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ABSTRACT

Background: The elderly population faces a growing burden of various diseases, with dental
issues—especially periodontal disease—often overlooked due to their asymptomatic nature. Periodontitis,
however, is linked to numerous systemic conditions, leading to serious complications and negatively impacting
quality of life. Affecting over a billion people globally, periodontal diseases pose a significant public health
challenge due to their potential for severe oral complications. Early and accurate diagnosis is crucial, yet current
methods, which rely on clinical exams and radiographs, have limitations. This study aims to develop and
validate Al-driven models to enhance diagnostic accuracy and consistency in detecting periodontal disease.
Methods: We analyzed 2,000 panoramic radiographs using image processing techniques. The YOLOvV8 model
segmented teeth, identified the cemento-enamel junction (CEJ), and quantified alveolar bone loss to assess
stages of periodontitis. Results: The teeth segmentation model achieved an accuracy of 97%, while the CEJ and
alveolar bone level segmentation models reached 98%. Our Al model demonstrated a remarkable performance
with 94.4% accuracy and perfect sensitivity (100%). In comparison, periodontists achieved 91.1% accuracy
with a sensitivity of 90.6%. General practitioners (GPs) also benefited from Al assistance, achieving 86.7%
accuracy and 85.9% sensitivity, with Al enhancing diagnostic outcomes further. Conclusions: This research
underscores the transformative potential of Al in dental diagnostics, highlighting its crucial role in reducing
diagnostic errors, saving time, enhancing patient care, and optimizing healthcare efficiency. The implications
are profound, suggesting that Al integration in periodontal diagnostics may become standard practice,

significantly improving patient outcomes and streamlining dental care processes.

Keyword : Artificial Intelligence, Periodontal Disease, Periodontitis Diagnosis, Panoramic Radiographs,

Convolutional Neural Networks (CNNs)
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CHAPTER 1

Introduction

According to the World Health Organization (WHO) on November 18, 2022 [1, 2], the
elderly population is increasingly burdened by various chronic diseases, significantly impacting
healthcare systems globally. The top ten diseases affecting the elderly include cardiovascular
diseases, chronic respiratory diseases, cancers, diabetes, Alzheimer's disease and other dementias,
osteoarthritis, chronic kidney disease, stroke, depression, and dental diseases such as periodontitis
(Fig. 1).

1. Cardiovascular Diseases: Cardiovascular diseases (CVD) affect approximately
60% of older adults and remain the leading cause of morbidity and mortality among the elderly.
Conditions such as coronary artery disease, hypertension, and heart failure are prevalent, largely
due to prolonged exposure to risk factors and the natural aging of the cardiovascular system.

2. Chronic Respiratory Diseases: Chronic respiratory diseases, particularly chronic
obstructive pulmonary disease (COPD) and asthma, are common among older adults, affecting
about 15-20% of this population. These diseases are often exacerbated by long-term exposure to
tobacco smoke, environmental pollutants, and other respiratory irritants.

3. Cancers: The incidence of various cancers, including lung, colorectal, prostate,
and breast cancer, increases with age, affecting around 20-30% of the elderly population. Early
detection and treatment are crucial, however, the overall burden of cancer remains high in the
elderly population.

4. Diabetes: Type 2 diabetes affects approximately 25-30% of older adults. Factors
such as obesity, sedentary lifestyle, and genetic predisposition drive its prevalence. Managing
diabetes in older adults is complicated by the presence of comorbidities and the risk of
complications like neuropathy and cardiovascular disease.

5. Alzheimer's Disease and Other Dementias: Neurodegenerative diseases, including
Alzheimer's disease, are major causes of disability and dependency among older individuals. The
prevalence of dementia doubles every five years after the age of 65, affecting nearly 10-15% of
the elderly population, significantly impacting patients' quality of life and placing a burden on

caregivers.



6. Osteoarthritis: Osteoarthritis affects about 30-40% of older adults and is a leading
cause of pain and disability in the elderly. It affects joints such as the knees, hips, and hands,
resulting from cartilage degeneration and is exacerbated by factors like obesity and joint injuries.

7. Chronic Kidney Disease: Chronic kidney disease (CKD) affects around 20-25%
of the elderly due to factors like hypertension, diabetes, and the natural decline in kidney function
with age. CKD often progresses to end-stage renal disease, requiring dialysis or transplantation.

8. Stroke: The incidence of stroke increases significantly with age, with risk factors
including hypertension, atrial fibrillation, and diabetes. Around 10-15% of older adults experience
strokes, leading to severe long-term disabilities affecting mobility, speech, and cognitive
functions.

9. Depression: Depression affects approximately 10-20% of older adults and is often
linked to chronic diseases, loss of independence, and social isolation. It significantly affects the
quality of life and can exacerbate other medical conditions.

10. Dental diseases: While dental caries is the most prevalent condition in the oral
cavity, periodontitis is often overlooked due to its asymptomatic nature, affecting approximately
20-30% of the elderly population [3]. This condition can lead to tooth loss, adversely impacting
nutrition and overall health. Additionally, poor oral health is linked to systemic conditions such as
diabetes and cardiovascular diseases, which can result in severe complications and diminish
quality of life.

Dental Diseases

Depression

Stroke

Chronic Kidney Disease

Osteoarthritis

Alzheimer's Disease and Other Dementias
Diabetes

cancers

Chronic Respiratory Diseases

Cardiovascular Diseases

0 10 20 30 0 50 60
Percentage (%)

Figure 1: The prevalence of the top ten diseases in the elderly in 2024 [2].



Following the above data, aging is a universal phenomenon that has profound
implications for health systems, economies, and societies worldwide. The global demographic
shift towards an older population presents numerous challenges, particularly concerning chronic
diseases prevalent in the elderly. Among these, periodontal disease stands out due to its high
prevalence and significant impact on overall health, quality of life, and economic burden. This
introduction explores the multifaceted impact of diseases in the elderly, with a specific focus on
periodontal disease, from economic, social, and health perspectives.

1. Economic Impact of Elderly Diseases
1.1 Healthcare Costs:

The aging population drives an increase in healthcare expenditures,
primarily due to the rising prevalence of chronic conditions that require long-term management.
Elderly individuals often suffer from multiple comorbidities such as cardiovascular diseases,
diabetes, arthritis, and respiratory disorders, alongside periodontal disease. Treating these
conditions involves significant direct costs, including hospital admissions, medication, routine
medical consultations, and specialized care [4].

Periodontal disease, in particular, necessitates ongoing dental -care,
including professional cleanings, periodontal surgeries, and maintenance therapy. These
treatments are costly and often not fully covered by insurance, leading to substantial out-of-
pocket expenses for the elderly. The indirect costs, such as loss of productivity and long-term
disability, further compound the economic burden [5-7].

1.2 Impact on National Economies:

The economic impact extends beyond individual healthcare costs to affect
national economies. The increase in healthcare spending can strain public health systems and
divert resources from other essential services. Additionally, the economic contributions of the
elderly, although significant, may be offset by their healthcare needs. The cost of caregiving, both
formal and informal, adds another layer of financial strain. Family members who act as caregivers
often face reduced work hours or even job loss, affecting household income and national

productivity [4].



1.3 Insurance and Policy Implications:

The rising prevalence of elderly diseases necessitates changes in health
insurance policies and public health strategies. There is a growing need for comprehensive
insurance plans that cover the broad spectrum of elderly care, including dental health.
Policymakers must address the sustainability of healthcare financing systems to ensure that the
increasing demands do not compromise the quality of care [8].

2. Social Impact of Elderly Diseases
2.1 Quality of Life:

Chronic diseases significantly impact the quality of life of elderly
individuals. Periodontal disease, characterized by symptoms such as gum bleeding, pain, and
tooth loss, can severely affect daily functioning. Difficulty in chewing and eating due to
periodontal issues can lead to nutritional deficiencies, exacerbating other health conditions.
Moreover, the aesthetic impact of tooth loss can affect self-esteem and social interactions. Elderly
individuals may experience social isolation due to embarrassment over their dental appearance or
physical limitations imposed by other chronic diseases. This isolation can lead to mental health
issues such as depression and anxiety, further diminishing quality of life [9].

2.2 Family Dynamics:

The need for long-term care for elderly individuals with chronic diseases
can alter family dynamics. Family members often assume the role of primary caregivers, which
can lead to emotional and physical stress. Balancing caregiving responsibilities with other family
and work commitments can strain relationships and lead to caregiver burnout [10].

2.3 Community and Social Services:

Communities must adapt to the increasing needs of the elderly population.
Social services, including transportation, meal programs, and community health centers, play a
critical role in supporting elderly individuals. Ensuring access to these services requires
coordinated efforts and adequate funding. Additionally, public health initiatives focusing on
preventive care can help mitigate the impact of chronic diseases, including periodontal disease,

within the community [11].



3. Health Impact of Periodontal Disease in the Elderly
3.1 Systemic Health Connections:

Periodontal disease is not merely a local oral health issue but has significant
systemic health implications. Studies have shown strong associations between periodontal disease
and systemic conditions such as diabetes, cardiovascular disease, respiratory infections, and
adverse pregnancy outcomes. The chronic inflammation associated with periodontal disease can
exacerbate these conditions, leading to a vicious cycle of deteriorating health. For instance,
periodontal pathogens can enter the bloodstream, contributing to systemic inflammation and
increasing the risk of atherosclerosis and cardiovascular events. Diabetic patients with periodontal
disease may experience more difficulty in controlling blood glucose levels, highlighting the
bidirectional relationship between these conditions [12].

3.2 Nutritional and Functional Impact:

The functional impact of periodontal disease on eating and nutrition is
profound. Elderly individuals with severe periodontal disease may find it challenging to consume
a balanced diet, leading to malnutrition. Malnutrition, in turn, weakens the immune system,
making the elderly more susceptible to infections and slowing the healing process [13].

3.3 Mental Health:

The psychological impact of periodontal disease should not be
underestimated. The visible symptoms and functional limitations can lead to self-consciousness
and social withdrawal. The chronic pain and discomfort associated with advanced periodontal
disease can also contribute to mental health issues such as depression and anxiety, which are
already prevalent in the elderly population [14].

4. Addressing the Challenges
4.1 Integrated Care Approaches:

Addressing the multifaceted impact of elderly diseases, including
periodontal disease, requires integrated care approaches. Health systems should promote
coordinated care models that integrate dental and medical care to manage chronic diseases
effectively. This integration can ensure that the systemic implications of periodontal disease are

addressed alongside other health conditions [15].



4.2 Preventive Measures:

Emphasizing preventive care is crucial in reducing the prevalence and
impact of periodontal disease. Public health campaigns should focus on educating the elderly and
their caregivers about the importance of oral hygiene and regular dental check-ups. Fluoride
treatments, professional cleanings, and early intervention can help manage periodontal disease
more effectively and prevent severe complications [12].

4.3 Policy and Funding:

Policymakers must recognize the growing healthcare needs of the aging
population and allocate appropriate resources. Funding for research into the connections between
periodontal disease and systemic health conditions can lead to better prevention and treatment
strategies. Additionally, expanding access to dental care through public health insurance and
community health programs can help reduce the economic and social burden of periodontal
disease [16].

4.4 Identification of Diseases Using Advanced Technology:

At present, both medicine and dentistry are entering a new era due to the
rapid advancement and integration of technologies in these fields. This growth is expected to
assist human labor and emphasize new trends in disease diagnosis, prognostication, treatment
planning, and the selection of treatment modalities.

Moreover, elderly diseases, including periodontal disease, pose significant
challenges across economic, social, and health domains. The economic burden of managing
chronic conditions in the elderly can strain healthcare systems and national economies. Socially,
these diseases impact quality of life, family dynamics, and community services. Healthwise, the
systemic implications of periodontal disease underscore the need for integrated care approaches.
Addressing these challenges requires a coordinated effort from policymakers, healthcare
providers, and communities to ensure that the elderly receive comprehensive and compassionate
care.

In an epidemiological study, the highest prevalence of chronic periodontitis
was observed in the elderly population at 82%, followed by adults at 73% and adolescents at 59%
[17]. Notably, 100% of older individuals in China, India, and Croatia were found to have

periodontal disease, with the highest rates in Germany (88%), Croatia (83%), Nepal (73%), and



Taiwan (73%) [18] (Fig. 2). The elevated prevalence of periodontal disease among older adults
can be linked to inadequate oral hygiene, insufficient government funding for oral health services,
and a lack of targeted health promotion programs [19]. Additionally, low income serves as a
barrier to accessing oral healthcare, with individuals lacking dental insurance less likely to seek
routine care [20]. Many low-income individuals may underestimate the importance of oral health
and be unaware of their dental care needs, contributing to lower expectations regarding their
health [21]. Consequently, those from higher-income backgrounds are more likely to have dental

insurance, facilitating both preventive and curative dental care, which aids in the retention of

natural teeth [22].

According to the Bureau of Dental Health, Department of Health in Thailand, the
National Oral Health Survey is conducted every five years. The 9th National Oral Health Survey
(2022-2023) assessed the oral health status, behaviors, and key factors related to oral health
among the Thai population [23]. It was found that the prevalence of periodontitis in Thailand is

higher than the global data reported by the WHO. The Global Burden of Disease Study reported



that severe periodontal disease affects 19% of adults worldwide, over 1 billion people, making it
the 11th most prevalent disease [24-26] (Fig. 3). However, the latest survey in 2023 showed that
48.7% of older patients in Thailand suffer from periodontitis, an increase from 36.3% in the
previous survey (Fig. 4). The highest prevalence was found in the Northern Region at 58.4%,
followed by the Southern Region at 56.7%, the North-Eastern Region at 47.1%, and the Central
Region at 42.3% (Fig. 5). Additionally, at Fang Hospital in Chiangmai Province, 35.65% of

patients (2,391 out of 6,706) were found to have periodontitis from June 2023 to May 2024.

Complete tooth loss affects

5350 million peopleé

Severe gum disease affects

1 billion people

Oral diseases can be prevented and treated in their early stages.

7 N\
XY, World Health
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Figure 3: Global Impact of Oral Diseases. This infographic from the World Health Organization,
dated December 16, 2022, illustrates the prevalence of oral diseases affecting nearly half of the
global population, including untreated tooth decay (2.5 billion), complete tooth loss (350 million),
severe gum disease or periodontitis (1 billion), and oral cancer (380,000). It underscores the

importance of early intervention for the prevention and treatment of these conditions [26].
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Figure 5: The highest prevalence of periodontitis was observed in the Northern Region at 58.4%,
followed by the Southern Region at 56.7%, the North-Eastern Region at 47.1%, and the Central

Region at 42.3% [23].
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Focusing on periodontitis, its prevalence is quite high in Thailand. Periodontitis is a
chronic inflammatory disease that damages the tissues supporting teeth, leading to attachment
loss, tooth mobility, and potentially tooth loss [27]. It affects a large portion of the global
population and is a significant public health concern. A new classification system introduced in
2018 uses staging and grading to assess the severity of attachment and bone loss and the
progression rate, considering systemic health and smoking. Using existing databases is essential
for validating this system [28, 29].

Panoramic radiography, commonly used in dental practice, captures the entire dentition
in one image, providing comprehensive diagnostic information on impacted teeth, orthodontic
issues, developmental anomalies, TMJ disorders, and maxillofacial trauma [30-32]. This imaging
technique offers a holistic view of oral and maxillofacial health, identifying missing teeth, dental
prostheses, restorations, implants, caries, and periodontal disease. It is crucial for diagnosing
periodontal conditions, planning treatments, and monitoring disease progression. Although it has
some diagnostic limitations, panoramic radiography offers a lower radiation dose compared to 3D
imaging methods like Cone Beam Computed Tomography (CBCT) [33].

Artificial Intelligence (AI) mimics human cognitive functions, mainly through machine
learning, where algorithms learn from data to make predictions [34-37]. This process begins with
creating a well-prepared training dataset, which undergoes preprocessing for effective training.
Training involves using 2D and 3D convolutional neural networks (CNNs) on large datasets to
recognize structures' boundaries, translating this knowledge into output through multi-layered
artificial neural networks [38]. In radiology, Al improves visual diagnosis, reduces errors, and
enhances clinical and research capabilities, aiding in lesion detection, image segmentation, data
analysis, feature extraction, and automatic report generation [39, 40].

In the medicine, Al enhances healthcare by improving diagnosis, prediction, and
prevention. However, machine learning (ML) and deep learning (DL) face challenges, such as the
need for massive data during training and the costly, time-consuming process of labeling data,
especially for rare or new diseases [41]. In dentistry, Al focuses on caries, periodontal diseases,
endodontic lesions, and jawbone pathologies [42, 43]. CNNs have been successful with both two-
dimensional (2D) and three-dimensional (3D) images [44, 45]. While 3D evaluations are common

in implantology, surgery, endodontics, and orthodontics, periodontology mainly uses them to
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assess furcations, craters, bone defects, root form, and alveolar relationships [46]. Standard
periodontal assessments typically use periapical, bite-wing, and panoramic radiography for cost-
effective, quick, and lower-radiation evaluations of alveolar bone levels [47]. These issues have
led to the development of supportive diagnostic tools to improve accuracy.

Research Questions:

1. How can artificial intelligence (AI) improve the accuracy and efficiency of
periodontal disease diagnosis using panoramic radiographs?

2. What are the limitations of current conventional methods in periodontal diagnosis
and how can Al address these challenges?

3. How do the diagnostic capabilities of Al models compare to those of general
practitioners and specialized periodontists in detecting periodontal diseases?

Objectives:

1. To critically review existing literature on periodontal diagnosis and
prognostication, identifying the limitations of traditional diagnostic methods.

2. To develop a comprehensive protocol for periodontal diagnosis and
prognostication that incorporates advanced image analysis techniques using Al.

3. To evaluate the performance of AI models in diagnosing periodontal diseases
through a comparative analysis with general practitioners and specialized periodontists, focusing
on diagnostic accuracy and efficiency.

Hypothesis:

1. The integration of artificial intelligence (AI) into periodontal diagnostics will
significantly enhance diagnostic accuracy compared to current methods.

2. Al-driven image analysis techniques will outperform dental professionals in
diagnosing periodontal diseases, demonstrating higher sensitivity and specificity.

3. The implementation of a novel Al protocol for periodontal diagnosis, dental

professionals can provide faster, less labor-intensive, more precise, and comprehensive care.
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Definitions:

Periodontitis: Periodontitis is a chronic inflammatory disease that affects the
supporting structures of the teeth, leading to gingival tissue damage and potential tooth loss. It is
caused by the long-term effects of plaque deposition, which triggers an immune response that
damages the gingival tissues and supporting structures [27].

Cemento-enamel junction: The cemento-enamel junction (CEJ) refers to the
anatomical area where the enamel of the crown meets the cementum of the root of the tooth.
It marks the boundary between the crown and the root and is important in periodontal assessments
[28, 29].

Clinical Attachment Level (CAL): Clinical attachment level is a measurement
used in periodontal assessment to determine the extent of attachment loss of the periodontal
tissues, indicating the degree of periodontal disease progression [28, 29].

Probing Depth (PD): Probing depth is the measurement of the distance from the
gingival margin to the bottom of the periodontal pocket, indicating the presence of inflammation
and the severity of periodontal disease [28, 29].

Prognosis: Prognosis is defined as the expected outcome or the prospect of
recovery from a disease, based on the usual course of the disease or the particularities of the case.

Panoramic Radiography: Panoramic radiography, also known as a panoramic
X-ray, is a two-dimensional (2-D) dental X-ray examination that captures the entire mouth in
a single image, including the teeth, upper and lower jaws, and surrounding structures and tissues
[33].

Artificial Intelligence (Al): Artificial Intelligence simulates human cognitive
functions, primarily through machine learning, which involves creating algorithms that learn from

data and make predictions [34-37].
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CHAPTER 2

Literature review

The outline of this literature review is as follows:

2.1 Review of existing literature on periodontal diseases, diagnosis, and prognosis.

2.2 Examination of the role of panoramic radiographs in periodontal assessment.

2.3 Introduction to Artificial Intelligence (AI) and discussion of Al integration in
medicine.

2.4 Discussion of Al and medical image processing techniques and their potential in
dental diagnostics.

2.5 Identification of research gaps and the need for enhanced diagnostic and prognostic

tools.

2.1 Review of existing literature on periodontal diseases, diagnosis, and prognosis.
Periodontitis is a chronic inflammatory disease that damages the gingival tissues and
supporting structures of the teeth, often leading to tooth loss. It is caused by plaque accumulation,
which triggers an immune response [27] (Fig. 6). Moreover, periodontitis is the major cause of
tooth loss in the adult population [48]. In 2022, severe periodontal disease affects 19% of adults
worldwide, over 1 billion people, making it the 11th most prevalent disease [24, 25]. This
widespread condition poses a significant public health concern, affecting oral function, aesthetics,
social equality, and quality of life [28]. Recently, in 2018, a new classification system was
introduced, using a multidimensional staging and grading approach based on attachment loss,
radiographic bone loss, progression rate, systemic health, and smoking status. This system helps

in patient risk stratification, and utilizing existing databases is essential for its validation [28, 29].
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Figure 6: Example of the clinical appearance of a case of periodontitis.

Clinical Definition of Periodontitis:

Periodontitis involves inflammation caused by microbial factors, leading to the loss
of periodontal tissue attachment. This loss is measured as clinical attachment loss (CAL) using
a periodontal probe relative to the cement-enamel junction (CEJ).

Important Considerations:

1. CAL can occur in conditions other than periodontitis.

2. Defining periodontitis solely by marginal radiographic bone loss is limited and
may miss mild to moderate cases [49]. Radiographic definitions are primarily useful during mixed
dentition and tooth eruption when CAL measurement is not feasible. In such cases, bitewing
radiographs, typically used for caries detection, can be used to assess marginal bone loss.

The measurement of CAL with a periodontal probe has a margin of error, leading to
potential misclassification in early periodontitis. As the disease worsens, CAL measurements

become more accurate. Adjusting the CAL threshold affects sensitivity and specificity; lower
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thresholds increase sensitivity, while higher thresholds improve specificity. Until advanced
methods like salivary biomarkers or soft-tissue imaging are validated, accurate early detection
relies on the clinician's training and experience.

Bleeding on probing (BOP) is useful for assessing treatment outcomes and residual
disease risk but does not change the initial case definition based on CAL or impact the
classification of periodontitis severity. Various periodontitis definitions, including those from the
American Association of Periodontology /Centers for Disease Control (AAP/CDC) and the
European Federation of Periodontology (EFP), exist with some differences.

According to the 2017 World Workshop, a unified definition for periodontitis diagnosis
in clinical care is recommended:

A patient is considered to have periodontitis if:

1. Interdental CAL is found at =2 non-adjacent teeth, or
2. Buccal or lingual CAL =3 mm with probing depth (PD) >3 mm is found at =2
teeth.

These criteria exclude CAL due to non-periodontal causes such as:

1. Trauma-induced gingival recession

2. Dental caries extending to the cervical area

3. CAL on the distal aspect of a second molar due to third molar issues
4. Endodontic problems draining through the marginal periodontium
5. Vertical root fractures (VRF)

The definition emphasizes "detectable" interdental CAL, meaning clinicians must
identify attachment loss during probing or visually at the CEJ. Detection accuracy depends on
clinician skill and local factors like gingival margin position and presence of calculus. This
definition avoids specifying a CAL threshold to prevent misclassification and maintain
consistency. For epidemiological surveys, thresholds may be adjusted for measurement errors.

According to the 1999 International Classification Workshop [50], it has become
evident that a more comprehensive approach is required in diagnosing and classifying
periodontitis cases. Such an approach should not only consider the specific form of periodontitis,
severity, and extent of periodontal breakdown but should also encompass the potential systemic
implications of the disease. This broader clinical diagnosis should account for both oral effects

and systemic impacts of periodontitis.
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Severity:

Conventionally, the degree of periodontal breakdown observed at diagnosis has
been a key descriptor for classifying individual cases of periodontitis. The 1999 case definition
also focused on severity, considering management complexity and disease extent. However,
recent therapeutic advancements necessitate refining severe periodontitis definitions to
distinguish the most severe cases better [51]. A key limitation is the paradoxical decrease in
severity when the worst affected teeth are lost. Thus, tooth loss due to periodontitis should be
included in the severity definition.

Complexity of Management:

Several factors increase periodontal treatment complexity, including probing depths
[52], type of bone loss (vertical and/or horizontal) [53], furcation status [54], tooth mobility [55-
57], missing teeth, bite collapse [58], and residual ridge defect size can increase the complexity of
periodontal treatment These elements, crucial for diagnostic classification, affect the skill and
experience needed for the best treatment outcomes.

Extent:

The 1999 classification defined chronic periodontitis by the percentage of affected
teeth [50, 59], and aggressive periodontitis by the distribution of lesions (localized or generalized)
[60, 61]. This information remains valuable in the classification system as specific patterns of
periodontitis offer indirect insights into host-biofilm interactions.

Rate of Progression:

A key aspect of classifying periodontitis is accounting for variability in progression
rates. The 1989 AAP classification recognized rapidly progressing periodontitis [62]. However,
assessing progression rates at initial examination is challenging without older diagnostic
radiographs for comparison of bone loss over time.

Risk Factors:

In the past, recognized risk factors for periodontitis, such as smoking or diabetes
mellitus, were not formally integrated into the classification system. Instead, they were primarily
used as descriptors to identify specific patient characteristics. However, with advancements in our
understanding of how these risk factors influence periodontitis, it has become evident that they

should play a more integral role in the classification process.
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This updated perspective on risk factors is supported by several key findings. First,
research has shown that individuals with these risk factors tend to experience more severe and
extensive periodontitis at an earlier age. Second, their response to treatment is often less
favorable, with smaller improvements in surrogate outcomes. Additionally, these patients are at a
higher risk of experiencing tooth loss during supportive periodontal therapy [63, 64]. Given these
insights, it is advisable to formally incorporate recognized risk factors into the classification of
periodontitis. This inclusion can enhance the accuracy of the classification system by accounting
for the impact of these factors on disease severity, progression, and treatment outcomes.

Interrelationship with General Health:

Since the 1999 workshop, evidence has linked periodontitis to systemic diseases.
Oral bacteria and inflammatory mediators from periodontal pockets can enter the bloodstream,
raising systemic inflammation levels and impacting conditions like coronary artery disease,
stroke, and Type II diabetes [65-77]. Studies have shown that periodontitis increases overall
inflammation, and there is initial evidence suggesting systemic inflammation may also increase
the risk of periodontitis. Treatment of periodontitis in individuals with uncontrolled Type II
diabetes has shown benefits in reducing hyperglycemia, though larger studies have been less
conclusive [78, 79]. Health economics analyses indicate reduced healthcare costs for various
conditions following periodontitis treatment [80]. While the evidence suggests potential systemic
health benefits from treating periodontitis, further research is needed. In diagnostic classification,
consider the patient's medical status and required expertise. Severe systemic diseases, as indicated
by the American Society of Anesthesiologists (ASA) status, can hinder disease management due
to the patient's limited ability to tolerate treatment or attend maintenance care.

In the staging of periodontitis, severity and complexity are key dimensions assessed
for each case at diagnosis using patient history, clinical examination, and imaging. Severity is
primarily determined by interdental CAL measurements due to their specificity, with marginal
bone loss considered as an additional descriptor. The severity score reflects the attachment loss
attributed solely to periodontitis, based on the most affected tooth.

Grading in periodontitis adds another dimension, considering the rate of disease
progression. It is based on direct or indirect evidence of progression. Direct evidence comes from

longitudinal observations or older radiographs, while indirect evidence assesses bone loss relative
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to age at the most affected tooth. Moreover, risk factors can modify the grade of disease. The goal
of grading periodontitis is to assess the likelihood of rapid disease progression or unpredictable
response to treatment. Clinicians should start by assuming a moderate progression rate (grade B)
and refine this based on patient history and evidence of disease progression. Risk factors, like
poorly controlled Type II diabetes, can adjust the grade to a higher value, indicating a faster
progression rate (grade C).
1. Severity of periodontitis (Fig. 7):

1.1 Stage I: Interdental CAL of 1-2 mm and <15% radiographic bone loss.

1.2 Stage II: Interdental CAL of 3—4 mm and 15-33% radiographic bone loss.

1.3 Stage III: Interdental CAL of >5 mm, bone loss to the middle third of root
and beyond, and <4 teeth lost due to periodontitis.

1.4 Stage IV: Interdental CAL of >5 mm, bone loss to the middle third of root

and beyond, and =5 teeth lost due to periodontitis.

Periodontitis stage Stage I Stage I Stage I Stage IV
Interdental CAL 1to2mm 3to4mm =5 mm =5 mm
at site of
greatest loss
Sevaiis Radiographic Coronal third Coronal third Extending to middle or Extending to middle or
: bone loss (<15%) (15% to 33%) apical third of the root apical third of the root
Tooth loss No tooth loss due to periodontitis Tooth loss due to Tooth loss due to
periodontitis of periodontitis of
<4 teeth =5 teeth
In addition to stage In addition to stage III
1I complexity: complexity:
Maximum Maximum Probing depth =6 mm Need for complex
probing depth probing depth rehabilitation due to:
<4 mm <5mm Vertical bone loss Masticatory dysfunction
Mostly horizontal Mostly horizontal >3 mm Secondary occlusal
P o bone loss bone loss Fircation trauma N
sl s (tooth m_oblht}-' degree =2)
or I S?vere ridge def?ct_
Bite collapse, drifting.
Moderate ridge flaring
defect Less than 20 remaining
teeth (10 opposing pairs)
Extent and Add to stage as For each stage, describe extent as localized (<30% of teeth involved), generalized, or molar/incisor
distribution descriptor pattern

Figure 7: Staging of Periodontal Disease According to the 2018 Classification Criteria [28]
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2. Extent and distribution in periodontal disease

In the context of periodontal disease classification, the extent and distribution of
the condition are categorized into three main patterns: localized, generalized, and molar-incisor
distribution. These categories help in assessing the scope and spread of periodontal involvement
in a patient's oral health.

2.1 Localized: This category refers to cases where periodontal disease is
confined to specific areas or a limited number of teeth in the oral cavity. The extent of localized
disease is typically evaluated by calculating the percentage of total teeth affected by attachment
loss in relation to the overall number of teeth present. If the affected teeth constitute less than
30% of the total, it is classified as localized periodontal disease.

2.2 Generalized: Generalized periodontal disease, on the other hand,
encompasses a broader distribution and involves a higher percentage of teeth. In this case, if more
than 30% of the total teeth exhibit attachment loss due to periodontal inflammation, it is
categorized as generalized periodontal disease.

2.3 Molar-Incisor Distribution:

This distinctive category, known as molar-incisor distribution, arises from
the original diagnosis of aggressive periodontitis. It characterizes cases where periodontal
inflammation predominantly affects molars and incisors, typically indicating a more aggressive
form of the disease.

The assessment of extent and distribution in periodontal disease classification is
essential for treatment planning and determining the appropriate management approach. It helps
clinicians tailor interventions based on the pattern and severity of periodontal involvement in
individual patients, ultimately contributing to effective periodontal treatment.

3. Rate of progression (Fig. 8):

3.1 Grade A—Slow progression: Characterized by no bone loss or attachment
loss over five years, or a percentage of bone loss relative to age of less than 0.25. This grade
includes nonsmokers and individuals without a diagnosis of diabetes.

3.2 Grade B—Moderate progression: Defined by less than 2 mm of bone loss or

attachment loss over five years, or a percentage of bone loss relative to age between 0.25 and 1.0.



21

This grade applies to individuals who smoke fewer than 10 cigarettes per day and have an HbAlc
level below 7.0% if they have diabetes.

3.3 Grade C—Rapid progression: Identified by 2 mm or more of bone loss or
attachment loss over five years, or a percentage of bone loss relative to age greater than 1.0. This
grade includes individuals who smoke 10 or more cigarettes per day and have an HbAlc level of

7.0% or higher if they have diabetes.

Grade A: Grade B: Grade C:
Slow rate of Moderate rate of Rapid rate of
Periodontitis grade progression progression progression
Direct evidence | Longitudinal data Evidence of no loss <2 mm over 5 vears =2 mm over 5 years
of progression (radiographic bone over 5 years
loss of CAL)
% bone loss/age <0.25 025t01.0 >1.0
Case phenotype Heavy biofilm Destruction Destruction exceeds
deposits with low commensurate expectation given
levels of with biofilm biofilm. deposits;
destruction deposits specific clinical
Primary criteria patterns suggestive
Indirect evidence of periods of rapid
of progression progression and/or
early onset disease
(e.g. molar/incisor
pattern: lack of
expected response
to standard
bacterial control
therapies)
Smoking Non-smoker Smoker <10 Smoker =10
cigarettes'day cigarettes/day
Grade modifiers Risk factors Diabetes Normoglycemic/no HbAlc <7.0% in HbAlc 27.0% in
diagnosis of patients with patients with
diabetes diabetes diabetes

Figure 8: Grading of periodontal disease according to the 2018 classification criteria [28]

According to Merriam-Webster, "prognosis" is the expected course and recovery from a
disease. In dentistry, especially periodontology, various systems assess prognosis. A deep CNN
algorithm has shown performance comparable to experienced periodontists in predicting
periodontal disease using radiographic images [81]. Most prognostic systems focus on tooth
mortality, predicting the likelihood of extractions [82-84]. Accurate tooth prognosis benefits both
patients and clinicians by indicating the success likelihood of periodontal and restorative

treatments. However, no universally accepted gold standard for periodontal prognosis exists due
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to disease complexity and influencing factors like systemic conditions, local factors, and
practitioner skill [85].
The most widely used prognosis system, proposed by McGuire and Nunn in 1996 [56,
86], includes five categories: good, fair, poor, questionable, and hopeless (Fig. 9). Clinicians
categorize each tooth based on factors such as disease etiology control, attachment loss, furcation
involvement, crown/root ratio, and tooth mobility.
McGuire and Nunn's categories for periodontal prognosis are:
Good Prognosis: Effective control of periodontal disease factors and sufficient
periodontal support. The tooth is easy to maintain with proper care.
Fair Prognosis: Approximately 25% attachment loss and/or Class I furcation
involvement. Maintenance is feasible with patient compliance.
Poor Prognosis: 50% attachment loss and Class II furcation involvement.
Maintenance is possible but difficult.
Questionable Prognosis: Over 50% attachment loss, unfavorable crown-to-root
ratio, poor root form, difficult-to-maintain Class II or Class III furcations involvement, grade II
mobility or more, and close root proximity. Maintenance and long-term retention are challenging.
Hopeless Prognosis: Inadequate attachment to sustain stability. Extraction is

recommended or performed.

Prognosis Each Category

Good Adequate bone support, good patient compliance, and minimal risk
factors for disease progression.

Fair Up to 25% attachment loss, Class I furcation involvement, and adequate
maintenance possible with good patient compliance.

Poor 50% attachment loss, Class IT furcation involvement, and questionable
patient compliance.

Questionable Greater than 50% attachment loss, poor crown-to-root ratio, Class II or
IIT furcation involvement, and poor patient compliance.

Hopeless Inadequate attachment to maintain the tooth, extraction indicated.

Figure 9: Periodontal prognosis as defined by McGuire and Nunn [56, 86]
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In addition to the periodontal prognosis system proposed by McGuire and Nunn in
1996, the Thai Association of Periodontology has established its own classification for

periodontal prognosis, as described in the table below (Table 1.):

Table 1: Periodontal Prognosis as Defined by the Thai Association of Periodontology [87]

Prognostic level Bone support Probing depth Mobility Furcation
(from the most involvement

severe site)

Good >75% <6 mm 0 0
Fair 50-75% <6 mm 0-1 0-1
Poor 50-75% 2 6 mm 0-2 0-2 (B, Li)
Questionable 25-50% 2 6 mm 0-3 2-3
Hopeless <25% 2 6 mm 2-3 3

These prognosis categories play a crucial role in treatment planning and guide clinicians
in making informed decisions regarding the management of periodontal disease and the retention

or removal of affected teeth.

2.2 Examination of the role of panoramic radiographs in periodontal assessment.

In standard periodontal examinations, periapical radiographs and periodontal probes are
crucial diagnostic tools for assessing and predicting periodontitis affected teeth, but these
methods are time-consuming and depend on clinician expertise [88]. Currently, panoramic
radiography, a commonly used imaging modality in routine dental practice [30], offers distinct
advantages compared to other conventional X-ray techniques, including bitewing and periapical
radiography. It provides a holistic view of the dentition, quick, and valuable diagnostic
information, including impacted teeth, orthodontic issues, anomalies, temporomandibular joint
(TMJ) disorders, and trauma within a single image [31, 32]. Furthermore, its capability to
visualize periodontal structures, bone levels, tooth positioning, and associated pathologies makes
it a vital tool for diagnosing periodontal conditions, planning treatments, and monitoring disease

progression. Additionally, it is important for diagnosing periodontal conditions, treatment
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planning, and monitoring progression, with lower radiation doses than 3D methods like CBCT
[33].

The studies compared periapical radiographs with panoramic radiographs in detecting
key features such as alveolar bone levels, bone resorption patterns, and furcation involvement.
They concluded that both periapical and panoramic radiographs can reliably identify these
characteristics. Therefore, panoramic radiographs can be credibly used for diagnosing periodontal
disease [89, 90]. This finding aligns with Takeshita W. and colleauges, which evaluated various
radiographic techniques for assessing alveolar bone loss. Their study found that CBCT produced
average bone loss values most similar to the control group, while panoramic radiographs showed
slightly lower values. However, statistical analysis revealed no significant difference. Thus, the
study concluded that panoramic radiographs can be effectively used for preliminary assessment of
alveolar bone loss [91]. Therefore, the panoramic radiograph may be used as an alternative to a
periapical full-mouth radiographs, serving to reduce the overall radiation exposure [92].
Assessing the extent of supporting tooth tissues, particularly the quantity of bone surrounding the
tooth, is crucial in preventing tooth loss due to periodontal diseases [93]. Novel radiological
techniques, especially those involving average percentage values of bone loss, which significant
promise for early diagnosis and also timely treatment plan for periodontal diseases [94].

Routine panoramic radiographs are indispensable for evaluating the degree of alveolar
bone loss, which is vital for the diagnosis and prognostication detection of periodontal diseases
[95]. Alveolar bone loss serves as a primary parameter for determining the severity of
periodontitis, as outlined in the current periodontal classification [28, 29]. The development of
automated systems for classifying periodontal diseases based on clinical and radiological features
dates back to 1987. However, the assessment of alveolar bone loss, an important factor in
detecting periodontal diseases, is a relatively recent focus, particularly in Al studies [96, 97].
Furthermore, it is essential to emphasize that the results of Al studies aimed at detecting
periodontal bone loss and facilitating periodontal diagnosis can exhibit variability based on
factors such as the choice of imaging processing techniques, the volume of available data, and the

specific algorithms utilized.
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2.3 Introduction to Artificial Intelligence (AI) and discussion of Al integration in medicine.

In recent years, scientific advancements in electronics and computing have progressed
significantly. Various tools and devices have been developed for application across a wide range
of disciplines. As a result, we have become accustomed to hearing the term Al. Al represents to
the intelligence or knowledge created from non-living entities, which integrates multiple
components to meet human needs. Al can think and assist in various areas, such as autonomous
vehicle navigation systems, intelligent assistants in smartphones, as well as applications in
medicine and dentistry.

Since its inception in 1955 by McCarthy, Al has evolved to enable machines to
undertake tasks that typically need human intellect, such as learning and problem-solving [98].
A key breakthrough in Al is machine learning, which revolves around creating algorithms that
can learn from data to make predictions. Starting with a well-prepared and labeled training dataset
is crucial. This data undergoes formatting and pre-processing for effective training with both 2D
and 3D CNN architectures. Simplified, the process involves training the system with extensive
datasets by outlining specific structures for it to autonomously learn and produce results through
complex ANNs [99]. Additionally, Al has begun to flourish in medicine and dentistry, offering
a range of applications from diagnostics and decision-making to treatment planning and predicting
outcomes [100].

Machine learning is the process that machines learn to use a set of instructions to
distinguish and analyze data. From this data, they create models to make decisions or predictions
about various subjects. Instead of writing code as a set of specific instructions, machine learning
involves training with large datasets to learn how to perform tasks. There are various techniques
to teach a computer to learn effectively [101].

Deep learning is a subset of machine learning that employs hierarchical mechanisms
using groups of algorithms or mathematical equations to solve processing problems. It can
function both with and without supervision, relying on ANNs that mimic the workings of human
brain. These networks consist of neurons, each connected to form a network. In software, neurons
are referred to as nodes, and these nodes are organized into layers [98, 102]. In image analysis or
image classification, CNNs are commonly used. CNNs are a type of neural network commonly

used for image recognition and computer vision tasks. They employ a process called convolution
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to extract features from images. This involves sliding a small window, known as a filter or kernel,
over the image and performing mathematical operations on the pixels within the window. The
result of this convolution operation is a feature map that highlights the important features of the
image. CNN architecture is well-known for its performance in learning and validation contests
using the ImageNet dataset. It provides developers with pre-trained weights that can be utilized in
new projects. These pre-trained models are essential due to the high complexity and resource
demands of deep learning, which result in lengthy initial training times. Additionally, after
training on vast amounts of data, the model contains numerous weight factors that need to be
randomized and adjusted. Once these weights stabilize, the model can be used for ongoing
applications. At this point, Real-time object detection is crucial in autonomous vehicles, robotics,
video surveillance, and augmented reality. The YOLO (You Only Look Once) framework stands
out for its speed and accuracy, providing quick and reliable object identification in images. Since
its inception, YOLO has seen several iterations, each enhancing performance and addressing

previous limitations (Fig. 10) [103].

YOLOX
YOLOv1 YOLOv3 YOLOR YOLOvE

PP-YOLOv2
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Scaled DAMO YOLO
YOLO9000 ROCOSY PP-YOLOE
v2 PP-YOLO YOLOv?
YOLOVS T
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Figure 10: A timeline of YOLOVI to the latest YOLOvS8 [103].

In the medical field, YOLO has been used for cancer detection, skin segmentation, and
pill identification, improving diagnostic accuracy and treatment processes. In remote sensing,
YOLO assists in object detection and classification in satellite and aerial imagery, aiding land use
mapping, urban planning, and environmental monitoring. Recently, the medical images are
produced using various equipment, including ultrasound, X-rays, computed tomography (CT),

magnetic resonance imaging (MRI), microscopy, and scintigraphy. These techniques generate
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diverse images, all of which can be analyzed by Al algorithms to investigate and predict different
diseases. To understand how each Al-based model assists in diagnosing and predicting diseases, it
is crucial to examine the application of multiple algorithms [104].

In this study, we used YOLOVS, released in January 2023 by Ultralytics [105]. No
official paper has been published on YOLOVS yet, so insights are based on available information.
YOLOVS is anchor-free, reducing box predictions and speeding up the Non-Maximum
Suppression (NMS) process. It uses mosaic augmentation during training, which is disabled for
the last ten epochs to avoid detrimental effects. YOLOvVS can be run from the command line
interface (CLI) or installed as a PIP package and offers integrations for labeling, training, and
deployment. It is available in five scaled versions: YOLOv8n (nano), YOLOv8s (small),
YOLOv8m (medium), YOLOvSI (large), and YOLOvS8x (extra large) [106].

The integration of Al in medicine is seen in the study by Steimann et al. [107], who
developed a neural network called ProstAsure Index to classify prostate diseases as aggressive or
non-aggressive. Their study found that the program provided accurate diagnoses up to 90%, with
a sensitivity of 81% and a specificity of 92%. Moreover, Pranav R and colleagues [108]
conducted a study that utilized Al to develop a program called CheXNet. The aim was to evaluate
its capability in analyzing and detecting pneumonia-related abnormalities in comparison to expert
radiologists. The study concluded that CheXNet outperformed radiologists in detecting
atelectasis, achieving an AUC of 0.862 compared to the radiologists' AUC of 0.808, which was
statistically significant. Early detection and treatment initiation are vital in managing respiratory
infections. Al algorithms offer valuable support to healthcare providers in the detection and

analysis of pulmonary diseases (Fig. 11).
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Figure 11: An example of frontal chest radiograph shows airspace opacity in the right lower lobe,

indicating pneumonia. The algorithm accurately identified and located the abnormality [108].

Recently, a deep learning-based CNN model was created to analyze respiratory audio
data for detecting Chronic Obstructive Pulmonary Disease (COPD), achieving 93% accuracy
[109]. Additionally, a CNN-based framework was developed to diagnose COVID-19 using X-ray

images, reaching an accuracy of 95.7% (Fig. 12) [110].

Figure 12: These chest X-ray images show both non-COVID (left) and COVID-19 (right) cases
[110].
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In the present, many studies reveal that Al plays a wide role in healthcare, aiding in
diagnosis, prediction, and prevention. However, there are challenges in using machine learning
and deep learning for disease diagnosis and prediction. A significant challenge is the need for
massive amounts of data during training, which is often impractical for many diseases.
Additionally, labeling data requires expertise, is time-consuming, and expensive, making it
difficult to develop accurate models for rare or new diseases [111]. One potential solution is data
augmentation, which can artificially increase the size of the dataset [112].

Furthermore, numerous Al techniques are currently utilized in medicine for various
purposes. Table 2 below highlights some Al techniques and their descriptions, while Table 3 provides

examples of their use in diagnosing different diseases, along with their accuracy rates [113].

Table 2: Al Techniques in Medicine

Al Technique Description

Support Vector Machines (SVM) SVM is used for classification and regression
by identifying the optimal hyperplane that

separates different classes [114, 115].

K-Nearest Neighbors (KNN) KNN classifies data points based on the
majority class among its k-nearest neighbors,
making it effective for classification and

regression tasks [116, 117].

Naive Bayes A probabilistic classifier based on Bayes'
theorem, assuming independence among

predictors, simplifying computation [118, 119].

Decision Trees Decision Trees use a tree-like model of
decisions to split data'based on feature values,
identifying significant variables and

relationships [120, 121].

AdaBoost AdaBoost combines multiple weak classifiers
to create a strong classifier by adjusting
weights of incorrectly classified instances to

improve accuracy [122, 123].
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Al Technique

Description

Random Forest

An ensemble method constructing multiple
decision trees and aggregating their results for
improved accuracy and control over-fitting

[124, 125].

K-Means Clustering

An unsupervised algorithm that partitions data
into k clusters based on feature similarity,
aiding in pattern recognition and segmentation

[126, 127].

Recurrent Neural Networks (RNN)

RNNs handle sequential data by maintaining a
'memory' of previous inputs, suitable for time-
series predictions and sequential data analysis

[128, 129].

Convolutional Neural Networks (CNN)

CNNs s are used for image analysis, learning
spatial hierarchies of features, extensively
applied in medical imaging for detecting

abnormalities [130, 131].

Deep-CNN

These networks have multiple layers to learn
complex features from the data, providing high
accuracy in image classification tasks [132-

134].

Generative Adversarial Networks (GAN)

GANSs consist of a generator and a
discriminator network, generating realistic data
samples useful for augmenting medical datasets

[135, 136].

Long Short-Term Memory (LSTM)

LSTMs are a type of RNN designed to
remember long-term dependencies, making
them ideal for processing sequential data such

as patient health records [137, 138].




Table 3: Al Techniques and their accuracy in diagnosing diseases [113]

Disease Al Technique Accuracy
Cancer Detection SVM 85-95%
Diabetes KNN 75-90%
Heart Disease Naive Bayes 70-85%
Various Conditions Decision Trees 80-90%
Skin Cancer AdaBoost 85-95%
Breast Cancer Random Forest 90-98%

Pattern Recognition

K-Means Clustering

Not directly applicable

Disease Progression RNN 85-92%
Radiology Analysis CNN 90-98%
Medical Imaging Deep-CNN 92-99%
Data Augmentation GAN 85-95%
Chronic Disease LSTM 88-93%

Moreover, in the medical field, research has extensively examined the use of both
machine learning and deep learning models to diagnose a variety of diseases. These include
cancer, diabetes, chronic conditions, heart disease, Alzheimer's, stroke and cerebrovascular
diseases, hypertension, skin disorders, and liver diseases. Among machine learning techniques,
Random Forest Classifiers, Logistic Regression, Fuzzy Logic, Gradient Boosting Machines,
Decision Trees, K-Nearest Neighbors (KNN), and Support Vector Machines (SVM) are
frequently employed. In the context of deep learning, Convolutional Neural Networks (CNN) are
predominantly utilized for disease diagnosis. Furthermore, models such as Recurrent
Convolutional Neural Networks, Multilayer Perceptrons, and Long Short-Term Memory (LSTM)

networks have also seen widespread application in the literature [113].
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2.4 Discussion of AI and medical image processing techniques and their potential in dental
diagnostics.

In the field of medicine, there has been a recent increase in studies aimed at evaluating
anatomical and pathological structures using artificial intelligence [139-141]. When examining
the primary challenges that contribute to develop the Al applications in dentistry, several issues
come to light. These include the potential for human-induced diagnostic errors due to factors like
a shortage of experienced clinicians, time constraints for radiographic interpretation, and the
necessity for radiograph reporting. These challenges can impact both the timeliness and cost of
treatment. However, as the utilization of Al in the field of dentistry continues to expand, and
more sophisticated programming methods are devised, these challenges are expected to gradually
diminish. Furthermore, the implementation of Al programs can expedite the diagnostic process
and improve reliability, making it more practical and efficient to diagnose dental restorations,
maxillofacial abnormalities, dental deformities, and periodontal and endodontic lesions from
panoramic radiographs [142, 143].

In Periodontology, Al has found applications in the diagnosis of periodontitis and the
classification of various types of periodontal diseases [144, 145]. For instance, Krois and
colleagues used CNNs to detect periodontal bone loss (PBL) in panoramic X-ray images [146].
Lee and colleagues conducted research to explore the ability of a CNN algorithm for the
automatic identification of periodontitis affected teeth, assessing its accuracy [147]. Moreover,
Yauney and colleagues made a notable contribution by developing a CNN algorithm capable of
evaluating periodontal conditions using systemic health-related data [148]. These studies have
leveraged Al in the context of periodontal disease diagnosis and management [149]. They provide
valuable insights into the integration of advanced technology in Periodontology. Given the
relatively early stages of Al's integration into healthcare, it is not unexpected to observe
substantial heterogeneity in methodology and reporting outcomes among the reviewed studies. It
is imperative that future research endeavors strive to align with increasingly recognized gold
standards for research and reporting. The establishment of an international consensus on a gold
standard for assessing these tools would greatly aid readers in evaluating the utility of this
technology for diagnosis, prognostication, and the development of treatment protocols for patients

with periodontal disease. Consequently, at this stage, it remains challenging to draw definitive
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conclusions regarding the efficacy and utility of Al in Periodontology. Most often, researchers
chose to use individualized networks, possibly because many pretrained networks were not well-
suited for the relatively small datasets commonly used in these investigations. On average, these
studies had around 1,000 images in their datasets, whereas most pretrained CNNs were trained on
much larger datasets, often unrelated to the medical field, where limited data is a common
challenge [150].

According to the study conducted by Thanathornwong B. and colleague [151], a novel
approach was introduced to identify periodontitis affected teeth using a deep learning-based
object detection method on digital panoramic X-ray images (Fig. 13). This method utilized
a state-of-the-art deep detection network called Faster Regional Convolutional Neural Network
(Faster R-CNN). Adapted from the natural image domain and trained on a relatively small
annotated clinical dataset, Faster R-CNN demonstrated satisfactory performance in detecting
periodontitis affected teeth. Using Faster R-CNN could streamline the diagnostic process by
reducing assessment time and enabling automated screening documentation. This model achieved
a sensitivity of 0.84, a specificity of 0.88, and an F-measure of 0.81, respectively, indicating its

effectiveness in this context.

Figure 13: Example of a panoramic X-ray image of the provided dataset showing periodontitis

affected teeth (No. 14, 23, 25, 26, 37,35, and 47 in the boxes) [151].
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In the study conducted by Huang Y.C. and colleagues [152], an innovative approach is
introduced for automating the segmentation of panormaic X-ray images (Fig. 14), focusing on
isolating individual teeth and accurately placing each segmented tooth within a predefined
reference table. It also includes an automated process for identifying the precise location of each
tooth within a panoramic X-ray image. The image processing phase uses various techniques of
image enhancement to improve image quality, including sharpening, histogram equalization, and
flat-field correction. Iterative image processing is applied to improve contrast between teeth and
cavities. An additional step detects dental cavities by identifying segments and points that
separate the upper and lower jaws based on pixel value differences. These sections are used to
connect cavity feature points, creating a detailed representation of the jaw sections.

Adjustments are made by shifting the curve to identify gaps between teeth, which helps
in identifying missing teeth and overlap issues. The study adopts the Fédération Dentaire
Internationale (FDI) two-digit notation system, assigning unique codes to each tooth for clinical
use. To address the challenge of accurately marking missing teeth on conventional X-ray films,
the paper introduces artificial center positioning and ensures uniform counts of gap feature points,
which are then connected to the jaw curve for visual dental segmentation. This proposed method
achieves an accuracy rate of 89.95% in tooth positioning. For tooth cutting, where the position of

each tooth is determined by the edge of the cutting box, the accuracy reaches 92.78%.

Figure 14: Automated tooth position determination in dental panoramic X-ray imaging through

Image Enhancement Technique [152].
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A recent study by Uzun Saylan B.C. and colleagues [153] assessed the effectiveness of
Al models in detecting alveolar bone loss of periodontitis affected teeth in periodontal disease
using panoramic X-ray images. The findings indicated that AI models hold significant potential

for analyzing periodontal bone loss (Fig. 15).

Figure 15: Al Predictions of alveolar bone loss in panoramic X-ray images and testing results

[153].

2.5 Identification of research gaps and the need for enhanced diagnostic and prognostic tools.
In the present situation, The Global Burden of Disease Study reported that severe
periodontal disease affects 19% of adults worldwide, over 1 billion people, making it the 11th
most prevalent disease [24, 25]. At Fang Hospital in Chiangmai Province, Thailand, 35.65% of
patients (2,391 out of 6,706) had periodontitis from June 2023 to May 2024. Furthermore, the
current periodontal classification system introduced in 2018, grounded in current evidence and

employing a multidimensional staging and grading approach, and there are a limited number of
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periodontists who are experts in Periodontology. Moreover, the current diagnostic challenges
include errors from inexperienced dentists, limited time for radiograph analysis, and mandatory
reporting, affecting the delay in treatment planning.
Limitations of current periodontal diagnosis involve analyzing various aspects of the
diagnostic process, from clinical practices to technological applications include:
® 4.1 Reliance on Classical Methods:

Subjectivity in clinical examination, such as variability in manual probing
and visual examination, leads to inconsistencies in diagnosis. Inaccuracies in depth measurement
due to factors like probe angulation and pressure are also concerns [50].

® 4.2 Diagnostic Sensitivity and Specificity:

Challenges exist in early disease detection and differentiating between
stable conditions and active disease progression [154, 155].

® 4.3 Technological Limitations:

Radiographs, while essential, have limitations in early bone loss detection
and 3D bone defect assessment [156]. The method discussed has limitations in providing exact
measurements of periodontal bone loss due to inconsistencies in image magnification and
distortion common in dental panoramic radiography. Future research should focus on enhancing
this method's accuracy, potentially through collaborations across different organizations to
validate and improve its performance [157].

® 4.4 Integration of New Technologies:

Currently, research on integrating digital technologies into dentistry is
somewhat limited. The exploration of these technologies could potentially revolutionize
diagnostic methods, treatment planning, and patient care in the dental field. Further studies and
investments are needed to fully understand and leverage digital innovations for improving dental
practices and patient outcomes. Incorporating advanced diagnostic tools and methodologies is an

ongoing process, aiming to overcome the limitations of classical methods [158].
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Despite these advancements, research on Al's integration into dentistry, particularly

periodontology, remains limited (Table 4). Further studies are needed, such as Al assistance in

periodontal diagnosis and prognosis, to develop innovative diagnostic software (Fig. 16). This

could lead to tailored treatment protocols based on individual periodontal diagnoses.

Table 4: Examples of Al technologies enhancing the detection of periodontal bone loss through

dental panoramic X-ray images

Summary of model

Study Year Description Total data
performances

Krois et al. [146] = 2019 Used CNN to identify 2,001 The model has an accuracy,
periodontal bone loss on sensitivity, and specificity all
dental panoramic X-ray at 0.81.
images.

Kim et al. [159] 2019 Created a system for 12,179 The developed model
automatically outperformed dental
identifying periodontal clinicians on the test set with
bone loss using an F1 score of 0.75,
panoramic dental X-ray compared to the clinicians'
images. average score of 0.69.

Chang et al. [94] 2020 Created a system to 340 The accuracy levels were
automatically classify recorded at 0.93 for
stages of periodontitis periodontal bone and 0.91 for
using deep learning both CEJ level and teeth
techniques on dental identification.
panoramic X-ray
images.

Bayrakdar et al. 2020 Used CNN to identify 2,276 The model's accuracy is

[160] periodontal bone loss on measured at 0.9.

dental panoramic X-ray

images.




Table 4: Cont.

38

Summary of model

Study Year Description Total data
performances
Thanathornwong 2020 - Used CNN to identify 100 The model reached a
etal. [151] periodontally sensitivity of 0.84, specificity

compromised teeth on

of 0.88, and an F-measure of

dental panoramic X-ray 0.81.
images.

Jiang et al. [161] = 2022 Created a model for 640 The model's overall accuracy
radiological staging of rate was recorded at 0.77.
periodontal alveolar
bone loss on dental
panoramic X-ray
images.

Zadrozny et al. 2022 Evaluated the accuracy 30 The tested CNN displayed

[162] of Al in automatically poor reliability in evaluating
analyzing panoramic caries (Intra-Class Correlation
dental X-rays. (ICC) = 0.681) and periapical

lesions (ICC = 0.619).
However, it showed good
reliability for identifying
fillings (ICC = 0.920),
endodontically treated teeth
(ICC =0.948), and
periodontal bone loss
(ICC=0.764).

Uzun Saylan 2023 Assessed how well Al 685 The models in detecting

etal. [153] models can detect the alveolar bone loss (ABL)

presence or absence of
alveolar bone loss in

various areas.

across various teeth regions
showed sensitivity, precision,
and F1 score ranges as

follows:
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Study

Year Description Total data

Summary of model

performances

For general alveolar bone
loss, the scores were 0.75,
0.76, and 0.76. Specifically,
maxillary incisor ABL had
perfect precision at 1, with an
F1 score of 0.95. Maxillary
canine, premolar, and molar
ABL showed balanced
scores, with the highest F1
score of 0.91 for molar ABL.
In the mandible, incisor,
canine, premolar, and molar
ABL scores varied, with
mandibular incisor ABL
scoring an F1 of 0.86 and
molar ABL at 0.79,
indicating the models' varied
effectiveness in different

dental regions.

Kong et al. [163]

2023 Used two-stage CNN- 1747
based periodontitis
detection network in
periodontitis bone loss
diagnosis in panoramic

radiographs

The model for radiographic
bone loss (RBL)
classification has an accuracy

of 0.762.
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Figure 16: The example of Al in illustrating the detection of periodontal bone loss on dental

panoramic X-ray image.

Additionally, Al has also been increasingly applied in dentistry for diagnosing and
predicting various dental diseases. These techniques encompass both machine learning and deep
learning models, each providing different levels of accuracy for specific conditions. The
following table (Table 5) highlights some of these techniques and their corresponding

applications in dental diagnostics.
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Table 5: Al Techniques in Dentistry

Disease Al Technique Accuracy
Dental Caries [164, 165] Convolutional Neural Networks (CNN)  89-94%
Periodontal Disease [146, 166] Random Forest, SVM 85-90%
Tooth Fracture [167, 168] CNN, Deep-CNN 92-97%
Oral Cancer [169, 170] CNN, LSTM 90-95%
Orthodontics [171, 172] SVM, KNN 88-93%
Root Canal Treatment [173, 174]  Decision Trees, Random Forest 87-92%
Implantology [175, 176] CNN, RNN 90-94%

This research aims to fill that gap by focusing on enhancing the accuracy and efficiency
of periodontal diagnosis and prognostication detection using medical image processing techniques
and Al. By employing advanced image analysis algorithms on dental panoramic X-ray images,
this study strives to make a valuable contribution to improving periodontal disease management
and, consequently, enhancing overall patient care outcomes.

This represents a novel innovation designed to assist periodontists and general
practitioners in screening diagnoses and making prognostication decisions using panoramic X-ray

images, which are valuable tools in treatment planning.



CHAPTER 3

Materials and methods

3.1 Study Design
This research is divided into three phases:

Phase I - Review Study: This phase critically evaluates the existing literature on
periodontal diagnosis and prognostication, emphasizing the limitations of traditional diagnostic
methods. A comprehensive review was conducted following PRISMA guidelines. We searched
several databases, including PubMed, Scopus, Wiley Online Library, and ScienceDirect, for

studies published between January 2018 and December 2023. The search utilized keywords such
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as “artificial intelligence,” “panoramic radiograph,” “periodontitis,” “periodontal disease,” and
“diagnosis.” Inclusion criteria were established for studies that involved the application of Al in
diagnosing periodontitis, included human subjects, were published in English, and were
accessible as open access. Conversely, the exclusion criteria eliminated non-Al studies, studies
unrelated to periodontitis, those not utilizing panoramic radiographs, as well as abstracts,
editorials, and letters.

Phase II - Retrospective Study: The panoramic radiographs used in this study
were obtained from the Dental Department of Fang Hospital, Chiang Mai, Thailand. It is
important to note that all radiographs were captured using the same imaging device, the SIDEXIS
Next Generation Program (Sirona, Bensheim, Germany). Only one radiograph per patient was
included in the analysis. The dataset comprised 2,000 panoramic radiographs, divided into 1,000
periodontally healthy radiographs and 1,000 periodontitis radiographs. Following the collection of
these radiographs, a comprehensive model for periodontal diagnosis and prognostication was
developed, integrating advanced image analysis techniques utilizing artificial intelligence (AI).
The assessment was based solely on radiographic evaluation, with the primary focus being the
assessment of the alveolar bone crest relative to the cemento-enamel junction (CEJ) of each tooth.
The distance between the CEJ and the alveolar bone crest was measured. Periodontal diagnosis

followed the 2018 periodontal classification, and prognostication was performed using medical

image processing techniques, as follows:
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Teeth Segmentation Model: A machine learning framework designed to
accurately identify and classify individual teeth within panoramic radiographs.

Distance Between the Cemento-Enamel Junction (CEJ) and the Crestal
Bone Model: A method to measure the vertical distance between the CEJ of each tooth and the
corresponding alveolar bone crest on panoramic radiographs.

Phase III - Analytical Study: This phase aims to evaluate the performance of Al
models in diagnosing periodontal diseases through a comparative analysis with general
practitioners (GPs) and specialized periodontists. The evaluation will be based on the assessments
made by expert periodontists with over 10 years of experience in periodontology, focusing on

diagnostic accuracy and efficiency.

3.2 Research Workflow
3.2.1 Phase I: To critically review existing literature on periodontal diagnosis and
prognostication, identifying the limitations of traditional diagnostic methods.
A comprehensive literature review was conducted following PRISMA guidelines.
We searched multiple databases, including PubMed, Scopus, Wiley Online Library, and
ScienceDirect, for studies published between January 2018 and December 2023. The keywords

29 ¢

employed in the search included “artificial intelligence,” “panoramic radiograph,” “periodontitis,”
“periodontal disease,” and ‘“diagnosis.” Inclusion criteria were established for studies that
involved the application of Al in diagnosing periodontitis, included human subjects, were
published in English, and were accessible as open access. Conversely, the exclusion criteria

eliminated non-Al studies, studies unrelated to periodontitis, those not utilizing panoramic

radiographs, as well as abstracts, editorials, and letters, as illustrated in the flowchart below.
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3.2.2 Phase II: To develop a comprehensive model for periodontal diagnosis and
prognostication that integrates advanced image analysis techniques utilizing artificial intelligence
(AI). The overall procedure for the development of the Al model includes phases for image

enhancement, model training, and evaluation, as shown in the flowchart below.

Collection of Panoramic Radiograph Data

A4

Image Enhancement

A

Data Labeling using LabelMe tool

Data Conversion using Labelme2yolo tool

A4

CNN models were developed using YOLOVS.

A\ 4 \4
Localization and classification Localization and classification
4 A
Teeth segmentation Distance between CEJ and alveolar bone level

4

Thresholding for Abnormality Detection level

A 4

The percentage of alveolar bone loss was measured for each tooth.

v

\ 4

Compared to the periodontal prognosis categories— Periodontitis:
Good, Fair, Poor, Questionable, and Hopeless. Stage I, I, l1I, IV
Grade A, B, C
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3.2.3 Phase III: To evaluate the performance of Al models in diagnosing periodontal
diseases through a comparative analysis with general practitioners (GPs) and specialized
periodontists. This evaluation will reference the assessments made by expert periodontists with
over 10 years of experience in the field of periodontology, focusing on diagnostic accuracy and

efficiency, as illustrated in the flowchart below.

Al Model Development

l

90 previously unseen panoramic radiographs of patients with periodontitis and non-periodontitis

A4

The expert periodontist provided the diagnosis of periodontitis for each patient

v A4 A\ 4

Al GPs Periodontist

‘, l

To evaluate performance metrics, including accuracy, sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), and weighted Cohen’s Kappa value

:

Conclude the study

3.3 Study Population and Sample size
The research will utilize the rule of ten, supplemented by weighting factors, to

determine the necessary volume of data required for training. This study will evaluate ten critical
aspects (Fig. 17), namely:

1. Tooth position,

2. Contrast between teeth and gum,

3. Contrast between teeth and bone,

4. Tooth edge,

5. Tooth reference point,
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6. Tooth angle,

7. Distance between the reference point and the end of the tooth root,
8. Tooth shape,

9. Degree of alignment between upper and lower jaws, and

10. Degree of bone loss.

The Rule of 10 is a practical guideline suggesting that, for the development of an
efficient Al model, the number of training datasets should ideally be ten times greater than the
total number of model parameters, also referred to as degrees of freedom. The primary objective
behind this '10 times' rule is to reduce data variability and enhance data diversity. Consequently,
this rule of thumb serves as a valuable initial reference point for determining the necessary
quantity of datasets to commence your project. Recognizing the intricate nature of CNNs, we will

expand the training dataset tenfold, resulting in a total of 1,000 datasets for Al training.

Figure 17: An illustrative of bone level and cementoenamel junction (CEJ) from panoramic

radiograph
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3.4 Inclusion and Exclusion Criteria
The dataset of panoramic radiographs of patients obtained from the Dental Department
of Fang Hospital, Chiangmai, Thailand following the inclusion and exclusion criteria below:
Inclusion criteria:

1. Age: Participants aged 18 years and older to ensure that only fully erupted
molars are included, while excluding erupting or unerupted molar teeth.

2. Diagnosis: Individuals diagnosed with periodontitis, as identified through
diagnosis codes from the HOSxP Program (Bangkok Medical Software, Bangkok, Thailand).

3. Radiograph Quality: High-quality panoramic radiographs obtained from the
SIDEXIS Next Generation Program (Sirona, Bensheim, Germany) and captured using a
consistent device.

Exclusion criteria:

1. Missing Radiographs: Absence of panoramic radiographs in the SIDEXIS
Next Generation Program.

2. Image Quality: Radiographs were excluded if they exhibited improper patient
positioning, poor quality due to movement, uncommon bone morphologies (Fig. 18), or if the
alveolar bone loss in the affected area could not be accurately assessed (Fig. 19).

3. Panoramic radiographs of patients with craniofacial anomalies, as these

conditions may affect bone morphology.

Figure 18: An illustration of panoramic X-ray image where the area could not be accurately

selected for determining periodontal bone destruction.
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Figure 19: An illustration of panoramic X-ray image with incorrect patient positioning and

low quality radiograph.

3.5 Data collections

The good quality panoramic radiographs of patients both periodontitis (Fig. 20) and
non-periodontitis patients (Fig. 21) were recruited from the SIDEXIS next Generation Program
(Sirona, Bensheim, Germany) (Fig. 22) from January 2015 - December 2023. Panoramic X-ray
images with incorrect patient positioning, low quality due to patient movement, rare bone
morphologies, and those where the affected area could not be accurately selected for periodontal
bone destruction determination were excluded. The dataset included 2,000 panoramic radiographs
of patients diagnosed with periodontitis, identified using diagnosis codes from the HOSxP
Program (Bangkok Medical Software, Bangkok, Thailand) (Fig. 23). It is noteworthy that all
radiographs employed in this study were captured using the same imaging device (ORTHOPHOS
XG, Sirona, Bensheim, Germany) (Fig. 24).
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Figure 20: An illustrative panoramic radiograph of periodontitis patient captured

from the SIDEXIS Next Generation Program

Figure 21: An illustrative panoramic radiograph of non-periodontitis patient captured

from the SIDEXIS Next Generation Program
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Figure 22: An illustrative of panoramic radiographs from the SIDEXIS Next Generation Program
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Figure 23: Examples of panoramic radiographs from the SIDEXIS Next Generation Program
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Figure 24: Imaging device (ORTHOPHOS XG, Sirona, Bensheim, Germany).

3.6 Medical Image Processing and Al Techniques

To overcome the afore mentioned challenges, a comprehensive methodology involving
machine learning and Al techniques will be developed for the automated detection of abnormal
teeth in dental X-ray films. Five major steps are to be proposed: Images preprocessing, image
analysis using CNNs, localization and classification thresholding for abnormality detection, and

model evaluation and validation (Fig. 25).

Image Analysis
Model \ -~ e using
Evaluation and . Convolutional
Validation Neural
Networks

Thresholding
for

Localization
and

L Classification

Detection

Figure 25: Workflow of Al model development
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1. Image Preprocessing [152]
Image preprocessing and enhancement is an important part of the proposed
algorithm to produce more suitable images for the applications than the original image.
1.1 Image sharpening (Fig. 26)

One of the most commonly used modification techniques is sharpening, which
enhances edges and makes pixel boundaries more distinct. This clarity improves subsequent
processing steps. Psychophysical experiments indicate that edge-enhanced images, including
those in radiology, are often more visually pleasing and easier for the human visual system to

interpret.

Figure 26: An illustration of image sharpening: original image (left), sharpened image (right).

1.2 Image Contrast Adjustment (Fig. 27)

In this stage, the histogram equalization is used to equalize the brightness level
of the X-ray picture. The contrast is adjusted to distinguish the target teeth from the background
using a histogram equalization method. This technique transforms the original image’s grayscale
values from a concentrated range to an evenly distributed range. Histogram equalization expands
the image nonlinearly, redistributing the grayscale values so that the proportions of the image in
each range are approximately equal.

Histogram transformation, a type of grayscale transformation, defines the
relationship between input and output grayscale values. This transformation relates the input and
output random variables, allowing for more effective processing. In digital image processing,

continuous variables are used for deriving generalizations that can be applied to discrete data.
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Figure 27: An illustrative of image contrast adjustment using Histogram equilibrium.

1.3 Gaussain filtering (Fig. 28, 29)
Before this step, Gaussian filtering is applied to the processed X-ray film to

reduce noise and smooth the image using a 3x3 kernel matrix.

| il i2 |i3
4 | 5|6 al | a2 | a3
i7 | B |i9 a4 | a5 | a6
a7 | a8 | a9
Input Image Kernel Output

Figure 28: Image show kernel of size 3x3 for Gaussian blur filter.

Figure 29: An illustration of Gaussian filtering: original image (left), the image after

preprocessing (right).
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2. Data labeling (Fig. 30):
Recognizing the importance of labeled data in supervised machine learning, labeling
tools have been introduced. This research utilizes LabelMe [177] as a labeling tool for object

segmentation, while Labelme2yolo is used for converting data into a ready-to-train format.

Figure 30: Image showing the distance between the CEJ and the bone (upper) and teeth (lower),

labeled using LabelMe.

3. Distance between crestal bone level and CEJ, and the teeth analysis using CNNs:

CNNs will be employed to extract meaningful features from dental X-ray images.

Transfer learning from pre-trained models will be explored to leverage existing knowledge in

image recognition tasks. These images were randomly assigned to the training, validation, and
test sets in a 70:10:20 ratio.

To address existing issues, we selected a dataset that includes 2000 X-ray images of

both healthy and infected teeth. We propose using the YOLOvS [178, 179] model to extract

regions of interest and minimize the background's impact on target segmentation.
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3.1 Training Environment
The experimental setup included an Intel Core i7-8700K CPU, 16 GB of RAM,
an Nvidia GeForce RTX2080 GPU with 8 GB of video memory, the CUDA Toolkit 9.0, CUDNN
V11.7, and Python 3.11.5.
4. Localization and Classification (Fig. 31):
The developed model is trained to not only classify teeth but also localize the area
between CEJ and the attachment level within the X-ray images. Localization will involve

generating bounding boxes or heat maps indicating the presence and location of abnormal teeth

Figure 31: Image showing the predicted area between the CEJ and the bone level (upper),

and teeth segmentation (lower).
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5. Thresholding for Abnormality Detection (Fig. 32):
A thresholding mechanism will be devised to determine the extent of abnormality
based on the width of the gap between the tooth and the bone structure. Teeth with gaps

exceeding the predefined threshold (e.g., >2mm) will be flagged as abnormally positioned.

Figure 32: Panoramic X-ray image showing the percentage of thresholding for abnormality

detection.

A thresholding mechanism will be developed to assess the extent of abnormality by
measuring the distance between the CEJ and the bone structure (Fig. 33). The percentage of bone

loss is calculated using the following formula [22, 180]:

p " b o (CEJ] — Alveolar bone crest) — 2mm G
e ™ (CEJ — Root apex) — 2mm x
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Where each variable is as follow:

Figure 33: CEJ stands for the cemento-enamel junction. ABC refers to the alveolar bone crest or
crestal bone. AP indicates the root apex of the tooth. Here, d1represents the distance from the CEJ

to the crestal bone, and d2 represents the distance from the CEJ to the root apex [180].
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clanificztion
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Figure 34: he overall procedure for developing the Al model encompasses phases for image
enhancement, model training, and evaluation, aimed at detecting and classifying periodontal

bone loss

60
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6. Model Evaluation and Validation:
The trained models, including the teeth segmentation model and the CEJ and bone
level segmentation model, will be evaluated using sensitivity, specificity, F1 score, precision, and
accuracy metrics. Cross-validation and testing on new, unseen X-ray images will be conducted to

validate the models' performance.

3.7 Statistical Analysis
A confusion matrix visually represents a model's prediction accuracy on a dataset. For

binary class datasets, such as those with "positive" and "negative" classes, the confusion matrix
consists of four key elements [181, 182]. To gauge the model's effectiveness, a set of performance
metrics were computed, including (Fig. 35):

True Positive (TP): The count of correctly labeled areas indicating bone loss.

True Negative (TN): The count of accurately identified areas without bone loss.

False Positive (FP): The count of areas erroneously labeled as having bone loss
when there was none.

False Negative (FN): The count of areas with bone loss that were not labeled.

+VvVe -ve

+ve IS FP

3
3
J
o

-ve | FN 1)

Figure 35: The structure of the confusion matrix [181].
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These metrics were used to evaluate the model's performance using the following
calculations:
Sensitivity or Recall (TP / (TP + FN)): The proportion of actual positive cases
correctly identified by the model.
Specificity (TN / (TN + FP)): The proportion of actual negative cases correctly
identified by the model.
F1-Score: The harmonic means of precision and recall, balancing the trade-off between
them. A high F1-Score indicates a good balance between detecting true positives and avoiding
false positives. These metrics collectively provide a comprehensive evaluation of the model's

performance in identifying and classifying bone loss areas in dental radiographic images.

2
1 1
Precision Recall

_2X Precision x Recall

F1 Score =

Precision + Recall

Accuracy and Precision can be computed as follow:

; - TP + TN
CoUracy = Tp +FP+ FN + TN

TP

Precision = ——
TP+ FP

3.8 Sample Size Calculation for Evaluating the Effectiveness of a New Tool Compared to the
Standard Tool
1. Sample Size Calculation for Evaluating Sensitivity
When researchers aim to estimate the sensitivity of a tool or diagnostic method to
differentiate between diseased and non-diseased individuals, the sample size calculation for
estimating the sensitivity of a new tool or method compared to the standard tool or method can be

performed using the following formula [183]:



63

z% 4Se(1 — se)
=3

Nge =
d?(prev)
When MNge is the sample size for estimating sensitivity.
2
Z 1-% is the Z-value from the standard normal distribution at thel-0{(/2
2
quantile.
a is the error rate for the confidence interval, typically set at 0.05.
se is the sensitivity.
d is the allowable error margin from the reviewed work.

Prev isthe prevalence of the disease being studied.

From the research conducted by Bayrakdar SK et al. [160], the sensitivity was found
to be 0.9429, tested on a sample of 210, with 105 samples indicating bone loss (50%).
When calculating the sample size, the researcher set d (the allowable error margin of sensitivity
from the referenced research) at 5%, which equals 0.9429%0.05=0.04710.9429 \times 0.05 =
0.04710.9429%0.05=0.0471. The sample size calculation is as follows:

z2 40.9429(1 - 0.9429)
2

Mse = T004712(0.50)
. (1.967)0.9429(0.0571)
Mlse = "T0.04712(0.50)

ne = 186.47 ~ 187

Table 6 represents a sample size of 187, determined based on the sensitivity value
from previous research (0.9429) and a prevalence of 0.50, with an allowable error margin of 5%
(0.0471). The allowable error margin can be adjusted. When the allowable error margin is set at

5%, 10%, 15%, and 20%, the resulting sample sizes are as follows:
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Table 6: Sample Size Calculation for Estimating Sensitivity with Adjusted Error Margins of 5%-

20%

Formula Sensitivity Prevalence Error Margin (%)  Allowable Error Sample Size

1 0.9429 0.50 5 0.0471 187
2 0.9429 0.50 6 0.0565 130
3 0.9429 0.50 7 0.0660 95
4 0.9429 0.50 8 0.0754 73
5 0.9429 0.50 9 0.0848 58
6 0.9429 0.50 10 0.0942 47
7 0.9429 0.50 15 0.1414 21
8 0.9429 0.50 20 0.1885 12

2. Sample Size Calculation for Measuring Agreement Using Kappa Statistics
When researchers aim to study agreement measurement, which involves evaluating
the opinions or diagnostic results of two or more raters or tools (inter-rater agreement) to
determine if they are in concordance, the sample size can be calculated to estimate agreement

using Cohen’s kappa coefficient. The calculation method is as follows [184, 185]:
2
21-¢ VQo + 21—V Q1
k1 — ko
Q = (1 — 7!'6)-4{21‘71'7;2'[(1 - ‘/Te) —— (71'_;' -+ 71'1")(]. - 7!'())]2

+ (1 — m0)|* BT ingjmij (m.i + m5.)% — (mome — 2me + 71'0)2}

When N is the sample size for estimating agreement:
k 1 is the alternative hypothesis value of the Kappa statistic.
k o is the null hypothesis value of the Kappa statistic.
TTp is the probability that Rater 1 gives a positive result.

TT, is the probability that Rater 2 gives a positive result.
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Based on the research conducted by Lee JH et al. [147], the agreement values
between the convolutional neural network (CNN) and periodontists were reported. For premolars,
the agreement values were 0.828 and 0.797, respectively, and for molars, the values were 0.734
and 0.766, respectively. When calculating the sample size, the researcher set d, the deviation of
the agreement values from previous studies, at 5%, 10%, 15%, and 20%. The results are shown in

Table 7:

Table 7: Sample Size Calculation for Molar Cases with Adjusted Error Rates (5%-30%)

Formula P(CNN) P(periodontists) k, Deviation (%) k, Sample Size (n)
1 0.734 0.766 0.766 5 0.8043 2,842

2 0.734 0.766 0.766 10 0.8426 673

3 0.734 0.766 0.766 15 0.8809 281

4 0.734 0.766 0.766 20 0.9192 146

5 0.734 0.766 0.766 25 0.9575 83

6 0.734 0.766 0.766 30 0.9958 46

In the clinical implementation of this study, we calculated a sample size of 83
panoramic X-ray images, accounting for an adjusted error rate of 25%. However, we ultimately
used 90 images to assess the accuracy of the Al model in comparison to general practitioners
(GPs) and periodontists, relative to expert periodontists. The expert periodontists in this context
are certified specialists in the field of Periodontology with over 10 years of experience.

In this study, intraoral examinations were not conducted, and retrospective
evaluation of radiological data was performed. This study was approved by the Ethical Review
Board of Fang Hospital (COA No. 03/2566) and the Ethics Committee of Research Involving
Human Subjects of Mahasarakham University (No. 533-589/2023). Moreover, the consent letter
for data collection for this research project was granted by the director of Fang Hospital in Chiang

Mai, Thailand (No. 0033.306/3674).
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Results

This research is divided into three phases: Phase I - Review Study: This phase
critically evaluates the existing literature on periodontal diagnosis and prognostication,
emphasizing the limitations of traditional diagnostic methods. A comprehensive review was
conducted following PRISMA guidelines. We searched several databases, including PubMed,
Scopus, Wiley Online Library, and ScienceDirect, for studies published between January 2018

LR INT3

and December 2023. The search utilized keywords such as “artificial intelligence,” “panoramic

EEINT3

radiograph,” “periodontitis,” “periodontal disease,” and ‘“diagnosis.” Inclusion criteria were
established for studies involving the application of Al in diagnosing periodontitis, including
human subjects, published in English, and accessible as open access. Exclusion criteria eliminated
non-Al studies, studies unrelated to periodontitis, those not utilizing panoramic radiographs, as
well as abstracts, editorials, and letters.

Phase II - Retrospective Study: The panoramic radiographs used in this study were
obtained from the Dental Department of Fang Hospital, Chiang Mai, Thailand. It is important to
note that all radiographs were captured using the same imaging device, the SIDEXIS Next
Generation Program (Sirona, Bensheim, Germany). Only one radiograph per patient was included
in the analysis. The dataset comprised 2,000 panoramic radiographs, divided into 1,000
periodontally healthy radiographs and 1,000 periodontitis radiographs. Following the collection of
these radiographs, a comprehensive model for periodontal diagnosis and prognostication was
developed, integrating advanced image analysis techniques utilizing artificial intelligence (AI).
The assessment was based solely on radiographic evaluation, with the primary focus being the
assessment of the alveolar bone crest relative to the cemento-enamel junction (CEJ) of each tooth.
The distance between the CEJ and the alveolar bone crest was measured. Periodontal diagnosis
followed the 2018 periodontal classification, and prognostication was performed using medical
image processing techniques.

Phase III - Analytical Study: This phase aims to evaluate the performance of Al
models in diagnosing periodontal diseases through a comparative analysis with general

practitioners (GPs) and specialized periodontists. The evaluation will be based on the assessments
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made by expert periodontists with over 10 years of experience in periodontology, focusing on
diagnostic accuracy and efficiency.

In Phase I, a critical review of the existing literature on periodontal diagnosis and
prognostication was conducted to identify the limitations of traditional diagnostic methods.
Following PRISMA guidelines, an initial search identified 211 records. After applying the
inclusion and exclusion criteria, 12 studies were included in the final review, as shown in Figure 36

below, with the details provided in Table 8.

i)
5 Records identified from: PubMed, Scopus, Wiley Online
= = S ¥
= Library, and ScienceDirect.
g Databases (n = 211)
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E studies, non-periodontitis studies, or
2 not involving panoramic
= radiographs (n =58)
@R
Articles screened
-/ (n=72)
) N Records excluded due to being
abstracts, editorials, or letters.
i n =33
z ( )
a Full text articles assessed for
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= (n=39)
— > Records excluded due to
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New studies included in review
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=
=
]
£ \ 4
Total studies included in review
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Figure 36: PRISMA flow diagram.
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This process involved excluding articles that were not related to artificial intelligence
(AI), did not focus on periodontitis, lacked panoramic radiographs, or were categorized as
abstracts, editorials, or letters. Additionally, a significant number of papers were excluded due to
restricted access to full texts. The remaining 12 studies employed advanced models, particularly
convolutional neural networks (CNNs), with accuracy rates for periodontal bone loss detection
ranging from 0.76 to 0.98 [94, 146, 160, 161, 163, 186, 187, 188]. The methodologies utilized in
these studies included deep learning hybrid approaches, automated identification systems, and

machine learning classifiers, all contributing to improved diagnostic precision and efficiency.

Table 8: Examples of Al technologies enhancing the detection of periodontal bone loss through

dental panoramic X-ray images

Summary of model

Study Year Description Total data

performances

Krois et al. [146] 2019 Used CNN to identify 2,001 The model has an accuracy,

periodontal bone loss on sensitivity, and specificity all

dental panoramic X-ray at 0.81.
images.

Kim et al. [159] 2019 Created a system for 12,179 The developed model
automatically outperformed dental
identifying periodontal clinicians on the test set with
bone loss using an F1 score of 0.75,
panoramic dental X-ray compared to the clinicians'
images. average score of 0.69.

Changetal. [94] 2020 Created a system to 340 The accuracy levels were

automatically classify
stages of periodontitis
using deep learning
techniques on dental
panoramic X-ray

images.

recorded at 0.93 for
periodontal bone and 0.91 for
both CEJ level and teeth

identification.
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Summary of model

Study Year Description Total data
performances

Bayrakdar et al. 2020 Used CNN to identify 2,276 The model's accuracy is

[160] periodontal bone loss on measured at 0.9.
dental panoramic X-ray
images.

Thanathornwong = 2020 Used CNN to identify 100 The model reached a

etal. [151] periodontally sensitivity of 0.84, specificity
compromised teeth on of 0.88, and an F-measure of
dental panoramic X-ray 0.81.
images.

Jiang et al. [161] 2022 Created a model for 640 The model's overall accuracy
radiological staging of rate was recorded at 0.77.
periodontal alveolar
bone loss on dental
panoramic X-ray
images.

Zadrozny et al. 2022 Evaluated the accuracy = 30 The tested CNN displayed

[162]

of Al in automatically
analyzing panoramic

dental X-rays.

poor reliability in evaluating
caries (Intra-Class Correlation
(ICC) = 0.681) and periapical
lesions (ICC =0.619).
However, it showed good
reliability for identifying
fillings (ICC = 0.920),
endodontically treated teeth
(ICC =0.948), and
periodontal bone loss

(ICC =0.764).




Table 8: Cont.

70

Summary of model

Study Year Description Total data
performances
Ertas etal. [186] 2022 Used deep learning 144 The ResNet50 combined
(DL) for classifying with the SVM machine
periodontitis and learning architecture
evaluate the accuracy of achieved an accuracy of
this method 0.882, an F1 score of 0.072, a
precision of 0.864, and a
recall of 0.882.
Widyaningrum = 2022  Assessed image 1100 The Multi-Label U-Net and
etal. [187] segmentation for Mask model achieved an
periodontitis staging accuracy of 95%, a recall of
using DL techniques 0.88, and an F1-score of
0.87.
Uzun Saylanet = 2023  Assessed how well Al 685 The models in detecting

al. [153]

models can detect the
presence or absence of
alveolar bone loss in

various areas.

alveolar bone loss (ABL)
across various teeth regions
showed sensitivity, precision,
and F1 score ranges as
follows: For general alveolar
bone loss, the scores were
0.75,0.76, and 0.76.
Specifically, maxillary
incisor ABL had perfect
precision at 1, with an F1
score of 0.95. Maxillary
canine, premolar, and molar
ABL showed balanced

scores,
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Summary of model

Study Year Description Total data
performances
with the highest F1 score of
0.91 for molar ABL. In the
mandible, incisor, canine,
premolar, and molar ABL
scores varied, with
mandibular incisor ABL
scoring an F1 of 0.86 and
molar ABL at 0.79,
indicating the models' varied
effectiveness in different
dental regions.
Kongetal. [163] 2023 Used two-stage CNN- 1747 The model for radiographic

based periodontitis bone loss (RBL)

detection network in classification has an accuracy

periodontitis bone loss of 0.762.

diagnosis in panoramic

radiographs.

Amasya etal. 2023 Developed a web-based~ 6000 The study reported an overall

[188]

Al software,
DiagnoCat, for
detecting periodontal
bone loss on panoramic

radiographs.

F-score of 0.948, an accuracy
0f 0.977, and a Cohen's

kappa coefficient of 0.933.
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In Phase II, a comprehensive model for periodontal diagnosis and prognostication was
developed, integrating advanced image analysis techniques utilizing artificial intelligence (AI).
The panoramic radiographs used in this study were obtained from the Dental Department of Fang
Hospital, Chiang Mai, Thailand. It is important to note that all radiographs were captured using
the same imaging device, the SIDEXIS Next Generation Program (Sirona, Bensheim, Germany).
Only one radiograph per patient was included in the analysis. The dataset comprised 2,000
panoramic radiographs of patients diagnosed with periodontitis, identified using diagnosis codes
from the HOSxXP Program (Bangkok Medical Software, Bangkok, Thailand). Image processing
techniques were then applied to all images, which were randomly divided into training,
validation, and test sets in a 70:10:20 ratio. The demographic data of the patients are presented in
Table 9. To address the identified challenges, a robust methodology incorporating machine
learning and Al techniques was developed for the automated detection of abnormal teeth in dental
panoramic X-ray images. Following image enhancement, the LabelMe tool was utilized for object
segmentation, while Labelme2yolo was employed to convert the data into a format suitable for
training. Subsequently, two models were trained, validated, and tested: the teeth segmentation
model and the CEJ and bone level segmentation model.

The teeth segmentation model achieved sensitivity, specificity, F1 score, precision, and
accuracy of 0.90, 0.96, 0.80, 0.80, and 0.97, respectively. In contrast, the CEJ and bone level
segmentation model recorded scores of 1.00, 0.98, 0.90, 0.90, and 0.98, as detailed in Table 10.
Moreover, Figure 37 and 38 provide an example of the developed Al model applied to the

diagnosis and prognostication detection of periodontitis from panoramic X-ray images.

Table 9: The demographic data of the patients

Sex Numbers of Patients Mean Age(Years)

Male 823 47.04

Female 1177 45.27




73

Table 10: The AT models developed achieved the following scores [189]:

Teeth segmentation model CEJ and bone level segmentation
model
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Table 9: Cont.

Teeth segmentation model CEJ and bone level segmentation
model
Accuracy-Confidence curve Accuracy-Confidence curve
Accuracy . 10
0.75 0.75
; 050 g 050
< 2
0.25 0.25
00% 00 0.25 0.50 075 1.00 00% 0 025 050 075 100

Confidence Confidence

0.97 0.98

mAP50 0.92

Confusion

matrix

Both the CEJ and bone level segmentation model (Table 11) and the teeth segmentation
model (Table 12) demonstrated strong performance in accurately classifying relevant areas in
panoramic radiographs. In Table 11, the CEJ and bone level model correctly predicted 18,385
instances, with only 234 false positives, indicating high precision. The model also exhibited
strong recall, with minimal false negatives (11). Similarly, the teeth segmentation model (Table 12)
performed well, accurately identifying 983 teeth instances and 18,687 true negatives. However,
it had a slightly higher false positive rate (589), where non-teeth areas were incorrectly classified
as teeth. Despite the higher false positive rate in the teeth model, both models exhibited high
accuracy and efficiency in their respective tasks, with low false negative rates and a strong ability

to differentiate between positive and negative classes in their predictions.
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Table 11: Confusion matrix for the CEJ and bone level segmentation model

Actual value

Predicted value Positive Negative
Positive TP:508 FP:234
Negative FN:11 TN:17877
Legend:

True Positive (TP): Correctly identified areas indicating bone loss.
True Negative (TN): Correctly identified areas without bone loss.
False Positive (FP): Areas incorrectly labeled as having bone loss when none is present.

False Negative (FN): Areas with bone loss that were incorrectly identified as normal.

Table 12: Confusion matrix for the teeth segmentation model

Actual value

Predicted value Positive Negative
Positive TP:983 FP:589
Negative FN:11 TN:18687
Legend:

True Positive (TP): Correctly identified areas indicating bone loss.
True Negative (TN): Correctly identified areas without bone loss.
False Positive (FP): Areas incorrectly labeled as having bone loss when none is present.

False Negative (FN): Areas with bone loss that were incorrectly identified as normal.
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Figure 37: An example of our developed Al model in use is shown above: the original image is

displayed on the top, and the final result after applying the model is shown on the bottom.
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Figure 38: Panoramic X-ray images illustrating the threshold percentages for periodontitis
severity: A represents Stage I, B represents Stage II, C represents Stage III, and D represents

Stage I'V.

Additionally, in Phase III: To evaluate the performance of Al models in diagnosing
periodontal diseases through a comparative analysis with general practitioners (GPs) and
specialized periodontists. In the clinical implementation, we calculated a sample size of 83
panoramic X-ray images with an adjusted error rate of 25%; however, we ultimately used 90
images to compare the accuracy of the Al model, general practitioners (GPs), and periodontists
against expert periodontists. The demographic data of the patients are presented in Table 13.

Table 14 reveals that the Al model achieved the highest accuracy (94.4%) and perfect
sensitivity (100%), indicating its ability to detect all positive cases. However, it struggled with
specificity (0%), meaning it had difficulty ruling out false positives. Periodontists demonstrated
strong overall performance with 91.1% accuracy, 90.6% sensitivity, and perfect specificity
(100%), while GPs exhibited slightly lower accuracy (86.7%) and sensitivity (85.9%), yet also
achieved perfect specificity (100%). The AI model's high sensitivity makes it effective at

identifying true positives, although it requires human oversight for confirming negatives, as both
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periodontists and GPs performed more consistently in terms of sensitivity and specificity. The
distribution of results among expert periodontists, periodontists, GPs, and the AI model is

illustrated in Table 15.

Table 13: Demographic data of patients used to compare the accuracy percentage of the Al

model, general practitioners (GP), and periodontists with expert periodontists

Sex Numbers of Patients Mean Age(Years)
Male 42 44.29
Female 48 43.56

Table 14: The diagnostic performances of the AT model, general practitioners (GP), and

periodontists with expert periodontists

Test Accuracy %  Sensitivity %  Specificity % PPV % NPV %
(95%CI) (95%CI) (95%CI) (95%CI) (95%CI)
Periodontist 91.1 90.6 100 100 38.5

(83.2-96.1)  (82.3-95.8) (47.8 - 100) (95.3 - 100) (13.9-68.4)
GP 86.7 85.9 100 100 29.4

(77.9-92.9) ~ (76.6 -92.5) (47.8 - 100) (95.1 - 100) (10.3 - 56)
Al 94.4 100 0 94.4 0

(87.5-98.2) N/A N/A N/A N/A

Legend: Abbreviations: PPV, positive predictive value; NPV, negative predictive value; CI,

confident interval.
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Table 15: The distribution of result by expert periodontists, periodontists, general practitioners

(GP) and AI model

Expert

0 1 2 3 4

n (%) n (%) n (%) n (%) n (%)

Periodontist

0 5 (5.6) 1 (I.1) 6 6.7 1 (L) o (0.0)
1 0 0.0) 4 44) 8 89 0 00 o0 (0.0)
2 0 00 o0 (0.0) 20 (22.2) 8 89 0 (0.0)
3 0 0.0 o0 0.0) 2 (22) 34 (378 0 (0.0)
4 0 0.0 o0 00 o0 0.0) 0 00 1 (1.1)
GP

0 5 (5.6) 4 44 8 89 0 00 o0 (0.0)
1 0 0.0 1 (r.1)y 14 (156 3 33 0 (0.0)
2 0 0.0 0 0.0) 11 (122) 15 (16.7) 0 (0.0)
3 0 000 o0 0.00 3 (33) 22 (244) 0 (0.0)
4 0 0.00 0 0.00 0 0.00 3 (3.3) 1 (1.1)
Al

1 0 0.0) 1 (L. 0 0.00 0 000 0 (0.0)
2 4 4.4) 0 0.0) 29 (322) 6 6.7 0 (0.0)
3 1 (L.1) 4 44) 6 (6.7) 35 (389) 1 (1.1)
4 0 0.0) 0 0.0 1 (.1 2 22 0 (0.0)

Legend: 0 represents Non-periodontitis, 1 represents -Periodontitis Stage I, 2 represents

Periodontitis Stage 11, 3 represents Periodontitis Stage 111, and 4 represents Periodontitis Stage I'V.

Table 15 illustrates the diagnostic distribution of results among expert periodontists,
periodontists, general practitioners (GPs), and the AI model across different stages of
periodontitis. The results show varying performance levels in detecting stages of periodontal
disease, labeled from non-periodontitis (0) to periodontitis stage IV (4). The Al model showed a

relatively balanced detection rate, especially for periodontitis stage III, where it correctly
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identified 38.9% of cases. However, it struggled with stage I, detecting only 1.1% of cases.
Periodontists performed best in detecting stage III cases (37.8%), while GPs showed strong
performance in stage II detection (16.7%). Overall, the AT model demonstrated high potential but
requires further refinement for early-stage detection, as human experts outperformed the model in
this area. These results suggest that Al can be a valuable tool in aiding periodontal diagnostics but
may require human oversight, particularly in less severe stages.

Furthermore, we evaluated the diagnostic agreement between three different raters—AlI,
periodontists, and general practitioners (GPs)—and an expert, considered the gold standard. We
used the weighted Cohen's kappa statistic to measure the level of agreement beyond chance. The
statistical significance of these weighted kappa coefficients was tested at an alpha level of 0.05.

The weighted Cohen's kappa coefficients are presented in Table 16.

Table 16: The weighted Cohen's kappa coefficient for the comparisons of the Al model, general

practitioners (GP), and periodontists with expert periodontists

Agreement (%)  Kappa (95%CI) p-value
Periodontist vs. Expert 90.1 0.634 (0.621 - 0.694)  <0.001
GP vs. Expert 83.1 0.429 (0.298 - 0.542)  <0.001
Al vs. Expert 90.0 0.445 (0.398 - 0.471)  <0.001

According to guidelines suggested by Landis and Koch (1977), Cohen's Kappa values
can be interpreted as follows [190]:

e 0.00-0.20: Slight agreement

o 0.21 - 0.40: Fair agreement

e 0.41-0.60: Moderate agreement

e 0.61 - 0.80: Substantial agreement

e 0.81 - 1.00: Almost perfect agreement

From Table 16, the study reveals that the evaluations made by periodontists showed a
high level of agreement with those of the experts, evidenced by a Cohen's kappa coefficient of
0.634 (95% CI: 0.621 - 0.694, p-value <0.001). The assessments by general practitioners (GPs)
demonstrated a moderate level of agreement with the experts, with a Cohen's kappa coefficient of

0.429 (95% CI: 0.298 - 0.542, p-value <0.001). Similarly, the AI model's evaluations also
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exhibited a moderate level of agreement with the experts, reflected by a Cohen's kappa coefficient
of 0.445 (95% CI: 0.398 - 0.471, p-value <0.001). These results underscore the Al model's
potential in achieving diagnostic consistency comparable to that of human practitioners, albeit at a
moderate agreement level.

Additionally, we conducted the clinical implementation by calculating a larger sample
size for comparison among groups, resulting in an adjusted error rate of 15%, which equated to
281 previously unseen panoramic images (Table 7). In this study, however, we utilized a total of
300 previously unseen panoramic images to compare the diagnostic accuracy of the Al model and
periodontists against expert periodontists.

The general characteristics of the sample population revealed that the majority were
female, accounting for 64.7%. The average age of participants was 40.26 £ 16.42 years, with
females having an average age of 40.52 + 15.74 years and males having an average age of 40.12

+ 16.82 years, as shown in Table 17.

Table 17: Demographic data of patients used to compare the accuracy percentage of the Al

model and periodontists with expert periodontists

Total Male Female
Variables
n (%) n (%) n (%)
All patients 300 (100.0) 106 (35.3) 194 (64.7)
Age (years), Mean + SD 40.26 + 16.42 40.52 £15.74 40.12 £ 16.82

In Table 18, the study results indicate that the assessments made by expert periodontists
revealed that 3.3% were non-periodontists, 10.3% were classified as periodontitis stage I, 47.0%
as periodontitis stage II, 38.7% as periodontitis stage III, and 0.7% as periodontitis stage IV.
When comparing the evaluations of periodontists with those of expert periodontists, a consistency
rate of 62.7% was observed, which included 2% non-periodontists, 5% periodontitis stage I, 28%
periodontitis stage I, 27% periodontitis stage 111, and 0.7% periodontitis stage IV. Furthermore,
the evaluation of the Al model in comparison to expert periodontists showed a consistency rate of
71.7%, including 0.3% non-periodontists, 2% periodontitis stage I, 40% periodontitis stage 11,

29% periodontitis stage 111, and 0.3% periodontitis stage I'V.
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Moreover, In Table 19, the study results indicated a moderate agreement between the
assessments of periodontists and experts, with a Cohen's kappa coefficient of 0.530 (95% CI:
0.457 - 0.584, p-value < 0.001). Similarly, the evaluation of the AI model compared to the expert
assessments also showed moderate agreement, reflected in a Cohen's kappa coefficient of 0.497

(95% CI: 0.470 - 0.533, p-value < 0.001).

Table 19: The weighted Cohen's kappa coefficient for the comparisons of periodontists and the

Al model with expert periodontists

Agreement (%) Kappa (95%CI) p-value
Periodontist vs. Expert 88.5 0.530 (0.457 - 0.584) <0.001
Al vs. Expert 91.3 0.497 ' (0.470 - 0.533) <0.001

Finally, in Table 20, the findings revealed that the accuracy of the periodontist
evaluations in comparison to the experts was 87.3% (95% CI: 83.0 - 90.9), with a sensitivity of
88.3% (95% CI: 84.0 - 91.7) and specificity of 60% (95% CI: 26.2 - 87.8). The positive predictive
value was 98.5% (95% CI: 96.1 - 99.6), while the negative predictive value was 15% (95% CI:
5.7 - 29.8). In contrast, the AT model's evaluation compared to the experts demonstrated an accuracy of
97% (95% CI: 94.4 - 98.6), a sensitivity of 100% (95% CI: 98.7 - 100), a specificity of 10%
(95% CI: 0.3 - 44.5), a positive predictive value of 97% (95% CI: 94.4 - 98.6), and a negative

predictive value of 100% (95% CI: 2.5 - 100).

Table 20: Diagnostic performances for the comparisons of periodontists and the Al model with

expert periodontists

Accuracy % Sensitivity %  Specificity % PPV % NPV %

A (95%CI) (95%CI) (95%CI) (95%CI) (95%CI)
Periodontist 87.3 88.3 60 98.5 15
(83.0-90.9) (84 -91.7) (26.2-87.8) (96.1-99.6) (5.7-29.8)
Al 97 100 10 97 100

(94.4-98.6)  (98.7-100) (0.3-445) (94.4-98.6) (2.5-100)

Abbreviations: PPV, positive predictive value; NPV, negative predictive value; CI, confident

interval.



CHAPTER 5

Discussion and conclusion

In 2018, the field of periodontology updated its classification system, now focusing on
the percentage of alveolar bone loss to assess disease severity [25]. Current standard periodontal
evaluations, periapical, bite-wing, and panoramic radiographs are preferred methods for assessing
interproximal alveolar bone levels because they are cost-effective, quick, and emit less radiation
than 3D imaging techniques [47]. In the past, there have been extensive studies using panoramic
radiographic images for various purposes, including disease diagnosis, prognosis, and treatment
planning. However, panoramic radiographs have significant limitations, such as the overlap of
structures in adjacent areas and image distortion in certain positions, which affect image clarity at
a level perceivable by the human eye and in areas that cannot be distinguished. Despite these
limitations, Persson RE and colleagues found that panoramic radiography is superior for scanning
the entire jaw for lesions, with high consistency in measurements of the CEJ to crestal bone
distances and their root length ratios when comparing intra-oral periapical with panoramic images
[191]. However, manually measuring periodontal bone loss (PBL) for every tooth on a panoramic
X-ray requires significant time and effort. Recent efforts have focused on overcoming the
limitations of conventional periodontitis diagnostics through Al-assisted detection of periodontal
bone loss from dental panoramic X-rays. These challenges have led to discussions about creating
supportive diagnostic tools. In recent years, Al has begun to flourish in dentistry, offering a range
of applications from diagnostics and decision-making to treatment planning and predicting
outcomes. Al tools for dental applications are becoming increasingly sophisticated, precise, and
dependable, with research extending across all dental disciplines [100].

One significant limitation of this study is the substantial decrease in the number of
papers included in the study while adhering to the PRISMA methodology. Initially, 211 records
were identified, but after applying the inclusion and exclusion criteria, only 12 studies were
included in the final review. A considerable number of papers were excluded due to the lack of
full-text accessibility, highlighting a critical barrier in conducting comprehensive reviews. This
limitation underscores the importance of "open access" and the availability of current research to

ensure that valuable studies are not overlooked due to access restrictions. Open access to research
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publications can significantly enhance the ability of researchers to conduct thorough and inclusive
reviews, thereby advancing the field more effectively.

In the phase of Al development, the present study found that the teeth segmentation
model achieved sensitivity, specificity, F1, precision, and accuracy scores of 0.9, 0.96, 0.8, 0.8,
and 0.97, respectively. In contrast, the CEJ and bone level segmentation model attained scores of
1, 0.98, 0.9, 0.9, and 0.98, respectively. Despite the recent surge in publications on dental Al,
comparing these studies is challenging due to discrepancies in study design, data distribution
(training, testing, and validation sets), and performance metrics (accuracy, sensitivity, specificity,
F1 score, AUC [Area Under the ROC Curve], recall). Many articles do not fully report these
critical details. However, accuracy emerged as the most commonly referenced indicator of model
performance in the studies, with detection rates for periodontal bone loss ranging between 0.76 to
0.98 [94, 146, 160, 161, 163, 186, 187, 188]. This is consistent with the findings of this study,
which reported accuracy scores of 0.97 for the teeth segmentation model and 0.98 for the CEJ and
bone level segmentation model. These accuracy scores are higher than those reported in all
previous studies. The dataset of dental panoramic X-ray images used in various studies ranged
from 100 to 6,000 images [94, 146, 151, 153, 160, 161, 163, 186-188], with only one study
employing a significantly larger dataset of 12,179 images [159]. In this study, a dataset of 2,000
dental panoramic X-ray images was used, yet the accuracy rate remained high. Furthermore,
many studies have aimed to detect periodontal bone loss on dental panoramic X-ray images.
Specifically, Chang et al.'s advanced study, which sought to classify stages of periodontitis
following the latest periodontal classification, found that the automatic method had a Pearson
correlation coefficient of 0.73 with radiologist diagnoses for the entire jaw and an intraclass
correlation of 0.91 for the entire jaw [94]. Similarly, Jiang et al. revealed creating a deep learning
model to evaluate and categorize the stages of periodontitis, achieving an overall model accuracy
of 0.77 [161]. Our study uniquely detects periodontal bone loss, classifies the stage of
periodontitis, and identifies the percentage of bone loss for each tooth, aiding in prognosis
evaluation. This novel innovation has not been previously achieved.

The strengths of these studies lie in their innovative approaches and high accuracy rates.
For example, the integration of ResNet50 with SVM by Ertas et al. [186] achieved an accuracy of

0.882, showcasing the potential of hybrid models. Additionally, Widyaningrum et al. [187] used
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Multi-Label U-Net and Mask R-CNN models, achieving 95% accuracy, which highlights the
effectiveness of advanced segmentation techniques. However, a common weakness across several
studies is the reliance on relatively small datasets, as seen in the work by ZadroZny et al. [162],
which included only 30 images. This limitation can affect the generalizability and robustness of
the models. Moreover, discrepancies in performance metrics and lack of standardized reporting
pose challenges for direct comparison and evaluation of the studies.

Explainability and trustworthiness are critical aspects of Al application in healthcare.
Many reviewed papers highlighted limitations in these areas [144, 146]. For instance, the black-
box nature of deep learning models often leads to a lack of transparency, making it difficult for
clinicians to understand and trust Al decisions fully [147]. Additionally, some models, despite
their high accuracy, require significant computational resources, which may not be feasible in all
clinical settings [145]. To enhance trustworthiness, future research should focus on developing
explainable AI models that provide clear insights into their decision-making processes and
integrating these models into clinical workflows in a manner that complements rather than
replaces human expertise [94].

In the clinical context, we evaluated the diagnostic agreement between three different
raters—AlI, periodontists, and general practitioners (GPs)—and an expert periodontist, considered
the gold standard. We used the weighted Cohen's kappa statistic to measure the level of
agreement beyond chance. The statistical significance of these weighted kappa coefficients was
tested at an alpha level of 0.05. Studies in various medical fields have shown similar trends in the
performance of Al systems. For instance, Esteva et al. (2017) demonstrated that AI could classify
skin cancer with dermatologist-level accuracy, achieving a high level of agreement with expert
diagnoses [192]. Similarly, Mazurowski et al. (2019) found that AI could significantly enhance
the accuracy of radiological image analysis, aligning with our findings that Al can effectively
support diagnostic processes in dentistry [193].

In dental research, Lee et al. (2018) reported that a CNN-based Al system achieved high
agreement values with periodontists for diagnosing periodontally compromised teeth, with kappa
values of 0.828 and 0.797 for premolars and molars, respectively [147]. While our Al model's
kappa value of 0.445 is moderate, it demonstrates significant potential for further refinement and

improvement. This analysis underscores the diagnostic capabilities of periodontists, GPs, and Al
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in comparison to an expert. While periodontists show the highest agreement, the Al system
demonstrates promising results, potentially serving as a valuable diagnostic tool. GPs, although
showing lower agreement, still provide a significant level of diagnostic accuracy. These findings
emphasize the importance of specialized training and the potential of Al to augment diagnostic
processes in periodontal care.

The discrepancy between matrix performance and clinical accuracy can be attributed to
several factors. First, differences between controlled environments and real-world variability play
a significant role. In experimental settings, data is often curated and preprocessed to optimize
model performance. In contrast, clinical environments present numerous uncontrolled variables,
such as varying patient positioning, and inconsistent imaging quality. These factors can adversely
impact the performance of AT models trained under controlled conditions [194]. Second, the
preprocessing steps used in studies, such as noise reduction, contrast enhancement, and
normalization, ensure high-quality inputs for Al models. However, in clinical practice, such
preprocessing may not be consistently applied, leading to suboptimal inputs and consequently
lower accuracy [195]. Third, Al models often perform well on the datasets they were trained on
but may struggle to generalize across diverse patient populations with different demographic
characteristics, oral health conditions, and comorbidities. The training data might not fully
represent the variability encountered in real clinical settings [196]. Moreover, clinical diagnoses
involve more than just interpreting radiographs; they require a comprehensive assessment of the
patient's medical history, symptoms, and other diagnostic tests. While Al models are proficient at
image analysis, they lack the ability to integrate this holistic approach, which can limit their
effectiveness in real-world diagnostics [197].

Additionally, we conducted the clinical implementation by calculating a larger sample
size for comparison among groups, resulting in an adjusted error rate of 15%, which equated to
281 previously unseen panoramic images (Table 7). In this study, however, we utilized a total of
300 previously unseen panoramic images to compare the diagnostic accuracy of the Al model and
periodontists against expert periodontists. The results from this study underscore the diagnostic
capabilities of the Al model when compared to periodontists and expert periodontists in
diagnosing periodontitis. The findings revealed a moderate agreement between assessments made

by expert periodontists and those of regular periodontists, with a Cohen's kappa coefficient of
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0.530, indicating a notable level of consistency in diagnosing various stages of periodontitis
(Table 18). Similarly, the AI model demonstrated a kappa coefficient of 0.497, suggesting that the
model's diagnostic performance is comparable to that of trained periodontists, aligning with
findings from previous studies that highlight the potential of Al in enhancing diagnostic accuracy
in dentistry [198, 199].

The accuracy rates reported in this study are particularly compelling, with the Al model
achieving an impressive accuracy of 97% and a sensitivity of 100% (Table 19). This performance
surpasses that of the periodontists, who had an accuracy of 87.3% and a sensitivity of 88.3%. The
positive predictive value of the Al model was also high at 97%, indicating that when the Al
model predicts the presence of periodontitis, it is likely to be correct. These results are consistent
with other research that shows Al can achieve diagnostic performance levels similar to or
exceeding those of human practitioners in the detection of dental diseases [200, 201].

Moreover, the study highlights the pressing need for the integration of advanced Al
technologies in clinical settings to address limitations of current diagnostic methods, such as
variability in human judgment and the time constraints faced by practitioners. This alignment
with contemporary research emphasizes the potential of Al not only to augment diagnostic
processes but also to promote more efficient treatment planning and patient management [202].

Based on the findings presented in the present and previous studies, it's quite clear that
Al-assisted technologies significantly improve the detection of periodontal bone loss from
panoramic radiographs, thereby enhancing periodontitis diagnosis, as detailed in Table 21 [203].
Given these challenges, the future direction of periodontitis diagnosis appears to lean towards

using Al to develop supportive diagnostic tools.
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Table 21: Advantages of Al-assisted technologies in detecting periodontal bone loss from

panoramic radiographs significantly enhance the diagnosis of periodontitis [203]

Advantages Roles of AI

1. Automated Detection Al algorithms can automatically identify signs of bone loss,
highlighting areas of concern for further examination by dental

professionals.

2. Increased Accuracy By analyzing subtle differences in radiographic images that may
not be easily visible to the human eye, Al improves the accuracy of

periodontitis diagnosis.

3. Time Efficiency Al reduces the time needed for manual analysis of radiographs,
enabling quicker diagnosis and allowing dentists to focus on

treatment planning.

4. Consistency Al offers consistent evaluation across different cases and patients,
reducing variability that can arise from individual clinician

assessments.

5. Progress Monitoring Al can track changes in bone levels over time, aiding in the

monitoring of disease progression or the effectiveness of treatment.

6. Enhanced Visualization Some Al tools provide enhanced imaging capabilities, making it
easier to visualize and understand the extent of periodontal bone

loss.

The integration of Al and machine learning in dental diagnostics, particularly in
periodontology, has shown promising results. The prevalence of periodontal disease, especially in
the elderly, underscores the necessity for innovative diagnostic tools to enhance detection
accuracy and efficiency. The study demonstrated that Al models could significantly improve the
detection of periodontal bone loss from panoramic radiographs, offering several advantages over
traditional diagnostic methods. Al algorithms can automatically identify signs of bone loss,
providing consistent and accurate evaluations that reduce variability in clinical assessments.
These tools can process large datasets quickly, enabling faster diagnosis and allowing dental

professionals to focus on treatment planning. The enhanced visualization capabilities of Al tools
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also aid in better understanding the extent of periodontal bone loss, thereby improving patient
outcomes.

One of the most significant issues highlighted by this study is the high prevalence of
periodontal disease, particularly in developing countries like Thailand. According to the Bureau
of Dental Health, Department of Health, the National Oral Health Survey conducted every five
years indicates that the prevalence of periodontitis in Thailand is higher than the global average
reported by the World Health Organization (WHO) [23]. The Global Burden of Disease Study
reported that severe periodontal disease affects 19% of adults worldwide, over 1 billion people,
making it the 1 1 th most prevalent disease globally [24, 25]. However, the latest survey in 2023
revealed that 48.7% of older patients in Thailand suffer from periodontitis, an increase from
36.3% in the previous survey. The highest prevalence was found in the Northern Region at
58.4%, followed by the Southern Region at 56.7%, the North-Eastern Region at 47.1%, and the
Central Region at 42.3% [23].

These alarming statistics underscore the urgent need for improved disease prevention
and highlight the importance of periodontal health. The Al models developed in this study offer
a promising solution by providing quicker, less labor-intensive, and more precise alternatives to
current approaches. This is crucial for treatment planning, helping dentists decide on the
management of periodontal disease, including whether to retain or extract affected teeth
immediately after uploading the panoramic radiograph into the developed Al software for each
patient. If the Ministry of Public Health, as the central policy-maker, prioritizes this critical issue
and supports the deployment of our Al model nationwide and globally, we could significantly
reduce the prevalence of periodontal disease, thereby improving the overall quality of life for the
population.

Despite these advancements, the implementation of Al in dental diagnostics faces
several challenges. One primary challenge is the variability in image quality and the need for
standardized imaging protocols to ensure the consistency of Al model outputs. Additionally, there
is a need for comprehensive training datasets that encompass a wide range of demographic and

clinical scenarios to enhance the generalizability of Al models.
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Limitations

The current study faced several limitations that need to be addressed in future research.
Firstly, future studies should include comparisons with a broader range of dental professionals,
including general practitioners and specialist dentists, to validate the AI models comprehensively.

Secondly, the study relied on panoramic radiographs from a single imaging device,
which might limit the generalizability of the findings. Different imaging devices may produce
variations in image quality and resolution, impacting the performance of Al models. Future
research should test the Al models on panoramic radiographs obtained from various imaging
devices to ensure robustness and applicability across different clinical settings.

Another limitation is the exclusion of certain patient demographics, such as those with
rare bone morphologies or incorrect patient positioning during imaging. Including a more diverse
patient population in future studies will help in developing more comprehensive Al models that

can handle a wider range of clinical scenarios.

Future Research Directions
Future research should focus on several key areas to enhance the effectiveness and
applicability of Al in periodontal diagnostics:

1. Comparative Studies: Conduct studies comparing the performance of Al models
with various levels of dental expertise, including general practitioners, periodontists, and other
dental specialists. This will provide a more comprehensive validation of the AI models'
effectiveness.

2. Standardization of Imaging Protocols: Develop standardized protocols for
capturing panoramic radiographs to ensure consistency in image quality and resolution. This will
help in minimizing variability and improving the accuracy of Al models across different clinical
settings.

3. Incorporation of Advanced Techniques: Explore the use of advanced CNN
architectures and algorithms to enhance the sensitivity and accuracy of Al models. Techniques
such as transfer learning and ensemble learning could be investigated to improve model

performance.
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4. Extended Datasets: Include a more extensive and diverse dataset comprising
various demographic and clinical scenarios. This will help in developing Al models that are more
generalizable and capable of handling a wide range of periodontal conditions.

5. Integration with Other Diagnostic Tools: Investigate the integration of Al models
with other diagnostic tools such as Cone Beam Computed Tomography (CBCT) and intraoral
scanners. Combining multiple diagnostic modalities could provide a more comprehensive
assessment of periodontal health.

6. Patient-Centric Applications: Develop Al applications that are user-friendly and
accessible to patients. This could include mobile applications that allow patients to upload their

radiographs for preliminary assessments, thereby promoting early detection and intervention.

Conclusion

The integration of artificial intelligence (AI) into periodontal diagnostics represents
a significant advancement in enhancing diagnostic accuracy over current methods. The Al-driven
models demonstrated impressive performances, affirming their role as valuable tools for dental
professionals. This study introduces an innovative protocol for periodontal diagnosis and
prognostication, optimizing the assessment process and providing a reliable resource for clinical
practice.

Moreover, the comparative analysis indicates that Al models match or even exceed the
diagnostic capabilities of general practitioners (GPs) and specialized periodontists, underscoring
the transformative potential of Al in dental diagnostics. By incorporating Al technologies, dental
practitioners can improve patient outcomes, minimize diagnostic errors, and streamline care
delivery. Given the profound economic, social, and health implications of periodontal disease,
especially among the elderly, the integration of Al not only enhances the precision and efficiency
of diagnostics but also contributes to better patient quality of life. The findings of this study pave
the way for future research into the long-term impacts of Al in dental health, highlighting the
urgent need for innovative solutions that address the complexities of periodontal disease

management within healthcare systems.
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The dataset of 2000 panoramic radiographs from the SIDEXIS Next Generation Program
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Examples of Al results in detecting the distance from the CEJ to crestal bone
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A total of 90 images were used in the clinical implementation to compare the

accuracy of periodontitis diagnosis between the AI model, general practitioners (GPs), and

periodontists against expert periodontists.

ID HN | Code | Sex | Age | Periodontist GPs Al Expert
1 60143 1 1 18 0 0 2 0
2 60170 2 1 23 0 0 2 0
3 60381 3 1 45 3 3 2 3
4| 330377 4 1 44 0 1 2 2
5 60682 5 1 22 0 0 1 1
6 66150 6 2 38 3 2 2 2
7 61196 7 2 19 0 0 2 2
8 61351 8 1 18 0 1 3 3
9 56862 9 2 54 3 4 3 3

10 | 199709 15 2 41 2 2 2 2
11| 120959 19 2 60 3 3 4 3
12 67506 23 2 59 2 2 3 3
13 67783 25 1 27 0 0 2 2
14 67887 25 1 42 3 3 3 3
15 69235 27 1 38 2 1 2 2
16 | 110450 27 1 66 3 2 2 3
17 69258 28 1 39 2 1 2 2
18 | 236897 28 2 63 3 2 3 3
19 15893 30 1 51 2 3 2 2

20 71353 31 1 24 0 0 2 2

21 | 164875 35 1 41 3 3 3 3

22 | 439251 37 2 61 2 2 3 3

23 | 440567 39 2 53 2 3 3 3

24 | 441900 40 2 32 1 0 2 2

25 | 187435 41 2 57 3 3 3 3
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ID HN | Code | Sex | Age | Periodontist GPs Al Expert
26 | 442741 42 2 45 3 3 3 3
27 | 445491 44 2 23 1 0 3 1
28 44708 45 2 28 1 1 2 2
29 | 447490 47 2 57 2 2 2 2
30 | 165557 48 2 48 3 3 3 3
31| 447725 49 2 42 3 3 3 3
32| 447798 50 2 76 4 4 3 4
33 | 447841 51 1 28 1 1 2 2
34| 448319 53 2 19 2 0 2 2
35| 448945 54 1 44 1 2 2 2
36 | 449991 55 2 48 2 3 3 3
37| 451129 58 1 60 2 1 3 2
38 | 452657 59 1 69 2 2 2 2
39 | 456846 62 2 26 2 1 3 2
40 | 460024 64 1 68 3 4 2 3
41 | 462094 65 2 19 0 0 2 2
42 | 465008 67 2 55 3 2 2 3
43 | 465631 68 2 28 3 1 3 3
44 | 466578 69 1 34 3 3 3 3
45 | 466602 70 1 63 3 3 3 3
46 | 467098 71 1 34 1 1 3 1
47 | 467099 72 1 54 3 3 3 3
48 | 468491 73 2 67 2 2 3 3
49 | 468673 74 2 52 3 1 2 3
50 | 471611 75 2 40 2 1 2 2
51| 472466 76 2 33 2 1 2 2
52 | 473563 77 2 20 1 1 2 2
53 | 473726 78 1 25 1 0 3 1
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ID HN | Code | Sex | Age | Periodontist GPs Al Expert
54 | 474492 79 1 40 2 2 3 2
55| 173676 79 1 58 3 2 3 3
56 | 480322 80 2 47 3 2 3 3
57| 484910 81 1 57 3 2 2 3
58 | 489081 82 1 44 3 3 3 3
59 | 490238 83 1 24 1 0 3 1
60 49316 84 1 39 2 2 2 2
61 | 160737 84 1 39 3 2 3 3
62 | 493573 85 2 38 2 0 3 2
63 | 496926 86 2 51 3 3 3 3
64 | 498691 87 1 31 2 2 3 3
65 | 501425 88 1 60 3 3 3 3
66 | 503182 89 1 24 1 2 2 2
67 | 503203 90 1 57 2 1 3 2
68 | 503694 91 2 51 3 1 2 2
69 | 505894 92 1 64 2 2 3 2
70 18872 92 2 59 3 3 3 3
71 | 508204 93 1 57 3 3 3 3
72 | 113087 93 2 58 2 2 3 3
73 | 512236 94 2 36 1 1 2 2
74 | 181505 94 2 53 2 1 2 2
75 53268 95 1 54 3 3 3 3
76 | 106120 96 2 18 0 0 2 0
77| 106545 97 1 80 2 3 4 2
78 | 107410 98 1 20 0 0 3 0
79 10783 99 2 22 1 0 2 2
80 | 107916 100 1 58 2 2 2 2
81 | 105554 100 2 48 3 2 3 3
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ID HN | Code | Sex | Age | Periodontist GPs Al Expert
82 10898 101 1 28 0 3 2 2
83 | 144873 101 2 68 3 4 4 3
84 | 109191 102 1 61 3 3 3 3
85| 109545 103 1 18 0 0 2 0
86 18885 110 1 49 3 3 3 3
87 | 118857 124 1 37 3 2 3 3
88 52749 229 1 59 3 3 3 3
89 53302 236 2 48 2 2 2 2
90 53416 241 1 56 2 2 3 3

Legend: 0 represents Non-periodontitis, 1 represents Periodontitis Stage I, 2 represents

Periodontitis Stage I, 3 represents Periodontitis Stage 111, and 4 represents Periodontitis Stage [V.




134

A total of 90 images represented the AI model's results in diagnosing periodontitis

during clinical implementation.
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A total of 300 previously unseen panoramic images were utilized in the clinical

implementation to evaluate the accuracy of periodontitis diagnosis. This comparison

focused on the performance of the AI model and periodontists against expert periodontists,

ensuring a comprehensive assessment of diagnostic efficacy, as shown in the table below.

ID HN Sex Age Periodontist | Al Expert
1 | 233863 18 2 2
2 | 48385 40 2 2
3 | 114993 27 2 2
4 | 100066 26 1 2
5| 100432 48 3 3
6 | 10285 64 2 2
7 | 102981 70 2 3
8 | 103643 64 3 3
9 | 10380 51 2 2
10 | 104194 80 2 3
11 | 105865 30 2 2
12 | 105973 24 2 2
13 | 107446 40 1 1
14 | 107580 24 2 2
15 | 107937 42 3 3
16 | 108375 71 2 3
17 | 108756 24 1 1
18 | 10898 29 2 2
1971 1096 55 2 2
20| 111407 49 2 3
21| 111968 24 2 3
22 | 112837 69 2 3
23 | 113901 26 2 2
24 | 114326 48 3 3
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ID HN Sex Age Periodontist | AI Expert

25| 114993 27 2 2
26 | 116690 65 3 3
27 | 117056 71 3 3
28 | 117392 63 3 3
29 | 119558 56 3 2
30 | 119863 32 2 2
31| 120935 23 2 1
32 | 121444 23 1 1
33 ] 390228 38 2 2
34 | 1229 63 3 3
35| 12365 64 3 2
36 | 124044 63 3 3
37 | 124192 53 2 2
38 | 125359 45 3 3
39 | 125360 51 3 3
40 | 12564 69 3 3
41 | 129490 57 3 3
42 | 12979 49 2 2
43 | 130494 67 3 3
44 1130637 64 3 3
45 | 130687 23 2 3
46 | 137093 32 2 1
47| 137179 22 2 2
48 | 137439 38 2 2
49 | 137764 22 2 2
50 | 138718 18 1 0
51| 13931 65 3 3
52 | 140767 32 2 2
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ID HN Sex Age Periodontist | AI Expert

53 | 220396 18 1 0
54 | 486648 39 1 2
55| 178879 36 2 2
56 | 88660 58 3 3
57 | 101665 59 2 2
58 | 490873 26 0 1
59 | 143093 64 3 2
60 | 143125 34 3 3
61 | 143318 40 2 2
62 | 200613 20 1 0
63 | 204111 46 3 3
64 | 204145 19 2 2
65 | 204189 41 2 2
66 | 204249 65 3 3
67 | 204369 66 3 3
68 | 20443 35 2 2
69 | 204441 52 2 3
70 | 20451 33 2 2
71 | 205167 62 3 3
72 1205451 31 3 3
73 | 205929 18 1 1
74 | 206030 19 1 0
75 206089 77 3 3
76 | 206240 43 2 3
77 | 20632 52 2 2
78 | 206328 18 0 1
79 | 206393 24 0 2
80 | 206408 44 2 2




159

ID HN Sex Age Periodontist | AI Expert
81 | 206420 39 3 3
82 | 20649 18 2 2
83 | 206707 45 2 2
84 | 206853 49 2 2
85 | 207048 67 1 2
86 | 207180 23 1 2
87 | 207212 18 0 1
88 | 207275 68 3 3
89 | 207329 42 3 3
90 | 20735 33 3 3
91 | 20759 31 1 2
92 | 20766 64 2 2
93 | 207723 27 1 1
94 | 207806 45 3 3
95 | 207819 58 3 3
96 | 207860 38 1 1
97 | 208080 66 2 2
98 | 208115 48 3 3
99 | 300446 25 2 2
100 | 300727 34 2 2
101 | 300794 29 1 2
102 | 301100 41 2 2
103 | 301179 29 2 2
104 | 301361 35 3 3
105 | 301500 25 0 2
106 | 301630 27 0 2
107 | 301724 25 0 2
108 | 3019 65 2 2
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ID HN Sex Age Periodontist | AI Expert

109 | 31000 22 3 3
110 | 310014 27 2 1
111 | 310089 26 2 2
112 | 310102 27 0 1
113 | 150736 51 4 4
114 | 150770 29 0 2
115 | 152552 71 3 3
116 | 152906 69 3 3
117 | 153020 26 2 2
118 | 153065 31 2 2
119 | 153068 57 2 2
120 | 1532 59 2 2
121 | 153258 18 0 1
122 | 153398 20 0 0
123 | 153471 32 2 2
124 | 153523 32 1 2
125 | 153683 63 3 3
126 | 153736 24 3 3
127 | 153921 25 1 1
128 | 15395 24 1 2
129 | 154047 30 0 3
130 | 154169 45 3 3
131] 15423 62 3 3
132 | 154241 54 2 2
133 | 15429 45 3 3
134 | 154302 40 2 3
135 | 154473 22 2 3
136 | 154656 25 2 2




161

ID HN Sex Age Periodontist | AI Expert
137 | 154666 30 2 2
138 | 154702 62 2 3
139 | 154869 51 2 3
140 | 154911 26 2 3
141 | 4001 26 2 2
142 | 400287 23 2 1
143 | 400293 25 0 1
144 | 400315 33 1 1
145 | 40041 22 0 2
146 | 400458 22 0 2
147 | 400498 22 2 2
148 | 401660 23 2 2
149 | 410626 56 2 2
150 | 410937 31 2 2
151 | 41177 37 2 2
152 | 412065 21 1 2
153 | 412437 29 0 2
154 | 41325 28 1 2
155 | 41348 52 2 2
156 | 413530 38 3 3
157 | 413862 21 1 2
158 | 414015 34 0 1
159 | 414111 19 0 3
160 | 41426 46 3 3
161 | 414691 28 0 2
162 | 4147 57 3 3
163 | 41504 39 2 3
164 | 415073 20 0 1




162

ID HN Sex Age Periodontist | AI Expert

165 | 415198 66 2 3
166 | 415876 22 2 2
167 | 416797 18 0 2
168 | 41744 28 1 2
169 | 420004 26 1 1
170 | 420111 29 1 2
171 | 420266 20 1 2
172 | 420440 24 2 2
173 | 340026 25 2 2
174 | 340260 54 3 3
175 | 3141 26 1 2
176 | 34153 60 3 3
177 | 341570 21 1 2
178 | 34168 25 0 2
179 | 341703 20 0 2
180 | 342202 21 1 1
181 | 342206 31 2 3
182 | 34271 27 1 2
183 | 343703 53 3 2
184 | 34374 34 2 2
185 | 344066 24 2 1
186 | 344261 33 2 2
187 | 344388 19 1 2
188 | 344720 45 3 3
189 | 344944 19 1 1
190 | 344958 34 1 2
191 | 345366 18 0 1
192 | 345603 32 1 2




163

ID HN Sex Age Periodontist | AI Expert
193 | 34572 54 2 2
194 | 34588 26 0 2
195 | 346123 28 1 2
196 | 346367 36 2 3
197 | 346440 20 2 2
198 | 346522 18 0 2
199 | 346539 47 2 3
200 | 347364 22 0 1
201 | 50010 61 3 3
202 | 34791 54 2 3
203 | 143041 32 2 2
204 | 207287 54 2 3
205 | 371397 45 2 3
206 | 371450 45 3 2
207 | 37220 62 3 2
208 | 346733 36 2 3
209 | 346350 29 2 3
210 | 344901 36 2 2
211 | 60143 18 0 0
212 | 60170 23 0 0
213 | 60381 45 3 3
214 | 330377 44 0 2
215| 60682 22 0 1
216 | 66150 38 3 2
217 | 61196 19 0 2
218 | 61351 18 0 3
219 | 56862 54 3 3
220 | 199709 41 2 2




164

ID HN Sex Age Periodontist | AI Expert
221 | 120959 60 3 3
222 | 67506 59 2 3
223 | 67783 27 0 2
224 | 67887 42 3 3
225 | 69235 38 2 2
226 | 110450 66 3 3
227 | 69258 39 2 2
228 | 236897 63 3 3
229 | 15893 51 2 2
230 | 71353 24 0 2
231 | 164875 41 3 3
232 | 439251 61 2 3
233 | 440567 53 2 3
234 | 441900 32 1 2
235 | 187435 57 3 3
236 | 442741 45 3 3
237 | 445491 23 1 1
238 | 44708 28 1 2
239 | 447490 57 2 2
240 | 165557 48 3 3
241 | 447725 42 3 3
242 | 447798 76 4 4
243 | 447841 28 1 2
244 | 448319 19 2 2
245 | 448945 44 1 2
246 | 449991 48 2 3
247 | 451129 60 2 2
248 | 452657 69 2 2




165

ID HN Sex Age Periodontist | AI Expert
249 | 456846 26 2 2
250 | 460024 68 3 3
251 | 462094 19 0 2
252 | 465008 55 3 3
253 | 465631 28 3 3
254 | 466578 34 3 3
255 | 466602 63 3 3
256 | 467098 34 1 1
256 | 467099 54 3 3
258 | 468491 67 2 3
259 | 468673 52 3 3
260 | 471611 40 2 2
261 | 472466 33 2 2
262 | 473563 20 1 2
263 | 473726 25 1 1
264 | 474492 40 2 2
265 | 173676 58 3 3
266 | 480322 47 3 3
267 | 484910 57 3 3
268 | 489081 44 3 3
269 | 490238 24 1 1
270 | 49316 39 2 2
271| 160737 39 3 3
272 | 493573 38 2 2
273 | 496926 51 3 3
274 | 498691 31 2 3
275 | 501425 60 3 3
276 | 503182 24 1 2




166

ID HN Sex Age Periodontist | AI Expert
277 | 503203 57 2 2
278 | 503694 51 3 2
279 | 505894 64 2 2
280 | 18872 59 3 3
281 | 508204 57 3 3
282 | 113087 58 2 3
283 | 512236 36 1 2
284 | 181505 53 2 2
285 | 53268 54 3 3
286 | 106120 18 0 0
287 | 106545 80 2 2
288 | 107410 20 0 0
289 | 10783 22 1 2
290 | 107916 58 2 2
291 | 105554 48 3 3
292 | 10898 28 0 2
293 | 144873 68 3 3
294 | 109191 61 3 3
295 | 109545 18 0 0
296 | 18885 49 3 3
297 | 118857 37 3 3
298 | 52749 59 3 3
299 | 53302 48 2 2
300 | 53416 56 2 3
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