questions. 

1.2  The objective of this dissertation 

 This study will focus on two detailed objectives: 

 1.2.1 Improve violent video recognition by combining CNN and RNN with 

deep feature fusion techniques. 
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 1.2.2 Improve violent video recognition by deep feature integration with 

three-dimensional convolution neural network (3D-CNN). 

 

1.3  Contribution 

 The contribution of the dissertation is a novel deep learning technique to 

extract robust features and provide the best performance for violent video recognition 

system. The work involved experiments on three benchmark violent video datasets of 

hockey fight, movie, and violent flow datasets. The contributions of the dissertation 

are as follows. 

 In Chapter 3, I introduced the utilization of MobileNets to extract robust 

spatial features; MobileNet has few parameters and a small model size but is still 

highly accurate. Additionally, I employed a bidirectional long short-term memory 

(BiLSTM) to understand the temporal context and acquire information from past and 

future video frames. This approach incorporated a concatenation operation to combine 

spatial features obtained from MobileNetV1 and MobileNetV2 before being 

transferred to the BiLSTM network. Furthermore, the classifier for the proposed 

architecture was implemented using the softmax function. Hence, we opted for a 

selection of 16 non-adjacent frames, although alternative methods were assessed 

using 20 and 40 frames. The resulting output was categorized as violent and non -

violent. This chapter is based on the following publication.- 

 Wimolsree Getsopon and Surinta (2022). Fusion Lightweight Convolutional 

N eu ra l N e tw o rk s  an d  S eq u en ce  L earn in g  A rch itec tu res  fo r Vio len ce 

Classification. ICIC Express Letter Part B: Applications, 13(10), pages 1027-1035. 

 In Chapter 4, I propose an approach for recognizing violent video content, 

employing deep feature integration with three-dimensional convolution. I focus on 

conducting feature extraction at the frame level utilizing two distinct Convolutional 

Neural Network (CNN) models, specifically MobileNetV1 and MobileNetV2. These 

models were applied at the last convolutional layer to extract robust spatial features. 

Subsequently, I executed feature vector integration through concatenation operations. 

The integrated video feature vector w as subjected to  a three -dim ensional 

convolutional process, allowing the model to capture temporal dependencies within 
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the video data. Finally, the classification of videos as either violent or non-violent was 

carried out through a softmax function, enabling the model to make informed 

categorizations based on the learned features. To assess the efficacy of this proposed 

method, I evaluated three challenging video datasets encompassing violent scenarios, 

namely hockey fight, movie, and violent flow. These evaluations validated the 

robustness and effectiveness of this approach in the domain of violent video 

recognition. 
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Chapter 2 

Background 

 

2.1 Deep Learning 

  Deep learning is a subset of machine learning that utilizes neural networks to 

solve complex problems (Sharifani & Amini, 2023). The basis of deep learning is 

inspired by human brain function. Deep learning can learn from sample data and train 

model knowledge by automatically recognizing patterns or classifying data. Then,  it 
provides an answer by predicting the probability value that simple artificial 

intelligence techniques cannot extract to correctly infer conclusions from the data. 

 The structure of the deep learning network comprises input, hidden, and 

output layers. The network has multiple hidden layers, and the hidden layers are 

composed of several neurons. The primary function of a neuron is to multiply the 

input values with the assigned weight generated randomly at the beginning of model 

training, sum up the result, and add bias. Then,  the results were adjusted with an 

activation function such as sigmoid, Tanh, or RELU to get a value between 0 and 1 

(Mercioni & Holban, 2023), as shown in Figure 1. 

 

Figure 1  An example of a deep learning network. 

 Many different kinds of deep learning networks have been proposed. They 

are efficient for various applications, such as Convolution Neural Networks (CNN) 
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for image processing, Recurrent Neural Networks (RNN) for sequence data 

processing, Natural Language Processing (NLP), and audio processing. 

2.2 Convolutional Neural Network  

 Convolutional neural networks (CNN) are a type of deep learning proposed 

by LeCun et al. (2015). CNN are the most significant and effective forms of deep 

neural networks (Zafar et al., 2022) and are extensively employed in image processing 

applications that simulate human vision processing images by considering parts of the 

image with filters. The filter will extract various features of the image, called 

convolution operation. Then, the convolution result in the previous layer will be the 

input in the next layer. The strength of convolutional neural networks is that they can 

automatically extract features without human intervention (Alzubaidi et al., 2021). 

The convolutional neural network structure consists of a convolution layer, a pooling 

layer, and a fully connected layer, as shown in Figure 2. 

Figure 2 Illustrate of the Convolutional Neural Network structure. 

 2.2.1 Convolution layer 

   The convolution layer is a layer that transforms the input data to 

processing with filters to extract outstanding features related to the image. It is 

divided by the width, height, and color characteristics of the image as 𝑊 × 𝐻 × 𝐷, 

where W and H are image width and image height, respectively, and D is the color 

dimension of the image. For example, an RGB image can be divided into three 

dimensions: red, green, and blue. Characterization of an image is performed by 

calculating the dot product between the matrix and the filter. Convolution takes the 

weights of the filters together and shifts the filter until it reaches every region in the 

image with a stride that determines the step to move the filter. The result obtained by 

the convolution layer equals the number of filters applied. The result is called a 

feature map, as shown in Figure 3. In addition, padding can be used to increase the 

Input Layer                 Conv Layer-1         Pooling Layer-1   Conv Layer-2   Pooling Layer-2   Conv Layer-3   Pooling Layer-3  FCL  
Output 
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margins where the borders of the image are meaningful, as shown in Figure 4. The 

equation for convolution operation is: 

𝐼1
𝑙 = (∑ 𝐼𝑗

𝑙−1 ⊗ 𝑤𝑖𝑗
𝑙

𝑗 + 𝑏𝑖
𝑙)       (1) 

Where 𝐼𝑗
𝑙=1 is the output with 𝑚 × 𝑛 size, ⨂ indicates a convolution operator, 𝑤𝑖𝑗 

represents convolution kernels and 𝑏𝑖 is bias value. 

 

Figure 3 The example of a convolution operator. 

 

Figure 4 Example of a convolution operator with padding. 

 2.2.2 Pooling layer 

   The pooling layer is used to reduce the size of the features to bring 

only the essential information, most often the next layer after the convolution. The 

pooling layer can help to learn invariant features, reduces overfitting, and reduces 

computational complexity by down sampling the feature maps (Nirthika et al., 2022). 

Typically, the CNNs classify the pooling method into two types. (1) Local pooling is 

the first method to display feature maps by pooling data from small local regions. (2) 

Global pooling, which creates a scalar value representing the image from the feature 
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vector for each feature across the feature map (Zafar et al., 2022). The widely used 

pooling techniques are max pooling and average pooling (Boureau et al., 2010) , both 

used in local and global pooling layers. The max pooling technique identifies the 

biggest element in each pooling region (Singh et al., 2021) and discards other 

irrelevant information. The equation for max pooling is: 

𝑓𝑚𝑎𝑥(𝑥) = 𝑚𝑎𝑥𝑖{𝑥𝑖}𝑖=1
𝑁       (2) 

where N represents pooling region. An example of the max pooling technique gives 

the input data size of 4×4 and a filter size of 2×2 with a stride of 2. The maximum 

value is selected as the output, as shown in Figure 5. 

 

Figure 5 Illustration of max pooling. 

   The average pooling layer reduces the dimension of the features map 

by calculating the average value of a pool region, which does not consider the 

importance of a specific element in the pooling region . Mostly, average pooling is 

used as the global pooling operator to capture the contribution of all the features 

(Nirthika et al., 2022). The average pooling layer is usually used after a convolutional 

layer. The equation for average pooling is: 

𝑓𝑎𝑣𝑔(𝑥) =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1       (3) 

An example of the average pooling, the average pooling applied in patches of feature 

map with a stride of 2 is shown in Figure 6. (average pooling involves calculating the 

average for each patch). 
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Figure 6 Illustration of average pooling layer. 

 2.2.3 Fully connected layer 

   The fully connected layer is the last layer of the convolution neural 

network and consists of many neurons that are interconnected. The fully connected 

layer connects to the complete output by flattening into a vector of dimension 1 × 𝑚 

before entering the classification process. The equation for fully connected layer is: 

𝑋𝑜𝑢𝑡𝑝𝑢𝑡
𝑙 = 𝑓(𝑋𝑙−1 × 𝐷𝑙 + 𝐵𝑙)      (4) 

2.3 Convolutional neural network architecture 

 A Convolution neural network produces an effective model when trained 

with a sufficient training data and appropriate functions. CNN architectures are used 

quite often because they can learn the features of the problems automatically. CNN 

architectures include, MobileNetV1 (Howard et al., 2017), MobileNetV2 (Sandler et 

al., 2018), NASNetMobile (Zoph et al., 2018), and ResNet50V2 (He et al., 2016). 

 2.3.1 MobileNetV1 (Howard et al., 2017) 

   M obileN etV 1 is a lightw eight convolutional neural netw ork 

architecture for highly efficient image classification on mobile and embedded devices 

with limited resources. Howard et al. (2017) introduce MobileNetV1 in 2017 based on 

the concept of depthwise separable convolution, which consists of two separate 

layers: depthwise convolution and pointwise convolution. Depthwise convolution 

applies a single filter to each input channel, while the pointwise convolution with a 

1 × 1 convolution was performed to change the dimension and create a linear output, 

as shown in Figure 7. This concept reduces the computational cost significantly 

compared to traditional convolutional layers. 



 

 

 
 12 

 

Figure 7 Illustrate of the depthwise separable convolution (Howard et al., 2017). 

 2.3.2 MobileNetV2 

   MobileNetV2 is the improved version of MobileNetV1. Two layers 

were added in the MobileNetV2 architectures: an inverted residual and a linear 

bottleneck, to enhance memory efficiency (Sandler et al., 2018). The inverted residual 

block contained a convolution layer, depthwise convolution, and convolution layer, 

with one stride. First, a pointwise (1x1) convolution is used to expand the dimensional 

input feature map to a higher dimensional with ReLU6 applied. Next, a depth-wise 

convolution is performed using 3x3 kernels, followed by ReLU6 activation. Finally, 

the spatially filtered feature map is reduced dimensionally using another pointwise 

convolution, and the linear is used instead of ReLU to avoid information loss. The 

shortcut connection was connected between each residual block the same way as in 

the residual network, as shown in Figure 8.  

 

Figure 8 The structural of MobileNetV2 (Sandler et al., 2018). 
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 2.3.3 NASNetMobile (Zoph et al., 2018) 

    NASNetMobile is the lightweight version of NASNet. It was designed 

to explore the best convolutional layer on a small dataset, such as the CIFAR -10 

dataset, and then transfer the best layer by stacking the layers together to a large 

dataset, such as ImageNet (Zoph et al. 2018). To search for the best convolutional 

layer, it searches from many sets of convolutional operations, for example, identity, 

3x3 convolution, 3x3 depthwise convolution, 3x3 average pooling, and 3x3 dilated 

convolution, using a recurrent neural network (RNN). NASNet consist of two main 

cells stacked together: normal and reduction cells. Although the normal and reduction 

cells were stacked together, the NASNet architecture could be adjusted by repeating 

many normal cells with N times. 

 

Figure 9 The structural of MobileNetV2 (Sandler et al., 2018). 

 2.3.4 ResNet50V2 (He et al., 2016) 

   ResNet50V2 is a modified version of ResNet50 that performs better 

than the original ResNet50 and ResNet101 on the ImageNet dataset. The difference 

between the residual block in the original ResNet and the modification ResNetV2 is 

the number of the convolution operation. The original residual block contained the 

weight layer, BN, ReLU, weight layer, and BN, respectively. Before combining to the 

following layer, the ReLU function was performed. While the modified residual block 

in ResNetV2 contains BN, ReLU, weight layer, BN, ReLU, and followed by weight 

layer. Hence, it adds to the following layer without applying the ReLU function. The 
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structure of the ResNet50V2 architecture consists of 50 convolutional layers, as 

shown in Figure 10. 

 

Figure 10 illustrates the ResNet50V2 architecture (He et al., 2016). 

2.4 3D Convolution (Ji et al., 2013) 

 Three-dimensional convolutional neural networks (3D-CNN) recognize 3D 

images or video data, which differs from 2D convolutions for image classification. Ji 

et al. (2013) proposed the first 3D-CNN for action recognition, which extracts 

features from spatial and temporal dimensions by performing 3D convolutions with 

multiple adjacent frames. The dimension of input data for 3D convolution is F x W x 

H x D, where F is the video frame, W is the width of each frame, H is the height of 

each frame, and D is the color dimension of the image, such as the RGB system. The 

3D kernel is used for convolution operations to the multiple contiguous frames 

together. The convolution shifts the kernel using a stride as the shift step. In addition, 

the padding layer can be used to increase the area of the video frame when it has 

necessary elements at the edges of the frame. The output layers of convolution 

becomes a cube consisting of output values, as shown in Figure 11. 

 

Figure 11 The structure of  3D convolution (Ji et al., 2013). 
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 2.4.1 C3D (Tran et al., 2014) 

   C3D is a deep three-dimensional convolutional neural network for 

spatiotemporal feature learning of video data. C3D proposed by Tran et al. (2014), can 

learn both spatial features and temporal features from continuous frames by using 3D 

convolution and 3D pooling operation. The architecture of C3D consists of 8 

convolutions, 5 max-pooling, and 2 fully connected layers, followed by a softmax 

output layer. All 3D convolution kernels are size 3×3×3 with stride 1 in both spatial 

and temporal dimensions. The convolution has a number of filters such as 64, 128, 

256, 256, 512, 512, 512 and 512. All pooling kernels are 2×2×2, except for pool1 is  

1×2×2. The fully connected layer has 4096 output units. The architecture of C3D is 

shown in Figure 12.  

 

Figure 12 The architecture of C3D (Tran et al., 2014). 

2.5 Recurrent Neural Network architecture 

 Recurrent Neural Network (RNN) is a network that forwards the output data 

from the hidden layer of the previous time step as the input data for the next time step 

as shown in Figure 13. RNN is applied to time series data or sequence data, for 

example, including language translation, speech recognition, handwriting recognition, 

video understanding, and generating image descriptions. An example of a recurrent 

neural network is the Long Short-Term Memory (LSTM), Bidirectional Long Short-

Term Memory (BiLSTM), and the Gate Recurrent Unit (GRU).  
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Figure 13 Recurrent Neural Network. 

 2.5.1  Long Short - Term Memory (LSTM) 

   LSTM is a type of artificial neural network developed to address the 

issue of vanishing information when dealing with long data sequences over extended 

periods. LSTM was proposed by Hochreiter and Schmidhuber (1997) in 1997, LSTM 

is designed based on gating mechanisms to control the flow of information and the 

state within the LSTM units during operation. The approach minimizes losing crucial 

information or keeping unnecessary data when dealing with extended sequences. The 

architecture of LSTM consists of four fundamental components including cell state, 

input gate, forget gate, and output gate, as shown in Figure 14. 

 

Figure 14 Long Short - Term Memory architecture (Hochreiter & Schmidhuber, 

1997). 

   2.5.1.1 Cell state is core memory of the LSTM, the cell state, enables 

the network to retain information over long sequences. The cell state can store and 

modify data, essential for keeping context across different time steps. 

   2.5.1.2 Input gate decides which information from the current input and 

the previous time step should be stored in the cell state. The gate selectively updates 

the cell state with new data, enabling the network to adapt to changing patterns. 

   2.5.1.3 Forget gate considers if information should be discarded from 

the cell state. By screening out unessential data, LSTM avoids information overload 

and ensures that the cell state remains concise. 
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   2.5.1.4 Output gate handles the amount of information extracted from 

the cell state to generate the output. This controlled flow of information helps in 

producing accurate predictions or classifications. 

 

Figure 15 Long Short - Term Memory cell (Hochreiter & Schmidhuber, 1997). 

 2.5.2 Bidirectional Long Short-Term Memory (Bi-LSTM) (Graves & 

Schmidhuber, 2005) 

    Bi-LSTM was proposed by Graves and Schmidhuber (2005) and 

developed as an extension of the LSTM. Because LSTM  processes data in one 

direction only. The Bi-LSTM difference from LSTM enables the capture of context 

from both directions in sequential data, including forward and backward directions. 

The Bi-LSTM architecture consists of two LSTM layers, including one processing the 

sequence in the forward direction and the other in the backward direction. The outputs 

from both layers are then combined to provide a comprehensive representation of the 

sequence data. 

 

Figure 16. Bidirectional Long Short-Term Memory architecture (Graves & 

Schmidhuber, 2005). 
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 2.5.3 Gate Recurrent Unit (GRU) (Cho et al., 2014) 

   GRU is a type of recurrent neural network architecture introduced by 

Cho et al. (2014) to address some of the limitations of traditional recurrent neural 

networks, such as the vanishing gradient problem and the difficulty of capturing long-

range dependencies in sequences. GRU has the same function as the LSTM network 

but has a simplified architecture with fewer parameters, making it computationally 

less intensive and often easier to train. The previous sequence information is 

controlled by reset and update gates, as shown in Figure 17. Further, the update gate 

combines the input and forget gates into a single gate. The GRU network has fewer 

hyperparameters to adjust. Thus, it trains the model faster than the LSTM network 

(Toharudin et al., 2020). 

 

Figure 17 Gate Recurrent Unit architecture. (Cho et al., 2014) 

2.6 Deep features extraction 

 Feature extraction is a critical step in machine learning, as it involves 

transforming raw data into a more suitable structure for model training and analysis. 

The CNN models are widely used for feature extraction, pre-trained to extract 

features, such as the MobileNet model, and the ResNet model trained in big data, such 

as ImageNet. The advantage of this method is that it can use the existing classical 

model, which has been pre-trained by many data (Lu et al., 2023). CNN model can 

learn meaningful representations from the input data autonomously, and it can extract 

different levels (low, medium, and high) of features from raw data at the difference 

convolution layer , as shown in Figure 18. In the CNN model, the first layers discover 
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low-level features, such as edges, lines, and corners. The other layers discover mid-

level and high-level features, for instance, structures, objects, and shapes (LeCun et 

al., 2015).  

 

Figure 18 Deep feature extraction using CNN.  
 

 For video recognition, deep feature extraction is mostly used to extract the 

essential features at the frame level. Then, the resulting deep features are sent to 

sequenced data models learning such as LSTM or Bi-LSTM to understand essential 

features between frames and can be used to classify videos effectively. 

2.7 Deep features fusion method 

 Integrating deep features involves combining distinct features extracted from 

different sources, such as features extracted from diverse convolutional layers or 

features derived from different models. These features are merged to create new 

representations that perform as description of the data. Subsequently, these integrated 

features are utilized to train classification models for subsequent tasks. Fusing 

features from multiple sources offers several advantages over learning from a single 

feature set (H e et al., 2016). For instance, features extracted from  various 

convolutional layers capturing different feature levels can be integrated to create a 

more comprehensive representation of the input data. Integrating deep features 

facilitates the creation of enriched and more informative representations that enhance 

classification performance. The methods for deep feature fusion include addition and 

concatenation operations (J. Liu et al., 2022).  The addition operation corresponds to 
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an increased information for the features describing the image. However, the 

dimensions describing the image do not increase, as shown in Figure 19. 

 

 

 

 

 

 

Figure 19. Feature fusion using addition operation. 

 

 

 

 

 

 

 

 

 

Figure 20. Feature fusion using concatenation operation. 

In contrast, concatenation operation refers to a merger of the number of channels, and 

the number of channels refers to the sum of Feature (X1) to Feature (Xn) channels, as 

shown in Figure 20. 

2.8  Violent dataset 

 This section describes violent video datasets that are widely used in violence 

recognition. The dataset used for violent videos was collected from various sources 
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such as sports games, YouTube, movie, and CCTV. Each dataset has a different 

resolution of videos, people, and scenes. I can explain each data set as follows. 

 2.8.1 Hockey fight dataset (Bermejo et al., 2011) 

   Bermejo et al. (2011) proposed a hockey fight dataset in 2011 collected 

from National Hockey League hockey games. The dataset consists of 1,000 videos, 

which are divided into 500 violent videos and 500 nonviolent videos. The video 

consists of 41 frames and a resolution of 720×576  pixels. A sample frame from the 

hockey fight dataset is shown in Figure 21.  

   
                violence video                              non-violence video 

Figure 21 Samples of hockey fight dataset. 

 2.8.2 Movie dataset (Bermejo et al., 2011) 

   The movie dataset proposed by Bermejo et al. (2011) consists of 200 

videos collected from action movie. The violence class consists of 100 videos 

collected from action movie scenes, while the nonviolence class was collected from 

other publicly available action recognition datasets that do not contain violent action. 

The duration of each video clip is around 2 seconds. The sample frame from the 

movie dataset is shown in Figure 22. 
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   violence video                            non-violence video 

Figure 22 Samples of movie dataset. 

 2.8.3 Violent flow dataset (Hassner et al., 2012) 

   In 2012, Hassner et al. (2012) proposed the violent flow dataset 

consisting of 246 videos that contain crowds with scenes of a fighting between 

people. The videos were collected from violent situations that occured in football 

matches. The dataset is divided into 123 violent videos and 123 nonviolence videos. 

The videos in this dataset range from 1.04 seconds to 6.53 seconds. A sample frame 

from the violent flow dataset is shown in Figure 23. 

   

 violence video                non-violence video 

Figure 23 Samples of violent flow dataset. 

 2.8.4 RWF2000 dataset (Cheng et al., 2021) 

   Cheng et al. (2021) proposed the RWF2000 dataset which collected 

real-world fighting videos from YouTube, consisting of 2,000 real-world video clips, 

surveillance cameras, and social media. Half of the videos include violent behaviors, 

while others depict nonviolent activities. For violence videos include, any form of 
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subjectively identified violent actions such as fighting, robbery, explosion, hooting, 

blood, and assault. The duration of each video clip is around 5 seconds with 30 FPS. 

A sample frame from the RWF2000 dataset is shown in Figure 24. 

    

                     violence video                           non-violence video 

Figure 24 Sample of RWF2000 dataset. 

 2.8.5 UCF crime dataset (Sultani et al., 2018) 

   Sultani et al. (2018) proposed the UCF crime dataset as a long 

untrimmed video collection of 1,900 real-world surveillance videos, comprising 950 

for violent and 950 nonviolent videos. Videos in this dataset usually have a duration 

from 1 to 10 minutes. The dataset consists of 13 types of regular activities and violent 

classes: abuse, arrest, arson, assault, traffic accident, burglary, explosion, fight, 

robbery, burglary, shooting, theft, shoplifting, and vandalism. The number of videos in 

each category and an example video of the UCF crime dataset are shown in Table 1 

and Figure 25, respectively. 

Table 1 A number of videos in each category of UCF-crime dataset. 

Classes videos Classes video 

Abuse 50 Road accident 150 

Arson 50 Robbery 150 

Arrest 50 Shooting 50 

Assault 50 Shoplifting 50 

Burglary 100 Stealing 100 

Explosion 50 Vandalism 50 

Fighting 50 Normal 950 

Total 1,900 
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Figure 25 Samples of UCF crime dataset. 
 

2.9 Related work 

 2.9.1  Deep learning for video classification. 

   Deep learning techniques are essential and successful tools in video 

classification tasks. The advantage of the deep learning model is the ability to 

automatically recognize and classify the videos accurately. Video recognition differs 

from image recognition because it can realize various input data, while image 

classification is performed on images. ur Rehman et al. (2023) categorized the video 

classification task as a uni-modal or multi-modal video classification. The uni-modal 

recognizes video from single input data, such as text, audio, or visual information. In 

contrast, multi-modal classification is a combination of text, audio, or visual 

information. Some research has resulted in methods being proposed based on a single 

modal for video classification. Yadav and Vishwakarma (2020) propose a deep affect-

based movie genre classification framework. This proposed method involves cropping 

video frames with faces and ignoring the rest in a preprocessing step. Then, the spatial 
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features were extracted via the InceptionV4 network to obtain robust features. The Bi-

LSTM and LSTM were added to help in generating an effective feature. The final 

feature was passed to softmax classification to obtain probabilities. Finally, a stacked 

ensemble was used for classifying a movie's trailer. The result indicated that the 

proposed method outperforms all the state-of-the-art methods significantly.  

   Ramesh and Mahesh (2022) proposed a framework based on deep 

learning to classify sports videos using sports video as an input. First, the frame 

extraction process converts the input videos into frames and reduces noise with the 

fuzzy adaptive median filtering technique. Then, an enhanced threshold-based frame 

difference algorithm is applied to identify the keyframe. Finally, CNN is utilized for 

feature extraction and classification. The result shows that this framework offers 

improved performance with less computational expense, and feature extraction 

architectures using CNN can outperform hand-crafted features. Z. Liu et al. (2022) 

presented a pure transform er backbone architecture for video recognition 

implemented through a spatiotemporal adaptation of the Swin Transformer, which 

achieves state-of-the-art performance on benchmark datasets. 

   Recently, multi-modal video classification has gained attention for 

video classification. Some research utilizes characteristics of video, audio, and text 

attributes to improve more efficient results than incorporating only one feature. Gao et 

al. (2019) proposed a framework for efficient action recognition in video that 

considers jointly frame and audio. The image frame captures most of the appearance 

inform ation within the video, while the audio provides im portant dynam ic 

information. The pair of images and audio were selected to perform efficient video-

level action recognition. Tahir et al. (2020)extracted features of frame, movement, and 

audio information of video scenes through VGG-19. They further extracted movement 

features with the BiLSTM model. All features are concatenated and forwarded to a 

fully connected neural network to detect the disturbed and fake embedded content in 

videos. The result shows that the combined features outperform the individual 

features.  

   Also, Lou et al. (2021) proposed a fusion of auditory and frame-level 

features through the CNN-LSTM for violence recognition. The result proved that the 

fusion feature method obtained better recognition results and improved the accuracy 
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of violent behavior recognition. Pratama et al. (2023) proposed violence recognition 

using a two-stream 3D convolution network, which used video frame and optical flow 

as input. Ma et al. (2023)proposed a two-stream inflated 3D convolution network for 

human behavior recognition that learns action features directly from RGB and optical 

flow inputs. The results showed that the proposed method achieved the highest 

performance on UCF-101 and HMDB-51 datasets by reducing misclassification by 

57% and 33%, respectively. Wang et al. (2023) proposed a two-stream deep learning 

architecture for video violent activity detection. The RGB frames and optical flow 

data were used as inputs for each stream to extract the spatiotemporal features of 

videos. A fter that, the spatiotem poral features from  the tw o stream s w ere 

concatenated and fed to the classifier for the final decision. 

 2.9.2  Hand crafted features for violent recognition 

   Recognition of violence in surveillance video used a handcrafted 

approach for feature extraction based on images. Then aggregate the features were 

aggregated using encoding strategies and machine learning applied as a classifier (Li 

et al., 2019). Some research has considered spatiotemporal descriptors around an  

interesting point to recognize the violence in surveillance video. Souza et al. (2010) 

presented a violence detector based on local spatiotemporal features with a bag of 

visual words and a support vector machine. The results confirm that motion patterns 

are crucial to distinguish violence from regular activities compared to visual 

descriptors in the space domain. Bermejo et al. (2011)introduced a fight dataset and 

used space-time interest points and motion scale-invariant feature transform method 

to extract spatial-temporal features. Then, the feature vector was sent to the support 

vector machine classifier.  

   Similarly, Xu et al. (2014)used the motion scale-invariant feature 

transform method to extract the low-level description of a query video. The kernel 

density estimation is exploited for feature selection to obtain the highly discriminative 

video feature. A sparse coding method with a max pooling procedure generates a 

discriminative high-level video representation from local features. The result showed 

that the proposed method outperformed violence detection in crowded and non-

crowded scenes. Das et al. (2019) proposed a system to detect violence from video, 

applied a histogram of oriented gradient as a feature descriptor to extract features 
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from the images, and employed various classifier models and a majority voting 

technique to decide whether a video clip contains violence or not. The result showed 

that the system is robust enough to detect violence in different surveillance situations. 

Several researchers have proposed methods for global feature extraction, such as 

Hassner et al. (2012)presenting a violent flow feature descriptor based on optical flow 

magnitude changes between adjacent violent video frames. Gao et al. (2016) 

improved the violent flow feature descriptor to use the orientation information of 

optical flow, a namely oriented violent flow which considers both magnitude and 

orientation information. The features are encoded into the bag of word representation 

and a support vector machine for violence in the video classifier. However, the hand-

crafted features are usually dataset dependent and do not generalize well (Wang et al., 

2023). 

 2.9.3 Deep learning for violent recognition 

   Many approaches have been proposed to recognize violent video, 

which is categorized into 2D-CNN, 3D-CNN, combination of CNN and RNN, and 

fusion of features approaches.  

   2.9.3.1 Violent recognition with 2D-CNN 

        The im age-based approach utilizes a tw o-dim ensional 

convolution neural network (2D-CNN) for frame-level feature extraction. 2D-CNN 

can capture spatial features from  individual fram es of video. The resulting 

discriminative features are then classified using a state-of-the-art classification model 

such as SVM. Some researchers have developed convolutional neural networks 

(CNNs) for performing violent video recognition. Irfanullah et al. (2022) proposed 

real-time violence detection in surveillance videos using convolutional neural 

networks. This research compares the performance of different CNN models such as 

AlexNet, VGG-16, GoogleNet, and MobileNet for violence recognition. The result 

indicated that the MobileNet model outperformed the other models regarding 

accuracy, loss, and computation time. Khan et al. (2019) presented a violence 

detection approach using deep learning. The video was segmented into shots and 

selected representative frames with a maximum saliency score. Then, the selected 

frames were learned by a lightweight deep learning model and classified as depicting 

violence or non-violence. Keçeli and Kaya (2017) used a pre-trained CNN for deep 



 

 

 
 28 

high-level features extraction that applied an optical flow as the input of the network 

and classified violent activities by SVM and subspace k-nearest neighbor (SkNN). 

Karisma et al. (2021)used a pre-trained VGG16 model for the feature extraction 

method and classified it using the support vector machine (SVM) algorithm with the 

linear kernel. VGG16 extracted 4,096 features and was used as the input to the SVM. 

The experimental results showed that the VGG16 combined with SVM achieved an 

accuracy of 96.4%. 

   2.9.3.2  Violent recognition with 3D-CNN 

       From the above, 2D-CNN is performed on individual frames 

without considering the temporal information between adjacent frames (Lin et al., 

2019), especially for video recognition tasks that consider the time information 

involved. Therefore, further developments will extend the capabilities from 2D-CNN 

to 3D-CNN to extract appropriate video features. 3D-CNN can analyze both spatial 

and temporal information. Several 3D-CNN architectures have been proposed to 

sustain more factual video recognition performance. Ji et al. (2013) proposed a 3D-

CNN to extract spatial and temporal features from video data for action recognition. 

The experimental results showed that the proposed models significantly outperformed 

2D-CNN architecture. Su et al. (2022) employed the X3D network  to detect violence 

captured by surveillance cameras. The X3D network is a 3D-CNN that is designed for 

activity recognition and fine-tuned to detect violence in real time. The 3D kernels are 

designed to deal with information from both the spatial and temporal domains in the 

same manner. The experimental result demonstrates that our modified model 

outperforms most other violence detection methods with simple hyperparameter 

adjustments.  

      Alharthi et al. (2023) examined various deep-learning models 

to enhance abnormal behavior detection on the massive Hajj crowd dataset. To extract 

spatiotemporal features from a video containing anomalous behavior, pre-trained C3D 

models are employed. The obtained spatiotemporal features are fed to fully connected 

layers that are trained to classify the video into one of the seven abnormal classes or 

the normal class. The result shows that the C3D model outperformก VGG-16 and the 

other research  approaches. M aqsood et al. (2021) proposed a framework for 
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recognizing anomaly videos by learning spatiotemporal features using a deep 3 -

dimensional convolutional network. The experiment was trained on the University of 

Central Florida (UCF) Crime dataset. The proposed approach consists of 3D feature 

extraction and spatial augmentation by the proposed 3D ConvNet. The result shows 

that the 3D ConvNet outperforms significantly from the state-of-the-art method on 

anomalous activity recognition having 82% AUC. Jahlan and Elrefaei (2022) 

proposed a novel approach using the fusion technique to detect violence. First, both 

Alexnet and SqueezeNet networks are followed by Convolution Long Short-Term 

Memory (ConvLSTM) to extract robust features from the video. Then, the obtained 

features were fused and fed into the max-pooling layer, fully connected layer, and 

softmax classifier. 

   2.9.3.3 Violent recognition with combination of CNN and RNN 

       Another method for violent video recognition is using RNN to 

encourage performances with spatial and temporal features, which jointly consider 

information about the previous and current frames. The survey of Morshed et al. 

(2023) found that current approaches based on RNN often use LSTM to handle 

lengthy action sequences because this architecture m ay avoid the overall 

disappearance of gradient issues. For violent video recognition, many studies apply 

CNN for spatial feature extraction and then employ RNN for temporal feature 

extraction in video recognition. Sudhakaran and Lanz (2017) use frame difference as 

input of a 2D-CNN to extract hierarchical features from the video frames and then 

aggregated them using the convLSTM layer. Then they were classified as violence or 

non-violence with a fully connected layer. The experimental result showed that a deep 

neural network trained on the frame difference performed better than a model trained 

on raw frames.  

      Soliman et al. (2019) proposed the pre-trained VGG-16 model 

on ImageNet to extract spatial and LSTM to extract temporal features before being 

classified by a fully connected layer. Experiments on standard violent data sets 

showed that the model outperformed the state-of-the-art approach. Besides, they 

created a real-life violence situations (RLVS) dataset for fine-tuning the model, 

achieving the best accuracy of 88.2% on the hockey fight dataset. Sumon et al. (2019) 

demonstrated the efficiency of the deep learning method by using CNN, LSTM and 
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combining CNN with LSTM. The experiment on violent video datasets found that the 

CNN model with transfer learning performed better than LSTM and CNN-LSTM 

models. Naik and Gopalakrishna (2021) proffered the deep neural network model 

Mask Region-based Convolutional Neural Network (Mask RCNN) to detect a single 

person in the video and extract interest points. Then the extracted features were fed to 

LSTM for feature learning across a time series frame. The results showed that the 

model had excellent performance. 

      Some researchers have applied bidirectional LSTM to improve 

model performance by combining CNN with BiLSTM. Mumtaz et al. (2022) proposed 

a multi-scale of VGG-19 architecture for violence video classification. The VGG-19 

was used to initialize the spatial features extractor, followed by the widely followed 

Bi-LSTM structure for optimal recognition of violent. Hanson et al. (2019) proposed a  

spatiotemporal encoder to detect video violence. First, each video frame was extracted 

as feature maps with the VGG13 network. Then the feature maps were passed to 

BiConvLSTM to extract the temporal information by passing forward and backwards 

in time. Finally, elementwise maximization was applied to represent the video and 

classified as violent or non-violent in the video. The testing accuracy achieved 

96.96% on the hockey fight dataset, 100% on the movie dataset, and 90.6% on the 

violent flow dataset. 

   2.9.3.4 Violent recognition with fusion features. 

      Some research uses deep learning to learn from various features 

type. Jahlan and Elrefaei (2022) apply the feature fusion technique to recognize 

violence, in which the features were fusion obtained from AlexNet, SqueezNet, and 

LSTM. Correspondingly, Tahir et al. (2020) extracted the features from the VGG-19 

and BiLSTM model and then combined all features with concatenation for violence 

recognition in YouTube videos. P. Zhou et al. (2017) constructed ConvNets, namely 

FightNet, to model long-term temporal structures for recognizing violence. The input 

consists of an RGB image, optical flow, and acceleration field to extract the motion 

information better. Their approach demonstrated that deep ConvNets could capture 

more essential features and detect violence accurately.  
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      Carneiro et al. (2019) used VGG-16 for a multi-stream that 

includes spatial, temporal, rhythm, and depth information. The model achieved an 

accuracy of 89.10% on the hockey fight dataset and 100% on the movie dataset. The 

results showed that multi-stream methodology increased the efficiency of violent 

video recognition. Lou et al. (2021) proposed a method for an autoencoder mapping 

method for auditory-visual information fusion. The model comprised four parts: 

visual feature extraction, auditory feature extraction, autoencoder model, and full 

connection recognition model. CNN was used to extract frame level features and 

auditory features. Next, the frame level feature and auditory features were sent to 

LSTM network to process temporal relationship of the features. Then, the visual 

features and the auditory features were fused with the concatenate method. Finally, 

the full connection model was used to identify violent behavior. The result showed 

that the proposed method improved the performance of violent behavior recognition. 
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Chapter 3 

Fusion Lightweight CNNs and Sequence Learning Technique 

 

 Stopping violent incidents in real-life is more dangerous for ordinary people. 

It may harm people's lives. Calling the police is the best choice to stop the violence. 

We should have an automatic system to recognize violence and warn the police on 

time. This paper proposes a method to classify violent incidents from video. However, 

classification of violent videos faces many challenging problems, such as video 

length, quality, and angles and orientations of the recording devices. The proposed 

method is called fusion MobileNets-BiLSTM architecture. In the first part, we 

propose to use the lightweight MobileNetV1 and MobileNetV2 to extract the robust 

deep spatial features from the video so that only non-adjacent 16 frames were 

selected. The spatial features were transferred to the global average pooling, batch 

normalization, and time distribution. In the second part, the spatial features from the 

first part were concatenated and then sent to create the deep temporal features using 

the bidirectional long short-term  m em ory (BiLSTM ). The proposed fusion 

MobileNets-BiLSTM architecture was evaluated on the hockey fight dataset. The 

experimental results showed that the proposed method provides better results than the 

existing methods. It achieved 95.20% accuracy on the test set of the hockey fight 

dataset. 

3.1 Introduction 

 Video surveillance systems are essential to save human life and reduce the 

risks of becoming a victim of crime (Lejmi et al., 2020) (Lejmi, Ben Khalifa, and 

Mahjoub 2020). A crime can happen anywhere and anytime, causing damage to life 

and property. Most public or private places have established video surveillance 

systems to monitor human activity and prevent crime. However, using human 

monitoring through video surveillance may not stop the incident. Therefore, applying 

computer vision technology to video surveillance systems is crucial to identify in real-

time and warn related agencies when an abnormal event occurs. The need is to 

recognize violent activities such as fighting, punching, and kicking from a person or 

crowd. It is imperative to understand video and efficiently apply it to the real world. 
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The main contributions of the proposed architecture are presented in the following. 

We proposed the lightweight MobileNets to extract the deep spatial features and 

bidirectional long short-term memory (BiLSTM), which is a recurrent neural network, 

to learn from the sequence video frames and extract the temporal features. We 

proposed the concatenating operation to combine the spatial features that were 

extracted using the MobileNetV1 and MobileNetV2 before sending the spatial 

features to the BiLSTM network. The softmax function was used as the classifier of 

the proposed architecture. Hence, we selected keyframes which were the only 16 non-

adjacent frames. However, other methods were examined with 20 and 40 frames. In 

this paper, all 16 keyframes were input to the proposed fusion lightweight CNNs and 

sequence learning architecture. The output was classified as violence and non -

violence. 

 The rem ainder of this chapter is organized as follow s. Section 3.2 

summarizes the overview of related work. Section 3.3 describes the proposed fusion 

lightweight CNNs and sequence learning architecture. The violence video dataset  is 

explained in Section 3.4. The experimental setup, and experimental results are 

presented in Section 3.5. The conclusion and future work are given in Section 3.6. 

3.2 Related work 

 Nowadays, deep learning is developing rapid detection and recognition of 

violence in surveillance video. When comparing deep learning methods with 

traditional methods, deep learning methods have strong feature expression ability and 

m inor lim itations (Jiaxin  et al., 2021). Som e researchers have developed 

convolutional neural networks (CNNs) for performing violent video recognition 

(Kreuter et al., 2020; Lejmi et al., 2020; Siregar & Mauritsius, 2021) . Khan et al. 

(2019) presented a violence detection approach using deep learning. The video was 

segmented into shots and selected representative frames with a maximum saliency 

score. Then, the selected frames were learned by a lightweight deep learning model 

and classify them as violence or non-violence. Keçeli and Kaya (2017) used a pre-

trained CNN for deep high-level features extraction that applied an optical flow as the 

input of the network and classified violent activities by SVM and subspace k-nearest 

neighbor (SkNN). Karisma et al. (2021) used a pre-trained VGG16 model for the 
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feature extraction method and classified it using the support vector machine (SVM) 

algorithm with the linear kernel. VGG16 extracted 4,096 features and was used as the 

input to the SVM. The experimental results showed that the VGG16 combined with 

SVM achieved an accuracy of 96.40%. 

 Some studies have proposed combining CNN and LSTM networks with 

learning sequence data from video. Soliman et al. (2019) proposed an end-to-end deep 

neural network model for recognizing violence in video. The VGG16 was used for 

spatial feature extraction, followed by LSTM for extracting the temporal features. 

Then, the fully connected and softmax layers were used as classification. Their 

method achieved the best accuracy of 95.10% on the hockey fight dataset. Ditsanthia 

et al. (2018)proposed a new visual feature descriptor, called multi-scale convolutional 

features, to partition the video frame into different regions and extract deep features. 

Then, the features were pooled together to obtain a meaningful feature vector. Finally, 

the frame-level features were fed into the BiLSTM to classify violence from the 

video. 

 Carneiro et al. (2019)focused on the using a multi-stream of VGG-16 

networks and investigating conceivable feature descriptors of a video, including 

spatial, temporal, rhythmic, and depth information. Then, the outputs were classified 

using the ensemble method. Peixoto et al. (2020)proposed a fusion model based on 

visual and audio feature representation to tackle violence detection in video. First, the 

video frame features were extracted using C3D, CNN-LSTM, and InceptionV4, 

whereas the audio features were calculated using four standard audio feature extractor 

methods. Then, the different visual and audio features vectors were fused with a 

concatenation operation. Finally, A random forest and a softmax function were used as 

classifiers. The result showed that the classification accuracy increased 6% when 

combining visual and audio features. Lou et al. (2021) proposed an autoencoder 

mapping method for auditory-visual information fusion, using a CNN -LSTM 

architecture for feature extraction. Then, the visual and auditory features were 

integrated into the same shared subspace using an autoencoder model. Next, the 

output from autoencoder mapping was combined with the concatenation method. 

Finally, the softmax function was used to identify violent behavior. The result showed 

that their proposed method improved the performance of violent behavior recognition. 
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 In the above studies, CNN extracted only spatial features. However, 

information sent to create the deep learning model for video classification is 

insufficient (Chen et al., 2021), although many studies use the RNN architecture to 

learn from  the sequence data and increase the perform ance of the violence 

recognition. Therefore, for the surveillance system to recognize more accurately, the 

feature-fusion method receives more attention because the combination of features 

can significantly improve the efficiency of violence recognition. 

3.3 Fusion Lightweight CNNs and Sequence Learning Architecture 

 In this section, we present the fusion lightweight CNNs and sequence 

learning architecture to classify violent incidents from videos. 

 Overview of the architecture, we divided the proposed architecture into two 

main parts. For the first part, the deep spatial features are extracted from the violence 

videos using lightweight MobileNetV1 and MobileNetV2. In addition, we removed 

the two last layers of MobileNetV1 and V2 and replaced them with global average 

pooling (GAP), batch normalization (BN), and time distribution layers. Hence, the 

deep spatial features from  M obileN etV 1 and V 2 w ere connected w ith the 

concatenating operation. For the second part, we proposed the bidirectional long 

short-term memory (BiLSTM), which is a sequence learning architecture, to learn 

from the sequence features and extract the robust temporal features. The framework of 

the proposed architecture is shown in Figure 26. The details of each part are described 

in the following sections. 

 

Figure 26 Illustration of the fusion lightweight MobileNets and BiLSTM architecture       

for violence video recognition. 
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 3.3.1 Convolutional Neural Network Architectures. CNN is generally used 

for video recognition tasks because it effectively captures spatial information within 

video frames. CNN uses convolutional filters capable of capturing features such as 

edges, textures, and object shapes, which are crucial for understanding the content of 

individual frames. In this thesis, we are interested in lightweight neural network 

architectures with few parameters but still have high performance, including 

MobileNetV1, MobileNetV2, NASNetMobile, and ReNet50V2. The details of the 

CNN architectures are as follows. 

   3.3.1.1 MobileNetV1 is the lightweight CNN architecture, has a small 

number of parameters because the depthwise separable convolution operation was 

invented (Howard et al., 2017). Depthwise convolution was applied to each channel. 

Then, the pointwise convolution with a 1x1 convolution was performed to change the 

dimension and create a linear output. In the MobileNetV1 architecture, the depthwise 

separable convolution was attached to the convolution operation in every layer. 

Further, the BN and rectified linear unit (ReLU) activation function was combined 

after each convolution. The model of the MobileNetV1 is much smaller than VGG16 

and GoogLeNet. 

   3.3.1.2 MobileNetV2 is the improved version of MobileNetV1. Two 

layers were added in the MobileNetV2 architectures: an inverted residual and a linear 

bottleneck, to enhance memory efficiency (Sandler et al., 2018). The inverted residual 

block contained a convolution layer, depthwise convolution, and convolution layer, 

respectively, with one stride. The shortcut connection was connected between each 

residual block the same way as in the residual network. The linear bottleneck block 

also contained the same layer as the inverted residual layer, but the stride was set as 

two. 

   3.3.1.3 NASNetMobile is the lightweight version of the NASNet. It 

was designed to explore the best convolutional layer on a small dataset, such as the 

CIFAR-10 dataset, and then transfer the best layer by stacking the layers together to a 

large dataset, such as Im ageN et (Zoph et al., 2018). To search for the best 

convolutional layer, it searches from many sets of convolutional operations, for 

example, identity, 3x3 convolution, 3x3 depthwise convolution, 3x3 average pooling, 
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and 3x3 dilated convolution, using a recurrent neural network (RNN). NASNet 

consisted of two main cells were stacked together: normal and reduction cells. 

Although the normal and reduction cells were stacked together, the NASNet 

architecture could be adjusted by repeating many normal cells with N times. 

   3.3.1.4 ResNet50V2 is a modified version of ResNet50 that performs 

better than the original ResNet50 and ResNet101 on the ImageNet dataset (He et al., 

2016). The difference between the residual block in the original ResNet and the 

modification ResNetV2 is the number of the convolution operation. The original 

residual block contained the weight layer, BN, ReLU, weight layer, and BN, 

respectively. Before combining to the following layer, the ReLU function was 

performed. While the modified residual block in ResNetV2 contains BN, ReLU, 

weight layer, BN, ReLU, and followed by weight layer. Hence, it adds to the 

following layer without applying the ReLU function. For my experiments, we 

removed the last two layers of each CNN architecture before extracting the deep 

spatial features. A summary of the CNN architectures is presented in Table 2. 

Table 2  A number of parameter of CNN architectures. 

CNN Architectures No. of Parameters 

MobileNetV1 4.2 M 

MobileNetV2 3.2 M 

NASNetMobile 5.3 M 

ResNet50V2 25.6 M 

 3.3.2  Sequence Learning Architectures. For violent video understanding, 

using only CNN cannot capture long-term dependencies within sequence data due to 

the involvement of spatial information with convolutional operations. At the same 

time, RNN is designed to handle and effectively capture temporal dependencies in 

sequential data, emphasizing the importance of data sequence. RNN uses shared 

weights across different time steps, enabling it to capture dependencies across 

sequences effectively. In this study, the sequence information of 16 keyframes that 

were extracted from the violent video was first extracted using the CNNs and then 
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transferred to the sequence learning architectures. The brief details of the sequence 

learning architectures are as follows. 

   3.3.2.1 Long short-term memory (LSTM) was designed by Hochreiter 

and Schmidhuber (1997) to overcome the error of back-flow problems. LSTM has a 

memory block, which is a set of recurrently connected blocks, multiplicative units: 

input, output, and forget gates. The advantage of the LSTM network is that it was 

proposed to deal with long sequential data, including video, speech, and long text 

data. The gates were designed to keep or forget information while training the LSTM 

network. The LSTM learned from the sequence information and extracted the robust 

temporal features.    

   3.3.2.2 Bidirectional LSTM  (BiLSTM )  is a sequence learning 

architecture that processes sequence information in two directions  (Graves & 

Schmidhuber, 2005). It consists of two independent LSTM networks: forward state 

and backward state. The forward state takes the input in a forward direction. At the 

same time, the backward state takes in a backward direction. The outputs of the two 

states are connected to the same output. 

   3.3.2.3 Gated Recurrent Unit (GRU) was introduced by Cho et al. 

(2014) and has the same function as the LSTM network. The previous sequence 

information is controlled by reset and update gates. The reset and update gates were 

designed to control the previous sequence information. Further, the update gate 

combined the input and forget gates into a single gate. The GRU network has fewer 

hyperparameters to adjust. Thus, it trains the model faster than the LSTM network 

(Toharudin et al., 2020). 

3.4 Violent Video Datasets 

 We evaluated the proposed method on a benchmark violent video dataset that 

was collected from hockey games of the national hockey league (NHL) in North 

America, namely the hockey fight dataset (Bermejo et al., 2011). The hockey fight 

dataset includes two classes and contains 500 violent videos and 500 without 

violence. Each hockey video consists of 41 frames with 720x576 pixels resolution. 

Examples of violent and non-violent videos are shown in Figure 27. 
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(a) 

 

(b) 

Figure 27 Some examples of (a) violent video and (b) non-violent video of  

the hockey fight dataset. 

3.5 Experiment Setup and Results 

 3.5.1  Experiment Setup  

    We implemented the proposed framework using Keras API based on 

the TensorFlow backend. All experiments were performed on Windows OS with Intel 

Core i9, 32GB of RAM, and NVIDIA RTX2070 GPU. I first used a pre-trained model 

of four state-of-the-art CNN architectures to train on the hockey fight dataset, 

including MoblileNetV1, MobileNetV2, ResNet50V2, and NASNetMobile. The 

hyperparameters of the CNNs were set as follows: SGD optimizer, the momentum of 

0.9, batch size of 4, and train with 100 epochs. We also performed different learning 

rates (0.01, 0.01, 0.001, 0.0001, and 0.00001) to find the lowest loss value while 

training. To extract the deep features, I then deleted the last layer of each architecture, 

which was the fully connected (FC) and softmax layers and replaced it with three 

layers: global average pooling (GAP), batch normalization (BN), and time distribution 

layers. Second, the deep features were sent to the recurrent neural networks (RNNs), 

including LSTM, GRU, and BiLSTM. The softmax function was used as a classifier. 

The hockey fight dataset was divided into training and test sets that contained 750 and 

250 videos, respectively. 

 3.5.2  Experiments with Frames Selection 

    To show the performance of the CNN and RNN architecture on the 

hockey fight dataset, we proposed to use the MobileNetV2 architecture to train and 
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extract deep features from  all fram es, which was 40 fram es for each video. 

Subsequently, the deep features were combined with the LSTM network, called 

MobileNetV2-LSTM. We trained the MobileNetV2-LSTM model for 12 hours and 19 

minutes. The result showed that it achieved 93.73% accuracy on the test set. 

    Existing violence recognition systems were designed to extract 16, 20, 

and 40 frames from the video (Carneiro et al., 2019; Ditsanthia et al., 2018; Keçeli & 

Kaya, 2017; Soliman et al., 2019). In this experiment, we trained MobileNetV2-

LSTM by choosing only 16 frames from the video. Consequently, we experimented 

on choosing the key frame from different frame numbers (seeTable 3). As a result, the 

computational time was reduced and was three times faster than when training with 

40 frames. It trained approximately four hours. The accuracy results of different frame 

numbers are shown in Table 3. I compared four keyframe numbers (see Table 3, 

Experiments 1-4). It can be seen from Table 3 that frame numbers 5, 7, 9, ..., 35, 

which are 16 frames, are the best keyframes in our experiments on the hockey fight 

dataset. It obtained 88.80% on the test set. 

Table 3 Experimental results with different frames using MobileNetV2-LSTM. 

Experiments Frame Numbers Accuracy (%) 

1 1 - 16 83.20 

2 13 - 28 87.60 

3 25 - 40 88.00 

4 5, 7, 9, ..., 35 88.80 

    Discussion of Experiments with Frames Selection. We found that the 

best performance was obtained when selecting non-adjacent frames. However, when 

the non-adjacent frames were selected, the CNN-LSTM model was trained from the 

redundant information. For the hockey fight dataset, we then selected every two 

frames. Also, training the CNN-LSTM model using 16 keyframes was much faster 

than training with the whole frames. An example of the adjacent and non-adjacent 

frames is illustrated in Figure 28. 
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(a) 

 

(b) 

Figure 28 Illustration of the (a) adjacent and (b) non-adjacent frames of 

the hockey fight dataset. 

 3.5.3  Experiments with different CNN architectures.  

   As with the experimental results described above, the best frames were 

selected from the frames selection experiment, including 16 frames of frame numbers 

5, 7, 9, ..., 35. We evaluated the performance of the CNNs and LSTM using four state-

of-the-art CNN architectures: MobileNetV1, MobileNetV2, ResNet50V2, and 

NASNetMobile. The different learning rates were examined and only the best 

learning rate was reported for each CNN in this experiment. For evaluation, the 

training set was used for 5-fold cross-validation (5-cv) to avoid overfitting and the test 

set was for final evaluation. 

   We present the experimental results with various CNN architectures 

combined with the LSTM network in Table 4. MobileNetV2-LSTM achieved an 

accuracy of 92.76% with cross-validation on the hockey fight dataset and 91.60% on 

the test set. Results also significantly outperformed the other CNN-LSTM models (t-

test, p< 0.05). The MobileNetV2-LSTM spent around 21 minutes and 7 seconds for 

the training and test times, respectively. In contrast, the very deep networks 

(ResNet50V2 and NASNetMobile) performed worse on accuracy, computation, and 

biggest model size than others. MobileNetV2-LSTM has the best FLOPS value of 77 

and the fewest parameters of 13M, G is 109 and M is 106 to measure the computing 

performance. 
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Table 4 The average accuracy (%) and the standard deviation of CNN architectures 

combined with the LSTM network obtained on cross-validation and test sets. 

Models Learning 

Rate 

5-CV Test 

Accuracy 

(%) 

Training

Time 

(~mins) 

Testing 

Time 

(~sec/video) 

Model 

Size 

FLOPS 

(G) 

Params 

(M) 

ResNet50V2-

LSTM 

0.01 77.33 

±0.0472 

77.60 33 11 170 893 9.4 

NASNetMobile

-LSTM 

0.0001 82.67 

±0.0550 

87.60 31 34 94 147 

MobileNetV1-

LSTM 

0.00001 92.00 

±0.0354 

92.00 22 5 89 146 

MobileNetV2-

LSTM 

0.0001 92.76 

±0.0369 

91.60 21 7 86 77 

   We found that the proposed CNN-LSTM architectures can address the 

overfitting problem because the accuracies of the 5-cv and test set were not different. 

With the MobileNetV2 architecture, a very small learning rate value was used to 

reach the lowest loss value. Further, the computational time decreased when the 

lightweight CNNs (MobileNetV1 and V2) were performed. In the following 

experiments, M obileNetV1 is proposed in combination with different RNN 

architectures: LSTM, BiLSTM, and GRU. 

 3.5.4 Experiments with Fusion MobileNets and RNN Architectures 

   To examine the effect of the combination between MobileNets and 

RNN architectures, we combine the deep features extracted using MobileNetV1 and 

MobileNetV2 with concatenating and adding operations. Then, the deep combination 

features were transferred to the RNN architectures and classifier with a softmax 

function. Furthermore, the proposed model was trained with 1,000 epochs. 

   We present the accuracy results of the combined operations, including 

concatenating and adding, as shown in  Table 5. We also compared the fusion 

MobileNet and RNN architecture results with the experiments in Section 3.5.2. The 

fusion MobileNet and RNN models outperformed the single CNN models by 

approximately 2% on the test set. However, they spent much more training time, 

because they had to train on both MobileNet architectures. It can be seen from Table 5 

that the concatenating operation created robust deep features with the size of 16x2048 

and achieved better accuracy when combining MobileNet models with BiLSTM 
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architecture. It achieved an accuracy of 95.20% on the test set of the hockey fight 

dataset.  

   Furthermore, we use the FLOPS to measure computing recognition 

performance. The BiLSTM with the concatenating feature has a slightly higher 

FLOPS value than the others, equal to  252.53G. However, the adding operation 

created only 16×1024 deep features and achieved 94.80% accuracy when combined 

with RNNs. The performance was slightly decreased (only around 0.4%) when 

compared with concatenating operation. Most importantly, the testing time shown was 

almost equal.  

 3.5.5  D iscu ss io n  o f  E x p e rim en ts  w ith  fu s io n  M o b ileN e ts  a n d                            

RNN Architectures.  

   When using the combined operations: concatenating and adding, the 

deep feature sizes of the concatenating operation were larger one time than the adding 

operation. However, the training time was different, by only about one hour. The 

fusion MobileNet and RNN architectures can be used to classify violence from real-

time because it is recognized quickly and with high accuracy. So, extending the 

complex architecture does not affect the recognition time.  

Table 5 The accuracy (%) and computational times of violence recognition 

experiments on the hockey fight dataset. 

Combined 

operations 

RNNs Test 

Acc 

(%) 

Training 

time 

(h:m)  

Testing  

time 

(~sec/video) 

FLOP 

(G) 

Params

(M) 

Model 

Size 

(MB) 

Concatenating 

(16 × 2048) 

LSTM 94.80 3:38 3 252.26 34 104 

BiLSTM 95.20 8:44 5 252.53 69 208 

GRU 94.00 4:6 2 252.26 26 80 

Adding 

(16 × 1024) 

LSTM 94.80 3:22 2 252.26 26 72 

BiLSTM 94.80 7:35 4 252.26 52 136 

GRU 94.40 3:36 2 252.26 20 52 
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3.6 Comparison of the Fusion MobileNets and BiLSTM architecture and the 

Existing Methods.  

 This section presents the experimental results of various methods, as shown 

in Table 6. 

Table 6  The comparison of the proposed method with existing methods.  

Methods 

 

No. of Frames 

 

Data splitting 

Train:Test  

(%) 

Testing  

accuracy  

(%) 

Multiscale convolutional features 

(Ditsanthia et al., 2018) 

40 80:20 83.19 

salient frame extraction and MobileNet 

(Khan et al., 2019)  

N/A 75:25 87.00 

Short-term traffic flow prediction 

(Soliman et al., 2019) 

20 80:20 88.20 

Multi-stream CNN 

(Carneiro et al., 2019)  

40 90:10 89.10 

Optical flow and AlexNet  

(Keçeli & Kaya, 2017)  

20 80:20 94.40 

Our Proposed Method 16 75:25 95.20 

 Table 6 compares the results of our proposed method with the existing 

methods on the hockey fight dataset. It shows that our proposed fusion MobileNets-

BiLSTM architecture outperformed the existing methods with an accuracy of 95.20%. 

As a result, the existing method trained their models with more frames than our 

proposed method. The existing method trained with 20 and 40 frames, while our model 

trained with 16 frames. We also trained the model with less training set than the other 

methods, except research (Khan et al., 2019). 

3.7 Conclusions 

 In this research, we proposed the fusion MobileNets-BiLSTM framework to 

recognize violent events from  the sport of hockey. First, M obileNetV1 and 

MobileNetV2 were selected, which are lightweight convolutional neural networks 
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(CNNs), that aim to extract the robust deep features and then convert the deep 

features to perform with the bidirectional long short-term memory (BiLSTM) by 

adding three layers: the global average pooling, batch normalization, and time 

distribution. Second, the concatenating operation was proposed to fuse the robust 

deep features that are extracted by the lightweight MobileNets before transferring 

them to the BiLSTM network. For the hockey videos, we extracted video frames by 

selecting only 16 frames that were non - adjacent to avoid the proposed architecture 

training from the redundant information. Interestingly, the results showed that 

selection with the non-adjacent frames outperforms other selection frame methods. 

Furthermore, our results showed better accuracy than the results presented in existing 

works. The proposed fusion MobileNets-BiLSTM framework achieved an accuracy of 

95.20% on the test set of the hockey fight dataset. 

  In future research, we first aim to reduce the training and testing time by 

decreasing the video frames. For this, we will study the instance selection method 

(Olvera-López et al. 2010). Second, we found that applying the optical flow (Keçeli & 

Kaya, 2017) showed the appropriate results. We will also propose the optical flow 

method for selecting the non-adjacent frames. 
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Chapter 4 

Violence recognition with 3D-CNN 

 

 The technology of surveillance systems has been developing rapidly. Many 

places install surveillance cameras for the security of unusual events that may occur. 

However, monitoring violent events requires manual work and time to analyze 

historical files, which does not allow immediate action to stop the incident. Deep 

learning is a powerful technique that can extract important features for discriminative 

recognition. It can also construct models with high accuracy for application in various 

domains. In this work, we proposed an effective method for recognizing violent 

videos using deep learning techniques. The proposed method comprises two main 

parts, the deep feature extraction and integration part and the 3D convolution part. For 

the deep feature extraction, we used MobileNetV1 and MobileNetV2 to extract spatial 

features from individual frames separately. Then, the obtained features are integrated 

with concatenate operation before passing through the 3D convolution. The 3D 

convolution considers temporal information between adjacent feature frames and 

performs violent classification using softmax. The performance of the proposed 

method is evaluated using three violence datasets, including hockey fight, movie, and 

violent flow. The result achieves an accuracy of 97.60%, 100%, and 96.77%, 

respectively. The result indicates that the proposed method is efficient compared to 

other proposals for violent recognition. 

 

4.1 Introduction 

 Recently, the surveillance system has been developing rapidly. Various 

locations have cameras installed to monitor abnormal events, including surveillance 

of theft in the mall, attacks in the park, patient behavior tracking in hospitals, and 

detection of elderly falls (Rajavel et al., 2022; X. Yang et al., 2022). However, 

detecting abnormalities is a human manual for analyzing and detecting visual 

information. Therefore, detecting abnormal events using humans must be more 

accurate and impractical (Jahlan & Elrefaei, 2022). Sometimes, anomaly detection 

occurs after a strange event has occurred, and it is impossible to notify in time. 
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Unusual circumstances include physical abuse, punching, robbery, robbery, accidents, 

etc. For the safety of human beings and the avoidance of violence. Therefore, an 

automated surveillance system is crucial developed to monitor human behavior at risk 

of violence from surveillance cameras. However, it is challenging to differentiate the 

violence in the video since similar to a typical gesture. Violent activity contains 

different activities such as fighting, beating, punching, and attacking people. 

However, Video recognition differs from image recognition in that each video 

requires multiple frames to extract features. Therefore, videos with high frame rates 

are also time-consuming. In addition to different viewpoints, scale, video resolution, 

the number of people in the area, the crowd scene, and the dynamic scene will 

significantly affect the recognition performance, making action recognition more 

challenging to capture practical and discriminative features.  

 Many researchers proposed methods to improve the effectiveness of video 

violence recognition (Das et al., 2019; Gao et al., 2016; Souza et al., 2010). In 

literature, the basic process of violent recognition is divided into feature extraction 

and classification. Several years ago, feature extraction used a hand-craft method 

consisting of local and global feature extraction to recognize the violence in 

surveillance video. For example, Souza et al. (2010) proposed a violence detector 

based on the local spatiotemporal feature. Das et al. (2019) used a histogram of 

oriented gradients method to extract the edges of gradient and orientation in localized 

portions of an image. Some studies proposed methods for global feature extraction. 

For example, Gao et al. (2016) improved the violent flow feature descriptor to use the 

orientation information of optical flow, namely oriented violent flow which considers 

both magnitude and orient information. The obtained features are then encoded into 

the bag of words. Finally, a classifier, such as a support vector machine, is adopted to 

recognize the violence in the video.   

 Deep learning is a core technology popularly applied to many fields within 

machine learning today due to its learning capabilities from the given data (Sarker, 

2021). A convolutional neural network (CNN) is one of the most influential networks 

for deep learning. M any researchers employed CNN for robust deep feature 

extraction. Khan et al. (2019) proposed lightweight deep learning to extract spatial 

features of frames and classified them by the softmax function. Carneiro et al. (2019) 
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proposed pre-trained VGG-16 to generate spatial features, temporal features, rhythm 

features, and depth information of video for violence detection. The result showed 

that the method improves the recognition efficiency derived from learning from 

training models. Also, Soliman et al. (2019)proposed the pre-trained VGG-16 and 

long short-term memory (LSTM) to extract spatial and temporal features of the video, 

respectively. In addition, other research applied 3D -CNN for spatiotemporal 

extraction, such as Ullah et al. (2019) using 3D- CNN to learn complex sequential 

patterns to predict violence in surveillance video streams to achieve good recognition 

performance. Li et al. also obtained an effective recognition model when using 3D- 

CNN for spatiotemporal feature extraction for multiplayer violence. 

 This research proposed a method to recognize violent video using deep 

feature integration and three-dimension convolution. First, each frame extracted 

features with two CNN models, including MobileNetV1 and MobileNetV2, at the last 

convolution layer. Then, we integrated the features vector with concatenate operation 

to represent the video feature vector. The video feature was learned with the proposed 

three-dimensional convolution. Finally, we use a softmax function to classify violent 

or non-violent videos. We perform on three challenge violent recognition in video 

datasets, namely hockey fight, movie, and violent flow, to verify the effectiveness of 

our method. 

4.2 Related work 

 4.2.1 Recognition of violence in surveillance video 

   In an early study, recognition of violence in surveillance video focused 

on a handcrafted approach for feature extraction, which can distinguish violence from 

nonviolence. Then, aggregate the features using encoding strategies and apply 

machine learning as a classifier (Li et al., 2019). A histogram of oriented gradients 

(HOG) extracts features from  an im age. The technique is used to count the 

occurrences of the gradient in the localized portions of an image. Dalal and Triggs 

(2005) applies a histogram of gradient orientation features for person detection and 

uses SVM as a classifier, which achieves good results. Correspondingly, Patil et al. 

(2017) used a histogram of gradient orientation feature descriptor to extract features 

and an SVM classifier to recognize human activities, providing good recognition 
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results with a minimum number of false detections. Sun et al. (2019) proposed a 

multi-view maximum entropy discriminant model to extract scale-invariant feature 

transform, histogram of oriented gradient, local binary patterns, and color histogram 

features from the image and combine various features for violence recognition of 

static images. Das et al. (2019) proposed a system to detect violence from video, 

applied HOG as a feature descriptor to extract features from the images, and 

employed various classifier models and a majority voting technique to decide whether 

a video clip contains violence. The result shows the system is robust enough to detect 

violence in different surveillance situations.  

   With the continuous development of violence recognition, many 

studies have analyzed motion features to encounter motion in video frames. Souza et 

al. (2010) presented a violence detector based on local spatiotemporal features with a 

bag of visual words and a support vector machine. The results confirm that motion 

patterns are crucial to distinguish violence from regular activities compared to visual 

descriptors in the space domain. Hassner et al. (2012) present a violent flow feature 

descriptor based on optical flow magnitude changes between adjacent violent video 

frames. Gao et al. (2019) improved the violent flow feature descriptor to use the 

orientation information of optical flow, namely oriented violent flow, which considers 

both magnitude and orient information. The features are encoded into the bag of word 

representation and a support vector machine for violence in the video classifier.  

   Bermejo et al. (2011) introduced a fight dataset and used space-time 

interest points and motion scale-invariant feature transform method to extract spatial-

temporal features. Then, the feature vector is sent to the support vector machine 

classifier. Similarly, Xu et al. (2014) used the motion scale-invariant feature transform 

method to extract the low-level description of a query video. The kernel density 

estimation is exploited for feature selection to obtain the highly discriminative video 

feature. A sparse coding m ethod with a m ax pooling procedure generates a 

discriminative high-level video representation from local features. The result shows 

that the proposed method outperforms violence detection in crowded and non -

crowded scenes. 
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 4.2.2 Deep neural networks 

   Deep learning has recently been widely used to train deep neural 

networks as robust feature extractors for violence recognition (Khan et al., 2019; Tian 

et al., 2021; P. Zhou et al., 2017). A convolutional neural network (CNN) is a deep 

learning architecture that extracts valuable information using convolution operation 

(Tyagi et al., 2022). Khan et al. (2019) presented a violence detection scheme for 

movie. The frame is selected based on the saliency score and applied by MobileNet to 

classify violence and non-violence. Then, all non-violence scenes are combined 

sequentially to generate a violence-free movie. This method obtained recognition 

performance of 87.00%, 99.5%, and 97.0% on the hockey fight, the movie dataset, 

and violence scene detection datasets, respectively. Some research uses deep learning 

to learn from various features type (Tian et al., 2021; P. Zhou et al., 2017).  

   P. Zhou et al. (2017) constructed ConvNets, namely FightNet, to model 

long-term temporal structures for recognizing violence. The input consists of an RGB 

image, optical flow, and acceleration field to extract the motion information better. 

Their approach demonstrates that deep ConvNets could capture more essential 

features and detect violence accurately. Carneiro et al. (2019)used VGG-16 for a 

multi-stream that includes spatial, temporal, rhythm, and depth information. The 

model achieved an accuracy of 89.10% on the hockey fight dataset and 100% on the 

movie dataset. The results showed that multi-stream methodology increased the 

efficiency of violent video recognition. Celard et al. (2023) proposed the CNN to 

recognize and classify violent events. This research evaluated the computational 

performance of the CNN architectures for automatic violence recognition, such as 

SqueezeNet, Inception, MobileNetV1, MobileNetV2, and NASNetMobile. The 

experiment shows that a high classification accuracy of 92.05% can be achieved using 

mobile architectures compared to VGG16, InceptionV3, and ResNet50 architecture. 

   Moreover, considering spatial and temporal feature extraction using 

2D-CNN followed by long short-term memory (LSTM) (Hanson et al., 2019; Naik & 

Gopalakrishna, 2021; Soliman et al., 2019; Sudhakaran & Lanz, 2017; Sumon et al., 

2019). Sudhakaran and Lanz (2017) use frame difference as input of a 2D-CNN to 

extract hierarchical features from the video frames and are then aggregated using the 

convLSTM layer. Then classify violence or non-violence with a fully connected layer. 
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The experimental result shows that a deep neural network trained on the frame 

difference performs better than a model trained on raw frames. Soliman et al. (2019) 

proposed the pre-trained VGG-16 model on ImageNet to extract spatial and LSTM to 

extract temporal features before being classified by a fully connected layer. 

Experiments on standard violent data sets show that the model outperforms the state-

of-the-art approach. Besides, they created a real-life violence situations (RLVS) 

dataset for fine-tuning the model, achieving the best accuracy of 88.2% on the hockey 

fight dataset.  

   Sumon et al. (2019) demonstrated the efficiency of the deep learning 

method by using CNN, LSTM and combining CNN with LSTM. The experiment on 

violent video datasets finds that the CNN model with transfer learning has performed 

better than LSTM and CNN-LSTM models. Naik and Gopalakrishna (2021) proffered 

the deep neural network model Mask Region-based Convolutional Neural Network 

(Mask RCNN) to detect a single person in the video and extract interest points. Then 

the extracted features were fed to LSTM for feature learning across a time series 

frame. The results showed that the model had excellent performance. Hanson et al. 

(2019) proposed the spatiotemporal encoder to detect video violence. First, each video 

frame was extracted as feature maps with the VGG13 network. Then the feature maps 

were passed to BiConvLSTM to extract the temporal information by passing forward 

in time and reverse. Finally, elementwise maximization is applied to represent the 

video and classified as violent or non-violent in the video. The testing accuracy 

achieved 96.96% on the hockey fight dataset, 100% on the movie dataset, and 90.6% 

on the violent flow dataset. 

 4.2.3 Spatial and temporal feature extraction 

   Feature extraction is an important step in deep learning, extracting 

essential features from the input data and reducing the dimension and computational 

cost (Humeau-Heurtier, 2019). Traditional video recognition is usually based on the 

geometric features manually extracted from video frames, which are difficult to apply 

to complex scenarios and cannot gain high accuracy recognition and robustness. Deep 

learning is outstanding at extracting spatial features of images and extracting features 

of frames for video when compared to machine learning (Pu et al., 2022). The feature 

extraction in video recognition tasks differs from image recognition, which can use 
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spatial feature extraction independently, which needs to be improved to sustain the 

learning effectively. Thus, temporal features are mainly considered to analyze 

information regarding the duration of adjacent frames. 

               Various researchers have proposed several spatial and temporal feature 

extraction methods for video recognition. Sun et al. (2022) proposed a deep learning 

model for user-generated content video quality assessment that extracts both a spatial 

and temporal feature. The spatial features extracted from the end-to-end model 

employed raw video frame pixels as input. The temporal features extractor uses a pre-

trained action recognition network to represent motion information. Then, the 

multilayer perception layer network is used to regress into chunk-level quality scores, 

and the temporal average pooling strategy is adopted to obtain the video-level quality 

score. The experimental results show that the proposed model outperforms five 

popular user-generated content video quality assessment databases.  

   J. Yang et al. (2022) introduce a recurrent vision transform framework 

to achieve the video action recognition task. The recurrent vision transform 

framework can capture spatial and temporal features by attention gate and recurrent 

execution. The attention gate can build interaction between the current frame input 

and the previous hidden state. The result demonstrates that the recurrent vision 

transform framework can achieve state-of-the-art performance on various datasets for 

the video recognition task. Some researchers combined convolutional neural networks 

and long short-term memory models to recognize the video frame sequence. Chen et 

al. (2023) used the VGG16 and LSTM network to recognize video-recorded actions 

performed in a traditional Chinese exercise. The result shows that the CNN-LSTM 

recognition model outperforms manually extracted features in the conventional action 

recognition model, and the CNN model is more effective in improving classification 

accuracy. 

               For violent video recognition, the convolutional network has extraction 

ability for the deep features from low-level to high-level features. Some research used 

deep learning to extract the spatial features from video frames after the preprocessing 

step, such as Sharma et al. Sharma and Sungheetha (2021) proposed a hybrid 

framework based on a fusion of CNN and SVM to detect abnormal incidents in video 

surveillance. This proposed method consists of data preprocessing using the 
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background subtraction technique, spatial features extraction using the CNN 

architectures, and classification by SVM. The experimental result demonstrates that 

the proposed method provides good accuracy, higher efficiency, and less loss than 

other combination and single classifiers. Many researchers proposed an approach for 

spatial and temporal feature extraction in recognition of violent video.  

   Vosta and Yow (2022) introduce a model for detecting abnormal events 

in a surveillance camera using CNN and LSTM. This research divided the video into 

20 frames and extracted essential features of each frame with ResNet50. The extracted 

features are fed into the ConvLSTM network, and normal and abnormal events are 

classified on the UCF-crime dataset. The results show that the proposed method 

achieved 81.71% AUC, higher than the C3D model on the same dataset. Jahlan and 

Elrefaei (2022) proposed a novel approach using the fusion technique to detect 

violence. First, both Alexnet and SqueezeNet networks are followed by Convolution 

Long Short-Term Memory (ConvLSTM) to extract robust features from the video. 

Then, the obtained features were fused and fed into the max-pooling layer, fully 

connected layer, and softmax classifier. 

          Recent studies have developed models that extract spatiotemporal 

features from 3D convolution neural networks (Hu et al., 2020). Maqsood et al. 

(2021) proposed a fram ework for recognizing anom aly videos by learning 

spatiotemporal features using a deep 3-dimensional convolutional network. The 

experiment was trained on the University of Central Florida (UCF) Crime dataset. The 

proposed approach consists of 3D feature extraction and spatial augmentation by the 

proposed 3D ConvNet. The result shows that the 3D ConvNet outperforms the state-

of-the-art method on anomalous activity recognition, having 82% AUC. Pratama et al. 

(2023) proposed the tw o-stream  3D ResNet-18 network for violence video 

classification. The two-stream 3D-CNN has two inputs, including RGB and the 

optical flow frame of the video. Each stream is separately trained with different 

configurations for extracting temporal information using 3D convolution and 3D 

pooling. Then, combine the output of both streams, achieving an accuracy of 90.5% 

on the RWF-2000 dataset. The result indicates that the 3D ResNet-18 shows robust 

performance in video-based violence classification.  
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   Keçeli and Kaya (2017) proposed an approach for automatically 

classifying violent video using a combination of a three-dimensional convolutional 

neural network and transfer learning. The proposed approach consists of three main 

parts, including person detection, spatial feature extraction, and temporal feature 

extraction. Person detection involves detecting and removing frames that do not 

contain a person. Then, AlexNet is used to extract features from a fully connected 

layer with a dimension of 4096. The extracted features of the individual frame are 

concatenated to construct a feature volume and are reshaped as two-dimensional 

before feeding to a 3D-CNN model, designed to capture the temporal features from 

the video and classify them by softmax layer. The experimental results show that 

better results are obtained than LSTM and biLSTM. 

4.3 Proposed framework 

 

Figure 29 The proposed framework deep features integration with 3D convolutional 

to recognize the violent video. 

 This section describes the proposed deep features integration with 3D 

convolution to recognize the violent video. We divided the proposed framework into 

frame-level deep feature extraction and integration and deep feature learning with 3D 

convolution. First, the frame-level deep features were extracted with two pre-trained 

CNN m odels from  the last convolution layer, which are M obileNetV1 and 

MobileNetV2. Next, the obtained features were integrated with concatenate operation 

to represent the video-level feature. Then, the video-level features were learned with 

the proposed 3D convolution consisting of batch normalization, 3D convolution, and 
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dropout layers. In addition, we employ a global average pooling layer, which is an 

effective pooling operation to reduce the total number of deep features, followed by a 

fully connected layer. Finally, the softmax function classified each video-level feature 

as a violent and nonviolent video. The proposed framework is shown in Figure 31. 

 4.3.1 Deep features extraction 

   Deep feature extraction is the main task to find out the robust features. 

The 2D-CNN model was widely used to be an effective extractor for image and video 

recognition. We consider the deep feature extraction in the frame level for violent 

video which each frame was extracted by the two pre-trained 2D-CNN models 

including MobileNetV1 and MobileNetV2, explained structure as follows. 

   4.3.1.2 MobileNetV1 (Howard et al., 2017) 

        MobileNetV1 is a streamlined architecture that uses depthwise 

separable convolutions to build lightweight deep convolutional neural networks. It 

provides an efficient model for mobile and embedded vision applications. Standard 

convolutions both filtering and combining input to produce a new representation. 

However, MobileNetV1 split convolution into two layers called the depthwise 

separable convolutions, including depthwise convolution and pointwise convolutions 

separately.  The standard convolution kernels are DK×DK×M×N where DK× DK is a 

dimension of the kernel, M is a number of channels, and N is the number of outputs. 

The computational cost of the standard convolution is DK×DK×M×N×DF×DF where 

DF×DF is the feature map size, as illustrated in Figure 30 (a).  

      The depthwise convolution kernels are DK×DK×M where M is 

channels of input. The output of a depthwise convolution is a features map of each 

input channel, as illustrated in Figure 30(b). In pointwise convolutions, is a combining 

layer for creating new features by 1×1 convolution kernel, as illustrated in Figure 

30(c). The network layer of MobileNetV1 starts with the convolution layer, followed 

by 13 depthwise separable convolution layers. A Batch Normalization (BN) and 

Rectified Linear Unit (ReLU) activation function follow all layers in the network. 

Subsequently, the Global Average Pooling layer is used for reducing extracted feature 

map size. Finally, the reduced feature map is fed into a fully connected layer and 
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classification by a softmax activation function. The structure of the MobileNetV1 is 

illustrated in Figure 31 (a). 

 
(a) 

 

(b) 

 

(c) 

Figure 30 show (a) the standard convolution kernel (b) the depthwise convolution 

kernel and (c) pointwise convolution kernel. (Howard et al., 2017) 

   4.3.1.2  MobileNetV2 (Sandler et al., 2018) 

      MobileNetV2 is also a lightweight CNN architecture for 

mobile devices. MobileNetV2 proposed the concept of inverted residuals and linear 

bottlenecks based on MobileNetV1. The inverted residual concept has three separate 

convolutions. First, a pointwise (1×1) convolution is used to expand the dimensional 

input feature map to a higher dimensional with ReLU6 is applied. Next, a depth-wise 

convolution is performed using 3×3 kernels, followed by ReLU6 activation. Finally, 

the spatially filtered feature map is reduced dimensional using another pointwise 

convolution, and the linear is used instead of ReLU to avoid information loss. Figure 

31 (b) show the structure of MobileNetV2. The first layer of MobileNetV2 is the 

convolution layer, followed by 19 residual bottleneck layers that consist of expanding 

convolution, depthwise convolution, and projection convolution. The Batch 

Normalization layer and ReLU6 activation function are applied to all layers except the 
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projection convolution layer. The last two layers are the global average pooling to 

reduce feature map size and softmax classifier. 

 

(a) 

 

(b) 

Figure 31 The structural of CNN (a) MobileNetV1 and (b) MobileNetV2  

(Howard et al., 2017; Sandler et al., 2018) 

 In addition, 3D-CNN is used as the extractor for video-level features to 

observe the difference in performance. 3D-CNN has the ability to model temporal 

information better than 2D-CNN due to 3D convolution and pooling operations. 3D 

convolution and pooling operations are performed spatial and temporal, whereas 2D-

CNN only learn spatially. 

 3D convolution is performed over multiple frames cascaded in the temporal 

dimension. The 3D convolution operation as shown in (1) and the obtained feature 

map is shown in equation (1). 

𝑐𝑜𝑛𝑣(𝐼, 𝐾)𝑥,𝑦,𝑧 = ∑ ∑ ∑ ∑ 𝐾𝑖,𝑗,𝑘,𝑙, 𝐼𝑥+𝑖−1,𝑦+𝑗−1,𝑧+𝑘−1,𝑘
𝑛𝐶
𝑙=1

𝑛𝑊
𝑘=1

𝑛𝐻
𝑗=1

𝑛𝐹
𝑖=1                          (1) 

where the kernel 𝐾(𝑓𝑓 , 𝑓ℎ, 𝑓𝑤, 𝑛𝐶) convolve with the image 𝐼(𝑛𝐹, 𝑛𝐻, 𝑛𝑊 , 𝑛𝐶) of 

different size but of similar number of channels 𝑛𝐶  and generate a feature map 

𝐹𝑒𝑎𝑡_𝑚𝑎𝑝(𝑜𝐹, 𝑜𝐻, 𝑜𝑊, 𝒵). The 𝑓𝑓 , 𝑓ℎ , 𝑓𝑤 represent the frame, height, and width of the 
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kernel. The  𝑜𝐹 , 𝑜𝐻, 𝑜𝑊, 𝒵 represent the frame, height, width, and number of filters of 

output feature map. And 𝑛𝐹 , 𝑛𝐻 , 𝑛𝑊 denote the frame, height, and width of the given 

image. 

𝐹𝑒𝑎𝑡𝑚𝑎𝑝(𝑜𝐹,𝑜𝐻,𝑜𝑊,𝒵) = (⌊
𝑛𝐹+2𝑝−𝑓

𝑠
+ 1⌋ , ⌊

𝑛𝐻+2𝑝−𝑓

𝑠
+ 1⌋ , ⌊

𝑛𝑊+2𝑝−𝑓

𝑠
+ 1⌋ , 𝒵)        (2) 

Convolutional three-dimension (C3D) architecture is the preferred architecture for 

video recognition. The details of the architecture C3D are as follows. 

   4.3.1.3  C3D (Tran et al., 2014)  

      C3D is a deep three-dimension convolutional neural network 

for spatiotemporal feature learning of video data. The C3D can learn both spatial 

features and temporal features from continuous frames by using 3D convolution and 

3D pooling operation. The architecture of C3D consists of 8 convolutions, 5 max-

pooling, and 2 fully connected layers, followed by a softmax output layer. All 3D 

convolution kernels are size 3×3×3 with stride 1 in both spatial and temporal 

dimensions. The convolution has a number of filters such as 64, 128, 256, 256, 512, 

512, 512 and 512 respectively. All pooling kernels are 2×2×2, except for pool1 is  

1×2×2. The fully connected layer has 4096 output units. The architecture of C3D as 

shown in Figure 4. The number of parameters and FLOPS of C3D pre-trained model 

which were trained on Sports-1M dataset (Maqsood et al., 2021) with input size 

16×112×112 as shown in Table 7. 

 

Figure 32 The architecture of C3D (Tran et al., 2014). 

Table 7 The number of the parameters in all layers of C3D architecture. 

Layer Input size Output Size Parameter (M) 

Conv1 16×112×112×3 16×56×56×64 0.005 

Conv2 16×56×56×64 8×28×28×128 0.22 
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Layer Input size Output Size Parameter (M) 

Conv3a,3b 8×28×28×128 4×14×14×256 2.65 

Conv4a,4b 4×14×14×256 2×14×14×512 10.62 

Conv5a,5b 2×14×14×512 2×7×7×512 14.16 

Fc6  4096 33.56 

Fc7  4096 16.78 

Total 78 

FLOPS (G) 521 

    4.3.2   Three - dimensional convolution neural network (3D-CNN) 

       Generally, 2D-CNN is suitable for image processing and 

practical in extracting only spatial features. When applied to video, it works with 

RNN-based networks to understand sequential data, while 3D-CNN is designed for 

video analysis, providing both spatial and temporal information in video. Therefore, 

we proposed a 3D-CNN architecture consisting of the batch normalization layer, 3D 

convolution layer, dropout layer, and global average pooling layer. The kernel sizes in 

the 3D convolution layers are 1×2×2, a stride of 1, and the filters are 1024. Next, we 

use the global average pooling layer to reduce the feature size to 512, followed by a 

fully connected layer. Finally, the output of the last layer is then passed to a dense 

layer of 2 neurons with a softmax activation function for violen t or non-violent 

classification. The proposed 3D convolutional neural network structure, parameter, 

and FLOPS are shown in Table 8. 

Table 8 Network architecture of the proposed 3D convolutional neural network. 

Layer Kernel 

size 

Input size 

(F×W×H×D) 

Output Size 

(F×W×H×D) 

Parameter 

(M) 

Batch Normalization - 16×7×7×2048 16×7×7×2048 0.008  

3D Conv 1×2×2 16×7×7×2048 16×6×6×1024 8.389  

Batch Normalization - 16×6×6×1024 16×6×6×1024 0.004  

Dropout - 16×6×6×1024 16×6×6×1024 - 

Global Average Pooling - 16×6×6×1024 512 - 

Fully connected - 512 2048 2.099  

Softmax - 2048 2 0.004  
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Layer Kernel 

size 

Input size 

(F×W×H×D) 

Output Size 

(F×W×H×D) 

Parameter 

(M) 

Total 10.504  

FLOPS (G) 521 

4.4 Violence Datasets 

 We evaluate our proposed approach on three benchmark violent video 

datasets, including hockey fight, movie, and violent flow datasets. The datasets were 

categorized into two classes: violent and non-violent classes. The hockey fight and 

violent flow are collected from sporting events such as hockey and soccer. At the 

same time, the movie dataset is collected from movie that have violent scenes. We 

describe the details of each data set as shown below. 

 4.4.1 Hockey fight dataset (Souza et al., 2010) 

   The hockey fight dataset contains 500 video clips for the fight and 500 

without the fight. It was collected from hockey games of the National Hockey league 

in which each video consists of 41 frames and a resolution of 720×576  pixels. The 

dataset is categorized into training and testing from the perspective of two classes, 

including violence and non-violence. The sample frame from the hockey fight dataset 

is shown in Figure 33. 

 
 (a) 
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(b) 

Figure 33 Samples of hockey fight dataset, (a) violence video and  

(b) non-violence video. 

 4.4.2 Movie dataset (Souza et al., 2010) 

   The movie dataset consists of 200 videos collected from action movie. 

The violence class 100 videos were collected from action movie scenes, while the 

non-violence was collected from other publicly available action recognition datasets 

that do not contain violent action. The duration of each video clip is around 2s. The 

sample frame from the movie dataset is shown in Figure 34. 

(a) 

 

 

 

 

 

 

(b) 

Figure 34 Samples of movie dataset, (a) violence video and (b) non-violence video. 
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 4.4.3 Violent flow dataset (Bermejo et al., 2011) 

   The violent flow dataset consists of 246 videos that contain crowds of 

scenes of fight between persons. The videos were collected from violent situations 

that occur in football matches. The sample frame from the violent flow dataset is 

shown in Figure 35. 

 

 

 

 

 

 

(a) 

(b) 

Figure 35 A samples of violent flow dataset, (a)violence and (b) nonviolence  video. 

4.5 Experimental results and discussion 

 This section explains the proposed deep features concatenate and 3D 

convolution for violent recognition. This research works on violence datasets 

consisting of hockey fight, movie and violent flow. First, we exploit the effectiveness 

of feature extraction with a pre-trained CNN model, including MobileNetV1, 

MobileNetV2, and C3D. Second, we assume that combining the deep features and 

learning through 3D -CNN will enable violent video recognition effectively. 

Accordingly, we combine the frame-level deep feature to produce robust deep features 

at the video level. Third, our proposed 3D convolution for violent recognition learned 

the deep features obtained. Finally, we compare our method with other violence 

recognition methods. 
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 4.5.1 Experimental setting 

   The proposed method is implemented by the Python programming 

language based on Keras API with TensorFlow as backend. All experiments were 

performed on Intel(R) Xeon(R) 2.00 GHz CPU, Tesla T4 GPU, and RAM 26 GB. We 

trained our models using the Stochastic Gradient Descent (SGD) optimizer with 

different learning rates (0.01, 0.001, and 0.0001). The momentum of the SGD was set 

to 0.9. The batch size is set to 4 and 8, and the model training 500 epochs. For 

violence recognition on each video, we decided to use 16 frames as input to reduce 

computational time. The datasets are randomly divided into 75% training and 25% 

testing. The following metrics are used for defining the performance of classification 

success: 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁 
,                                                                       (3) 

𝑆 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
,                                                                       (4) 

𝐴𝑐𝑐  =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                (5) 

above equations TP is true positive, FP is false positive, FN is false negative, R is true 

positive rate (sensitivity), S is true negative rate (specificity) and Acc is accuracy. 

Accuracy is the ratio of the number of correct predictions to the total number of test 

samples (between 0–1). It indicates how well a model performs, as in equation 5.  

   Moreover, we used the receiver operating characteristic (ROC) and 

area under the curve (AUC) techniques to evaluate the classification performance. 

The ROC represents the relation between true positive rate (sensitivity) and false 

positive rate (1- specificity). True positive rate defines a classifier test performance as 

accurately categorizing positive instances among all available positive samples 

throughout the test step, as in equation 3. The false positive rate determines the 

proportion of false-positive findings compared to the total negative samples available 

through the test step, as in equation 4. The AUC is used for binary classification and 

indicates how well a model discriminates between positive and negative target 

classes. This value is the area under the ROC curve. The best optimal classifier has a 

value of AUC close   to 1. 
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 4.5.2 The result of violent recognition with MobileNetV1, MobileNetV2,  

and C3D 

   To assess the efficiency of the pre-trained CNN model in recognizing 

violence within video content, we experimented with MobileNetV1 and MobileNetV2 

on three violent video datasets. First, we use 16 non-overlapping frames and select 

frames by skipping one frame at a time to reduce data redundancy. The selected 

frames are sized 16×224×224×3, where 16 represents the number of frames, 224 

represents width and height, and 3 describe channels. We retrained both MobileNetV1 

and MobileNetV2 models on the three datasets separately and replaced the final layer 

with softmax for classifying violent or nonviolent video. We compared the results in 

different batch sizes of 4 and 8 and learning rates of 0.01, 0.001, 0.0001, and 0.00001. 

   First, MobileNetV1 are evaluated on three datasets. On the hockey 

fight, the model can achieve performance with 95.99% accuracy when using a batch 

size of 8 and a learning rate of 0.01,0.001, and 0.0001. On the movie, the model can 

achieve performance with 98.00% when using a batch size of 4 and a learning rate of 

0.001. On violent flow, the model can achieve performance with 91.94% accuracy for 

all batch sizes and a learning rate setting, as shown in Table 9. 

Table 9 Evaluation of the violent recognition results using MobileNetV1  

Dataset Batch size Learning 

rate 

Accuracy Training 

Time (hr.) 

Testing  

Time (ms) 

Hockey fight 4 0.01 94.80 0.58 2 

0.001 95.99 0.59 

0.0001 95.20 0.58 

0.00001 95.20 0.58 

8 0.01 95.99 0.53 2 

0.001 95.99 0.53 

0.0001 95.99 0.53 

0.00001 95.60 0.53 

Movie 4 0.01 95.99 0.11 1 

0.001 98.00 0.11 

0.0001 93.99 0.11 

0.00001 93.99 0.11 
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Dataset Batch size Learning 

rate 

Accuracy Training 

Time (hr.) 

Testing  

Time (ms) 

8 0.01 92.00 0.11 1 

0.001 93.99 0.11 

0.0001 95.99 0.11 

0.00001 92.00 0.11 

Violent flow 4 0.01 91.94 0.14 1 

0.001 91.94 0.14 

0.0001 91.94 0.14 

0.00001 91.94 0.14 

8 0.01 91.94 0.13 1 

0.001 91.94 0.13 

0.0001 91.94 0.13 

0.00001 91.94 0.13 

shows the experiment results with MobileNetV2. On the hockey fight, the model 

achieved an accuracy of 95.99% when using a batch size of 4 and a learning rate of 

0.00001. On the movie, the model can achieve performance with 98.00% for all batch 

sizes and a learning rate setting. On violent flow, the model can achieve performance 

with 91.94% accuracy when using a batch size of 8 and a learning rate of 0.01. 

Table 10 Evaluation of the violent recognition results using MobileNetV2 

Dataset Batch size Learning 

rate 

Accuracy Training 

Time (hr.) 

Testing  

Time (ms) 

Hockey fight 4 0.01 95.60 0.68 3 

0.001 95.20 0.69 

0.0001 95.20 0.68 

0.00001 95.99 0.53 

8 0.01 95.20 0.60 3 

0.001 95.20 0.61 

0.0001 95.20 0.61 

0.00001 95.20 0.59 

Movie 4 0.01 98.00 0.17 2 

0.001 98.00 0.17 
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Dataset Batch size Learning 

rate 

Accuracy Training 

Time (hr.) 

Testing  

Time (ms) 

0.0001 98.00 0.17 

0.00001 98.00 0.16 

8 0.01 98.00 0.16 2 

0.001 98.00 0.15 

0.0001 98.00 0.16 

0.00001 98.00 0.17 

Violent flow 4 0.01 87.10 0.17 2 

0.001 88.71 0.16 

0.0001 87.10 0.16 

0.00001 88.71 0.16 

8 0.01 91.94 0.15 2 

0.001 82.26 0.15 

0.0001 87.10 0.15 

0.00001 88.71 0.15 

 

  In addition, we merged all datasets to create a larger dataset. Also, we split 

the data into 75% training and 25% testing and used a random split to avoid bias. We 

also trained MobileNetV1 and MobileNetV2 to classify violent videos separately. As 

in the experiment above, we configure the batch size and learning rate parameters. 

The models are evaluated with three testing datasets, including hockey fight, movie, 

and violent - flow. Table 11 shows that MobileNetV1 achieved the highest accuracy of 

96.40% when using a batch size of 4 and a learning rate of 0.0001. For the movie 

dataset, the model achieved the highest accuracy of 98.00% when using a batch size 

of 8 and a learning rate of 0.00001. Finally, the experiment result in Table 12 shows 

that MobileNetV2 achieved the highest accuracy of 95.59%, 92%, and 83.87% on 

hockey fight, movie, and violent flow datasets, respectively.   

Table 11 Testing accuracy of feature-extraction with the MobileNetV1, trained with  

merging all datasets and testing with separate datasets. 

Dataset Batch size Learning 

rate 

Accuracy 

(%) 

Training 

Time (hr.) 

Testing  

Time (ms) 



 

 

 
 67 

Dataset Batch size Learning 

rate 

Accuracy 

(%) 

Training 

Time (hr.) 

Testing  

Time (ms) 

Hockey fight 4 0.01 94.80 0.81 3 

0.001 94.40 0.81 

0.0001 96.40 0.79 

0.00001 94.40 0.78 

8 0.01 94.40 0.76 2 

0.001 95.20 0.76 

0.0001 95.20 0.75 

0.00001 94.40 0.75 

Movie 4 0.01 93.99 0.81 2 

0.001 89.99 0.81 

0.0001 87.99 0.79 

0.00001 92.00 0.78 

8 0.01 95.99 0.76 1 

0.001 89.99 0.76 

0.0001 93.99 0.75 

0.00001 98.00 0.75 

Violent flow 4 0.01 80.65 0.81 1 

0.001 82.26 0.81 

0.0001 79.03 0.79 

0.00001 82.26 0.78 

8 0.01 79.03 0.76 1 

0.001 79.03 0.76 

0.0001 79.03 0.75 

0.00001 82.26 0.75 

 

Table 12 Testing accuracy of feature-extraction with the MobileNetV2, trained with  

merging all datasets and testing with separate datasets 

Dataset Batch size Learning 

rate 

Accuracy Training 

Time (hr.) 

Testing  

Time (ms) 

Hockey fight 4 0.01 93.99 0.93 3 
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Dataset Batch size Learning 

rate 

Accuracy Training 

Time (hr.) 

Testing  

Time (ms) 

0.001 95.59 0.93 

0.0001 94.40 0.92 

0.00001 95.59 0.91 

8 0.01 95.20 0.84 3 

0.001 95.20 0.85 

0.0001 94.80 0.84 

0.00001 95.20 0.86 

Movie 4 0.01 89.99 0.93 2 

0.001 92.00 0.93 

0.0001 89.99 0.92 

0.00001 89.99 0.91 

8 0.01 87.99 0.84 2 

0.001 87.99 0.85 

0.0001 92.00 0.84 

0.00001 89.99 0.86 

Violent flow 4 0.01 82.26 0.93 2 

0.001 82.26 0.93 

0.0001 77.42 0.92 

0.00001 80.65 0.91 

8 0.01 82.26 0.84 2 

0.001 82.26 0.85 

0.0001 83.87 0.84 

0.00001 79.03 0.86 

In addition, we also experimented with pre-trained 3D-CNN models to discover the 

performance of spatial and temporal features. We selected the pre -trained C3D 

architecture, which was trained with a large video dataset such as the sportM1 dataset. 

The input of C3D was fixed to be a sequence of 16 frames and a size of 112×112×3, 

where 112×112 represents width and height, and 3 represents dimension. Then, we 

define the classification layer according to the dataset into two classes violence and 
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nonviolence. Next, the  C3D model was trained on three violent video datasets, 

including the hockey fight, the movie, and the violent flow dataset. Finally, the model 

was trained with different batch sizes of 4 and 8 and learning rates of 0.0001 and 

0.00001, as shown in Table 13. 

Table 13 The accuracy results with C3D on three datasets. 

Dataset Batch 

size 

Learning rate Training 

time  

(hr.) 

Testing 

time  

(ms.) 

Testing 

accuracy  

(%) 

Model 

size 

Hockey fight 4 0.0001 1.87 13 76.40 297.7MB 

0.00001 1.75 72.80 

8 0.0001 1.48 70.80 

0.00001 1.95 72.80 

Movie 4 0.0001 0.24 13 86.00 

0.00001 0.37 82.00 

8 0.0001 0.24 84.00 

0.00001 0.38 84.00 

Violent - flow 4 0.0001 0.52 13 70.97 

0.00001 0.50 72.58 

8 0.0001 0.48 70.97 

0.00001 0.47 75.81 

Table 13 shows the testing accuracy of the C3D model for video-level feature 

extraction. The C3D achieved 76.40%, 86.00%, and 75.81% testing accuracy on the 

hockey fight, movie, and violent flow datasets, respectively. Unfortunately, C3D 

experimental results are less accurate than 2D-CNN feature extraction. Therefore, 

comparing the accuracy between violent video recognition with MobileNetV1, 

MobileNetV2 and C3D model, it was found that MobileNetV1 and MobileNetV2 

model was still more accurate than the C3D model. 

 4.5.3 Deep features integrate with 3D convolutional neural network (3D-

CNN). 

   Leverage the robust spatial feature extraction capability of 2D-CNN 

and 3D-CNN to learn temporal information between adjacent frames. In this 
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experiment, we employed MobileNetV1 and MobileNetV2 to extract spatial features 

from individual frames separately. The obtained features were extracted from the last 

convolution layer before the pooling layer with a size of 7×7×1024. We integrated the 

features from MobilNetV1 and MobileNetV2 with concatenate for representing 

individual frames. The integrated feature is larger than the original size of 7×7×2048. 

The combined features were passed through the proposed 3D convolution for spatial 

and temporal feature learning. To find the most suitable 3D convolution for violence 

recognition, we experimented with the proposed five different 3D convolutions, as 

shown in Table 14. 

Table 14 The five-difference 3D convolution structures. 

 Model Model1 Model2 Model3 Model4 Model5 

 

Input Deep Feature (16×7×7×2048) 

Batch Normalization (16×7×7×2048) 

Conv3D  

(1024) 

K (1×2×2) 

Conv3D  

(512) 

K (1×2×2) 

Conv3D 

(1024) 

K (1×2×2) 

Conv3D 

(1024) 

K (1×2×2) 

Conv3D 

(1024) 

K (1×2×2) 

Batch 

normalization 

Conv3D (512) 

K (1×2×2) 

Conv3D (512) 

K (1×2×2) 

Conv3D (512) 

K (1×2×2) 

Conv3D (512) 

K (1×2×2) 

Dropout (0.2) 
Batch 

normalization 

Batch 

normalization 

Batch 

normalization 

Batch 

normalization 

GAP (1024) Dropout (0.2) Dropout (0.2) GAP (512) Dropout (0.2) 

Dense (2048) GAP (512) GAP (512) Dense (2048) GAP (512) 

Dense (2) Dense (2048) Dense (1024) Dense (2) Dense (2048) 

  Dense (2) Dense (2)   Dense (2) 

Params 10,499,074 6,303,746 11,019,778 11,547,138 11,547,138 

FLOPS 

(G) 

521 431 575 575 575 

 

The hyperparameters are set with different values to achieve optim al 

performance, including batch size (4 and 8) and learning rate (0.01, 0.001, and 

0.0001). The models were trained with 500 epochs. We reported the evaluation 

metrics regarding testing accuracy, training time, testing time, and model size for 
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different 3D convolution on the hockey fight, movie, and violent flow datasets, 

respectively. 

Table 15 Performance of the 3D convolution with integrated deep features                     

on hockey fight dataset. 

Model Learning 

rate 

Batch size of 4 Batch size of 8 Model 

size 

(MB) Training 

time (hr.) 

Testing 

time (ms.) 

Acc. 

(%) 

Training time 

(hr.) 

Testing 

time  

(ms.) 

Acc. 

(%) 

Model 1 0.01 2.06 10 97.20 2.20 10 96.00 80.17 

 0.001 2.05 10 96.00 2.11 10 95.20 

0.0001 2.06 10 95.60 2.03 10 96.40 

Model 2 0.01 1.27 6 95.60 1.26 6 96.40 48.17 

 0.001 1.27 6 96.00 1.26 6 95.20 

0.0001 1.29 6 96.00 1.26 6 96.00 

Model 3 0.01 2.06 11 95.60 2.27 11 95.60 84.15 

 0.001 2.07 11 96.40 2.29 11 95.60 

0.0001 2.09 11 96.00 2.29 11 95.60 

Model 4 0.01 2.03 11 96.00 2.26 11 95.60 88.17 

 0.001 2.06 11 95.60 2.29 11 95.60 

0.0001 2.06 11 96.40 2.12 10 95.60 

Model 5 0.01 2.38 11 96.00 2.29 10 96.00 88.17 

0.001 2.39 11 95.60 2.31 10 96.00 

0.0001 2.38 11 95.60 2.36 10 95.60 

   Table 15 presents the recognition performance of five different 3D 

convolution structures (model1 – model5) on the hockey fight dataset. The result 

shows that model1 achieved the highest accuracy with 97.20% when using a batch 

size of 4 and a learning rate set of 0.01. The model takes training time about 2 hours, 

and the testing time is about 10 milliseconds. 

Table 16 Performance of the 3D convolution with integrated deep features  

on movie dataset. 

Model Learning  Batch size  of 4 Batch size of 8 Model size 
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rate Training 

time  

(hr.) 

Testing 

time  

(ms.) 

Acc. 

(%) 

Training 

time 

(hr.) 

Testing 

time 

(ms.) 

Acc. 

(%) 

(MB) 

Model 1 0.01 0.47 9 97.37 0.47 11 97.37 80.17 

0.001 0.48 9 97.37 0.47 11 100.00 

 0.0001 0.48 9 97.37 0.47 11 97.37  

Model 2 0.01 0.26 6 96.00 0.26 6 96.00 48.17 

 0.001 0.26 5 96.00 0.25 6 94.00 

0.0001 0.27 6 96.00 0.27 6 96.00 

Model 3 0.01 0.52 11 96.00 0.52 11 96.00 84.15 

 0.001 0.52 11 96.00 0.52 11 96.00 

0.0001 0.53 11 94.00 0.53 11 96.00 

Model 4 0.01 0.42 11 96.00 0.42 11 96.00 88.17 

 0.001 0.42 11 96.00 0.42 11 96.00 

0.0001 0.43 11 94.00 0.47 11 94.00 

Model 5 0.01 0.45 9 96.00 0.44 11 96.00 88.17 

0.001 0.45 9 96.00 0.45 11 94.00 

0.0001 0.47 9 92.00 0.48 11 96.00 

 

    Table 16 presents the recognition performance on the movie dataset. 

The result shows that the 3D convolution with the integrated deep feature can achieve 

the highest accuracy of 100% on model 1 using a batch size of 4 and a learning rate 

set of 0.01. The model takes about 0.47 hours to train, and the test time for a sample is 

about 11 milliseconds. 

Table 17 Performance of the 3D convolution with integrated deep features on violent 

flow dataset. 

Model Learning 

rate 

Batch size 4 Batch size 8 Model Size 

(MB) 
Training 

time (hr.) 

Testing 

time (ms.) 

Acc. 

(%) 

Training 

time 

(hr.) 

Testing 

time (ms.) 

Acc. 

(%) 

Model 1 0.01 0.47 9 95.65 0.46 11 93.48 80.17 

 

 

0.001 0.46 9 95.65 0.46 11 95.65 

0.0001 0.47 9 93.48 0.46 11 96.77 

Model 2 0.01 0.32 6 87.10 0.30 5 91.94 48.17 

 0.001 0.32 6 93.55 0.31 6 93.55 

0.0001 0.34 6 90.32 0.32 6 91.94 
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Model Learning 

rate 

Batch size 4 Batch size 8 Model Size 

(MB) 
Training 

time (hr.) 

Testing 

time (ms.) 

Acc. 

(%) 

Training 

time 

(hr.) 

Testing 

time (ms.) 

Acc. 

(%) 

Model 3 0.01 0.54 11 91.94 0.52 11 93.55 84.15 

 0.001 0.53 11 91.94 0.53 11 91.94  

0.0001 0.55 11 91.94 0.53 11 93.55 

Model 4 0.01 0.54 11 93.55 0.53 11 91.94 88.17 

 0.001 0.55 11 93.55 0.52 11 93.55 

0.0001 0.53 11 93.55 0.53 11 93.55 

Model 5 0.01 0.56 9 91.94 0.55 11 93.55 88.17 

0.001 0.56 9 90.32 0.55 11 93.55 

0.0001 0.56 9 93.55 0.58 11 93.55 

 

   Table 17 presents the performance of the 3D convolution with an 

integrated deep feature model on the violent flow dataset. The result shows that 

Model1 achieved the highest accuracy of 96.77% when using a batch size of 8 and 

learning rate 0.0001. The model takes about 0.46 hours to train, and the test time for a 

sample is about 11 milliseconds. 

   Moreover, we extract deep features from the 2D-CNN model, which is 

trained by merging all datasets. The obtained deep features were integrated and 

learned spatial and temporal features by 3D convolution also. The difference in batch 

size and learning rate are compared. Then, the models were evaluated recognition 

performance with testing split on hockey fight, movie, and violent flow. Table 18 

presents the performance of 3D convolution with integrated deep features (merged all 

dataset) on the hockey fight dataset. The result shows that model1 achieved the 

highest accuracy of 97.60% when using a batch size of 8 and a learning rate of 0.001. 

The model takes about 2.24 hours to train, and the test time for a sample is about 11 

milliseconds. 

Table 18 Performance of the 3D convolution with integrated deep features(merged all 

datasets) on the hockey fight dataset. 

Model Learning 

rate 

Batch size 4 Batch size 8 Model 

size 

(MB) Training 

time (hr.) 

Testing 

time (ms.) 

Acc. 

(%) 

Training 

time (hr.) 

Testing 

time (ms.) 

Acc. 

(%) 



 

 

 
 74 

Model Learning 

rate 

Batch size 4 Batch size 8 Model 

size 

(MB) Training 

time (hr.) 

Testing 

time (ms.) 

Acc. 

(%) 

Training 

time (hr.) 

Testing 

time (ms.) 

Acc. 

(%) 

Model 1 0.01 2.35 11 95.60 2.06 11 96.80 80.17 

 0.001 2.35 11 96.40 2.24 11 97.60  

0.0001 2.39 11 96.00 2.32 11 96.80 

Model 2 0.01 1.27 11 96.00 1.28 8 96.40 48.17 

 0.001 1.27 11 95.60 1.25 8 96.40 

0.0001 1.31 11 96.40 1.28 8 96.40 

Model 3 0.01 2.05 11 96.00 2.37 11 94.40 84.15 

 0.001 2.07 11 89.60 2.36 11 84.40 

0.0001 2.11 11 88.80 2.37 11 87.20 

Model 4 0.01 2.03 11 96.40 2.07 11 95.20 88.17 

 0.001 2.11 11 96.40 2.12 11 96.40 

0.0001 2.10 10 96.00 2.21 11 96.00 

Model 5 0.01 2.38 11 95.60 2.29 11 95.60 88.17 

0.001 2.39 11 95.60 2.31 11 96.00 

0.0001 2.38 11 96.00 2.33 11 96.40 

Table 19 presents the performance of 3D convolution with deep features integrated on 

the movie dataset. The model1 achieved accuracy of 100% with batch size 4 and a 

learning rate of 0.0001. The model takes about 2.24 hours to train, and the test time 

for a sample is about 11 milliseconds. Whereas the recognition performance of the 

proposed 3D convolution model with features extracted from merging all dataset on 

the violent flow dataset shows that the highest accuracy obtained was 93.55%. The 

model was trained with a batch size of 4 and learning rate 0.01, as shown in Table 20. 

Table 19 Performance of the 3D convolution with integrated deep features(merged all 

datasets) on movie dataset. 

Model Learning 

rate 

Batch size 4 Batch size 8 Model 

size 

(MB) Training 

time (hr.) 

Testing 

time (ms.) 

Acc. 

(%) 

Training 

time (hr.) 

Testing 

time (ms.) 

Acc. 

(%) 

Model 1 0.01 0.44 11 98.00 0.47 11 98.00 80.17 

0.001 0.47 11 96.00 0.47 11 96.00 

0.0001 0.47 11 100.00 0.47 11 96.00 
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Model Learning 

rate 

Batch size 4 Batch size 8 Model 

size 

(MB) Training 

time (hr.) 

Testing 

time (ms.) 

Acc. 

(%) 

Training 

time (hr.) 

Testing 

time (ms.) 

Acc. 

(%) 

Model 2 0.01 0.26 6 98.00 0.26 6 96.00 48.17 

 0.001 0.26 6 98.00 0.26 6 96.00  

0.0001 0.27 6 96.00 0.27 5 96.00 

Model 3 0.01 0.42 11 98.00 0.42 11 96.00 84.15 

 0.001 0.43 11 98.00 0.42 11 98.00 

0.0001 0.44 11 96.00 0.45 11 96.00 

Model 4 0.01 0.42 11 98.00 0.42 11 98.00 88.17 

 0.001 0.42 11 98.00 0.42 11 96.00 

0.0001 0.44 11 96.00 0.46 11 96.00 

Model 5 0.01 0.43 11 98.00 0.43 11 96.00 88.17 

0.001 0.43 11 98.00 0.43 11 96.00 

0.0001 0.44 11 98.00 0.47 11 98.00 

Table 20 Performance of the 3D convolution with integrated deep features (merged 

all datasets) on violent flow dataset. 

Model Learning 

rate 

Batch size 4 Batch size 8 Model size 

(MB) 
Training 

time (hr.) 

Testing 

time (ms.) 

Acc. 

(%) 

Training 

time (hr.) 

Testing 

time (ms.) 

Acc. 

(%) 

Model 1 0.01 0.51 11 93.55 0.72 11 88.71 80.17 

 0.001 0.51 11 88.71 0.72 11 90.32 

0.0001 0.51 11 85.48 0.72 11 87.10 

Model 2 0.01 0.32 5 87.10 0.31 6 88.71 48.17 

 0.001 0.33 6 88.71 0.31 5 88.71 

0.0001 0.34 5 87.10 0.32 6 88.71 

Model 3 0.01 0.52 11 90.32 0.52 11 90.32 84.15 

 0.001 0.52 11 85.48 0.52 11 87.10 

0.0001 0.52 11 87.10 0.53 11 87.10 

Model 4 0.01 0.52 10 93.55 0.52 11 90.32 88.17 

 

 

0.001 0.52 11 87.10 0.52 11 90.32 

0.0001 0.52 11 87.10 0.53 11 90.32 

Model 5 0.01 0.53 11 91.94 0.53 11 88.71 88.17 

0.001 0.53 11 88.71 0.53 11 88.71 

0.0001 0.53 11 87.10 0.55 11 88.71 
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 4.5.4 Performance metrics 

   The proposed method was evaluated using well-known classification 

metrics, including receiver operating characteristics(ROC), area under curve (AUC), 

precision-recall curve, area under (precision-recall) curve(AUC-PR), training and 

validation loss, and confusion matrix. The receiver operating characteristics (ROC) 

curve and area under the curve (AUC) are performed for accuracy of five different 

3D-CNN models are illustrated in Figure 36. The AUC value of model 1 is better than 

other models, 0.99, 1.00, and  0.98 on hockey fight, movie, and violent flow 

respectively. 

 

(a) 

 

(b) 
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(c) 

Figure 36 Receiver operating characteristic (ROC) curve and area under the curve 

(AUC) for each 3D-CNN model (a) on the hockey fight dataset, (b) on the 

movie dataset, and (c) on violence flow dataset. 

 

   Also, we used the precision-recall curve to evaluate the performance of 

violent video recognition. Figure 37 demonstrates that the model 1  is a better 

classifier than other models, with the area under the precision-recall curve (AUC-PR) 

at 0.9956 on the hockey fight dataset. Almost every model performs well for the 

movie dataset, with an AUC-PR equal to 1, except model 2, with the lowest AUC-PR 

equal to 0.9963. Finally, for the violent flow dataset, the graph shows that model 1 has 

the highest AUC-PR of 0.9864 compared to the other models. 

 
(a) 
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(b) 

 
(c) 

Figure 37 Precision recall curve and area under the precision recall curve (AUC-PR) 

for each 3D-CNN model (a) on hockey fight dataset, (b) on movie dataset, 

and (c) on violent flow dataset. 

 
(a) 
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(b) 

 
(c) 

Figure 38 Training and validation loss of our proposed model on the (a) hockey fight 

dataset, (b) movie dataset, and (c) violent flow dataset. 
 

The confusion metrics for the test dataset, in Figure 39, represents the correct and 

incorrect classification of each class on hockey fight, movie, and violent flow 

datasets. From the confusion metric, the proposed model on the movie dataset 

performed well in classified violent videos. Besides, the confusion metric on the 

hockey fight and the violent flow dataset obtained high true positives and true 

negatives. We have presented some examples of videos that wrongly predicted (false 

positives and false negatives) the hockey fight and violent flow dataset in Figure 40 

and Figure 41 respectively. 
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(a) 

 
(b) 

 
(c) 

Figure 39 The confusion matric of test datasets (a) on hockey fight dataset, (b) movie 

dataset, and (c) violent flow dataset. 
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(a) 

 
(b) 

Figure 40 Example of missing video prediction on hockey fight dataset, (a) false 

negative prediction and (b) false positive prediction. 

 
(a) 
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(b) 

Figure 41 Example of missing video prediction on violent flow dataset,  

                 (a) false negative prediction and (b) false positive prediction. 

4.6 Discussion 

 4.6.1 Violent recognition with MobilebileNetV1, MobileNetV2, and C3D 

   We utilized CNN to evaluate the effectiveness of recognizing violent 

videos. The result shows that MobileNetV1 and MobileNetV2 can accurately 

recognize violent videos with high accuracy values on three datasets. The results were 

obtained by training the model with different batch sizes and learning rates to find an 

optimal model. For MobileNetV1, Setting the batch size value cannot be confirmed to 

affect the classification accuracy and testing time. 

   However, the training time may be reduced using a larger batch size. 

The learning rate of the model affects learning on hockey fight and movie datasets. In 

contrast, the different learning rates do not affect the violent recognition performance 

on the violent flow dataset. For the testing time, MobileNetV1 takes less time than 

MobileNetNetV2 with all datasets, which are 1, 2, and 2 milliseconds on hockey 

fight, movie, and violent flow, respectively. Therefore, MobileNetV1 is faster than 

MobileNetV2 for violent video recognition with the same accuracy. 

  Then, we experiment with training the model by merging all datasets to 

compare the training model with a single dataset. The results show that the 

performance of MobileNetV1 on hockey fight is better for merging all datasets than 

the training model without merging. For the movie dataset, the recognition results of 
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merging all datasets were not different from using training separate datasets. For 

violent flow, the recognition performance of the merging dataset was lower than that 

of the model without the merging dataset. On the other hand, the recognition 

performance of MobileNetV2 using training by merging all datasets decreased in all 

datasets. We discussed the differences in the number of videos of each dataset with 

those different characteristics. When the datasets were merged for model training and 

then tested with separate datasets, it caused the recognition performance. The hockey 

fight dataset comprised 1,000 videos, whereas movie and violent flow had 200 and 

246, respectively.  

Additionally, we search for a pre-trained model that can learn spatial and 

temporal features by importing video data from multiple frames simultaneously. We 

used the C3D model for the training model on three datasets. Unfortunately, C3D 

experimental results are less accurate than 2D -CNN. Therefore, comparing the 

accuracy of violent video recognition with MobileNetV1, MobileNetV2, and the C3D 

model, it was found that the MobileNetV1 and MobileNetV2 models were still more 

accurate than the C3D model. This may be because the C3D model requires more 

frame or spatial features to learn, which further increases computational time and 

model size. 

 4.6.2 Deep feature integration with 3D-CNN 

   We used the capabilities of MobileNetV1 and MobileNetV2 for 

significant spatial feature extraction from the video frame at the last convolution 

layer. The spatial features of individual frames extracted from different CNNs are 

combined to create a more discriminative feature representation. We proposed 3D 

convolution to learn spatial and temporal from the concatenated features that 

produced an excellent performance. 

   The experimental results clearly show that the performance recognition 

is better in the feature integration and 3D convolution method than individual 

MobileNetV1 and MobileNetV2 for all datasets. We conclude that the proposed 3D 

convolution with the concatenation of features from various 2D -CNNs benefits 

overcom ing the lim itation of a single 2D -CN N and producing outstanding 

performance.  
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  When exploring the impact of object size on the proposed model, the 

training dataset encompasses diverse object sizes depicted in videos captured from 

varying perspectives, including high angles, side angles, and close-up angles is shown 

in Figure 42. The findings of the experimental results reveal that the model exhibits 

the ability to recognize violent videos captured from high angles, except for videos 

where the camera angle is so far away that it is impossible to distinguish it visually. 

Therefore, the size of the objects in the video does not affect the recognition 

performance of violent videos. 

 

(a) 

 

(b) 
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(c) 

Figure 42 Example of violent video with different camera angles: (a)  very long shot, 

(b) medium-close-up shot, and (c) close-up shot. 
 

When considering the overall experimental results, it is indicated that the proposed 

approach achieved high accuracy on all datasets. Thus, we assume that the proposed 

approach can be applied to unseen datasets categorized as violent or non-violent 

video. At the same time, additional training is required when applied to differently 

classified datasets. 

4.6 Comparison 

 The comparison of the proposed method with state-of-the-art methods based 

on the accuracy of violent recognition on three standard datasets is presented in this 

section. Table 21, Table 22 and Table 23 show the experimental results of the hockey 

fight, movie and violent flow datasets that our proposed outperformed the state-of-

the-art method. The proposed method achieved 97.60%, 100% and 96.77% accuracy, 

respectively. The research in Table 21 has divided the dataset into training 80% and 

testing 20%. Therefore, an extended experiment was shown that split the dataset for 

training and testing to 80% and 20%, respectively. The accuracy of the proposed 

slightly increased is 98% from 96.77%, more than research (Jahlan & Elrefaei, 2022). 
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Table 21 A comparison of the proposed method with the state-of-the-art methods on 

hockey fight dataset. 

Ref. Method No. of 

Frame 

Classifier Data Splitting 

(Train/Test) 

(%) 

Testing 

Accuracy 

(%) 

(Khan et al., 2019) MobileNet N/A softmax 75/25 87.00 

(Soliman et al., 2019) VGG16+LSTM 20 LSTM 80/20 88.20 

(Carneiro et al., 2019) Multi-Stream 40 SVM 90/10 89.10 

(Ullah et al., 2019) 3D-CNN 16 softmax 75/25 96.00 

(Hanson et al., 2019)  VGG13+BiConvLSTM 20 FC 80/20 96.96 

(Jahlan & Elrefaei, 

2022)  

AlexNet,SqueezNet and 

ConvLSTM 

20 softmax 80/20 97.00 

Proposed 16 softmax 75/25 97.60 

Table 22 A comparison of the proposed method with the state-of-the-art methods on 

movie dataset. 

Ref. Method No. of 

Frame 

Classifier Data Splitting 

(Train/Test) 

(%) 

Testing 

Accuracy 

(%) 

(Carneiro et al., 

2019)  

Multi-Stream 40 SVM 90/10 100.00 

(Hanson et al., 

2019) 

VGG13+BiConvLSTM 20 FC 80/20 100.00 

(Atallah Almazroey 

& Kammoun 

Jarraya, 2021)  

Keyframe+AlexNet 50 SVM 80/20 100.00 

(Jahlan & Elrefaei, 

2022)  

AlexNet,SqueezNet and 

ConvLSTM 

20 softmax 80/20 100.00 

Proposed 16 softmax 75/25 100.00 

Table 23 A comparison of the proposed method with the state-of-the-art methods on 

violent flow dataset. 

Ref. Method No. of 

Frame 

Classifier Data Splitting 

(Train/Test) 

(%) 

Testing 

Accuracy 

(%) 

(Soliman et al., 

2019) 

VGG16+LSTM 20 LSTM 80/20 90.01 

(Hanson et al., 

2019) 

VGG13+BiConvLSTM 20 FC 80/20 90.60 

(Jahlan & Elrefaei, 

2022)  

AlexNet,SqueezNet and 

ConvLSTM 

20 softmax 80/20 96.00 

Proposed 16 softmax 80/20 98.00 
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Ref. Method No. of 

Frame 

Classifier Data Splitting 

(Train/Test) 

(%) 

Testing 

Accuracy 

(%) 

75/25 96.77 

4.7 Conclusions 

In this research, proposed a deep feature integration and three-dimensional 

convolution for violence recognition. The 16 non-overlapping were captured for 

representative frames of each video as input to the CNN model for feature extraction. 

The proposed method was tested on three benchmark datasets, including hockey fight, 

movie, and violent flow. The recognition accuracy, confusion metric, ROC, and 

precision recall curve are presented to evaluate classifier models. In the first part, we 

used the pre-trained CNN model on the ImageNet dataset, including MobileNetV1 

and  MobileNetv2, to classify violent video. The results show that the two CNN 

models can be no different in classifying video violence with an accuracy of 95.99%, 

98.00%, and 91.94% for the hockey fight, movie, and violent flow datasets, 

respectively. Then, we merged all the datasets to retrain the above CNN model to 

classify video violence. Unfortunately, the results of this experiment were not better 

than using separate datasets. In addition, we also used the C3D to recognize violent 

video, which is the pre-trained model using 3D convolutional networks. The 

experimental results show that the model achieved a lower accuracy score than 

MobileNetV1 and MobileNetV2. The model size is large, and it is also the most time-

consuming part of network training.  

We leverage the advantages of the 2D-CNN model and the 3D-CNN to extract 

robust spatial and spatiotemporal features from the video. The video frames extracted 

the robust features from the last convolution layer in MobilNetV1 and MobileNetV2 

separately. Then, we integrated the obtained features with concatenate to create 

explicit feature representation. The integrated features were used as input for the 

proposed 3D convolution instead of the video frame and classified by softmax to 

violent video. We experiment with the different 3D convolution structures. In our 

work, we proved that the proposed method performs better than a single use of 

MobileNetV1, MobileNetV2, and C3D with 97.60%, 100% and 96.77% accuracy on 

hockey fight, movie, and violent flow datasets, respectively. The experimental results 
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demonstrated that the proposed method performs better than the existing methods and 

has the capability to classify violent videos effectively. 

In future work, will focus on a keyframe extraction method to enhance the 

performance of the deep learning model for violence classification in surveillance 

video. Keyframe extraction is a process to capture important image frames to reduce 

data redundancy for training. Furthermore, we intend to study different features 

including optical flow, audio (Carneiro et al., 2019). Develop a deep learning model 

for accurately different types of violent activity, such as robbery, burglary, assault in 

UCF-CRIME dataset (Sultani et al., 2018).   
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Chapter 5 

Discussion 

  

 This thesis aims to propose deep learning approaches to improving violent 

video recognition. In the findings of this research, we contribute two main types of 

research. I first proposed an approach that integrates lightweight CNNs and sequence 

learning, employing MobileNetV1 and MobileNetV2 for robust deep feature 

extraction. The deep features were combined through concatenation and processed 

using bidirectional long short-term memory (BiLSTM) to discern violent or non-

violent videos. Additionally, a focused effort was made to enhance efficiency by 

reducing the number of frames for training and feature extraction on the hockey fight 

dataset. Second, a novel method was introduced to enhance the accuracy of violent 

video recognition by integrating deep features with a 3D Convolutional Neural 

Network (3D-CNN), leveraging the advantages of MobileNets for spatial feature 

extraction at the frame level. The proposed 3D-CNN was designed for spatiotemporal 

feature learning to preserve crucial temporal information between frames. The 

effectiveness of the proposed method is evaluated across three benchmark datasets: 

hockey fight, movie, and violent flow. 

 I will now briefly describe and discuss the challenges of violent  video 

recognition using a deep learning approach. 

 Chapter 3. Achieving precision in identifying violence within videos 

requires high accuracy and a significant amount of computational time due to 

processing multiple video frames. I concurrently optimized for accuracy and 

recognition time conditions to solve this challenge. I propose the fusion lightweight 

CNN and sequence learning approach for violent video recognition. First, I propose 

five different frame selections using MobileNet and LSTM to classify violent videos. 

The experimental results found that using 16 non-adjacent frames resulted in the 

highest accuracy. Second, I propose four different CNN architectures for deep feature 

extraction and sent the deep feature to LSTM  to classify violent video. The 

experimental results show that MobileNet+LSTM achieved the highest accuracy on 

the hockey fight dataset. Moreover, MobileNet+LSTM had the smallest model size 
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and the least computation time. Third, I used MobileNetV1 and MobileNetV2 to 

extract the robust deep feature from the video frame. Then, the deep features are fused 

with concatenating and adding operations to generate the video representation features 

before transfer into RNN architecture. 

 I proposed three different RNN architectures: LSTM, BiLSTM, and GRU. I 

trained the combination of fusion MobileNet and RNN architecture with 1,000 

epochs. The experimental results indicated that the fusion MobileNet and RNN model 

outperform the single CNN models by approximately 2% on the hockey fight dataset.  

Consequently, the concatenating operation achieved better accuracy when combining 

MobileNet with BiLSTM because the deep feature size of the concatenating operation 

was larger one time than the adding operation. 

 Although the proposed architecture requires a longer time due to the training 

from both MobileNets, the testing time remains the same. Therefore, it can be 

concluded that the fusion MobileNet and RNN architecture can be applied to classify 

violence because it is recognized quickly with high accuracy, and extending the 

complex architecture does not affect the recognition time. 

               Chapter 4. I focus on enhancing the efficiency of violent video recognition 

by integrating deep features w ith the 3D -C N N  approach. F irst, I propose 

MobileNetV1 and MobileNetV2 for leveraging spatial feature extraction from video 

frames. The spatial features were integrated with concatenate operation for a more 

robust video feature representation, encouraged by the fusion MobileNets -BiLSTM 

described in Chapter 3. Second, the integrated spatial features were transferred into 

the proposed 3D-CNN to capture spatial and temporal features within the video data. I 

proposed five different 3D-CNN architectures with different structures with the same 

input feature. I trained the proposed architecture with 500 epochs, different batch 

sizes, and learning rate settings. I evaluate the proposed model with three benchmark 

datasets: hockey fight, movie, and violent flow.  

 The proposed 3D-CNN architecture achieved the highest accuracy values, 

comprising batch normalization, 3D convolution, dropout, and a global average 

pooling, fully connected layers followed by a softmax function to classify violent or 

non-violent videos. The experimental result shows that the integrated deep feature 
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with the 3D-CNN approach outperformed the single MobileNet by approximately 2% 

on three datasets. Also, the proposed method can improve the performance of violent 

video recognition by approximately 3% compared to the method MobileNet-BiLSTM. 

5.1 Answers to The Research Questions 

 According to the research questions (RQ) in Chapter 1, I explain the 

improvement of violent video recognition using deep learning with two solutions. In 

this section, I briefly answer each research question. 

 Objective 1. I aim to research deep learning studies that improve violent 

video recognition performance by combining CNN and RNN with deep feature fusion 

techniques. 

 Research Question 1 . Generally, violent video understanding applies 

Recurrent Neural Networks (RNN) such as LSTM, BiLSTM, or GRU to learn the 

feature from sequential frames within the video data. RNN can distinguish patterns 

and movements, accurately classifying actions, or activities in video. However, some 

research used Convolutional Neural Networks (CNN) to extract deep features from 

the individual frame, which received high accuracy for violent recognition (Karisma 

et al., 2021) and (Irfanullah et al.,2022). Therefore, if I utilize the CNN to extract the 

deep features from video frames and then transfer the received deep features to RNN 

to learn inform ation within the video, will this improve the perform ance of 

understanding violent videos? 

 To find the answer to RQ1, I focused on a state-of-the-art CNN and RNN 

model. The frame selections and number of input frames are also considered to reduce 

redundant information. The deep feature fusion technique was applied to combine the 

deep features from different architectures to understand violent video and improve the 

performance of violent video recognition. Will these methods encourage enhancing 

the performance of violent video recognition? 

 To answer RQ1, I first focused on the video frame selection to reduce the 

number of frames and redundant information for training and feature extraction. 

Using 16 non-adjacent frames resulted in the highest accuracy. Second, lightweight 

MobileNets were used for deep feature extraction due to the lower computation time 

and higher accuracy than ResNet50V2 and NASNetMobile. The obtained deep 
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features were fused with concatenating operations to leverage information from both 

MobileNets before being transferred to RNN architecture, including LSTM, BiLSTM, 

and GRU. Finally, the fused deep feature was transferred to BiLSTM to learn features 

from violent videos and classify them into violent or non-violent videos. The result 

showed that the accuracy increased by approximately 2% on the hockey fight dataset 

when combining the deep feature with concatenating and sending it to BiLSTM. 

Considering testing time indicates that network expansion does not affect the 

performance of violent video recognition.  Consequently, I can combine lightweight 

MobileNet and Bi-LSTM with the deep feature fusion technique to improve the 

performance of violent recognition while maintaining recognition time. 

 Objective 2. I aim to research deep learning approaches that improve violent 

video recognition by deep feature integration with three-dimensional convolution 

neural network (3D-CNN) 

 Research Question 2. the 2D-CNN outperforms in extracting spatial 

features within individual frames, making it well-suited for tasks where static visual 

patterns hold pivotal significance, such as image classification and object detection. 

Conversely, 3D-CNN surpasses 2D-CNN in tasks requiring the incorporation of 

necessary temporal dimensions, as it can directly understand spatiotemporal features 

from video sequences. This renders 3D-CNN notably advantageous for applications 

like action recognition, wherein comprehending temporal alterations and motion is 

imperative. Although 2D-CNN demonstrates computational efficiency and is 

commonly employed for image-based tasks, 3D-CNN extends its functionalities to 

video analysis by seamlessly incorporating temporal information into the learning 

process. Therefore, If 2D-CNN is used to extract spatial features from frames and 

integrate the obtained features. Then, the features are transferred to 3D -CNN for 

spatiotemporal learning and classified into violent or nonviolent videos. Can the 

proposed approach improve the performance of violent video recognition? 

 To find the answer to RQ2, I will use 2D-CNN to extract spatial and 

integrated features with concatenating operations. Then, these features are transferred 

to 3D-CNN to learn spatiotemporal features and classify violent or non-violent 

videos. 
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 To answer RQ2, I proposed a deep features integration and 3D convolution 

for violence recognition. First, I extracted the spatial features with CNN from the 

video frame. These features were integrated with concatenating operations to enhance 

more information representations. I focus on the 3D convolution architecture, which 

capability captured spatiotemporal information by considering multiple frames in 

video. The effectiveness of the proposed method was evaluated on three benchmark 

datasets hockey fight, movie, and violent flow datasets. 

 The proposed approach demonstrated an approximate 2% increase in the 

recognition performance of violent videos across all datasets  when compared to a 

single CNN. Moreover, compared to a single 3D-CNN, the proposed approach 

exhibited significant im provem ents, w ith perform ance im provem ents of 

approximately 27%, 16%, and 29% on the hockey fight, movie, and violent flow 

datasets, respectively. These results emphasize the capability of the 3D -CNN to 

enhance the recognition performance of violent videos. Moreover,  

5.2 Future work 

 In this dissertation, I proposed novel deep feature extraction techniques to 

improve the performance of video understanding based on violent video. Several 

future works present in the following could be used as a direction for recognizing 

video violence tasks. I described frame selection, challenges, and applications of up-

to-date deep learning models. 

 The frame selection is a critical procedure for selecting essential input data for 

training in the deep learning model. Researchers considered reducing the number of 

sample frames for selecting keyframes to reduce the redundant information and 

computation cost while making the developed model efficient such as adaptive frame 

selection (Tao & Duan, 2023).  

 Moreover, researchers can further improve responses to many challenges of 

violence video recognition, such as recognition of different types of violence, human 

occlusion, or audio signals in conjunction with image frames. For different types of 

violence, it is challenging to differentiate violent behavior including robbery, burglary, 

assault in the UCF-CRIME dataset (Sultani et al., 2018) . For human occlusion, an 

object may be obscuring a violent incident, resulting in difficulty distinguishing 
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whether it is violent or not due to only part of the scene being visible  (Aldayri & 

Albattah, 2022). Audio signals are also considered along with frames to improve 

classification accuracy, such as cries for help, shouts, or gunshots (Lou et al., 2021). 

 Recently, there have been deep learning models that can recognize videos 

efficiently. Therefore, the researcher studies other recent models or techniques, such 

as the Transformer model or attention mechanism technique (Vaswani et al., 2017). 
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