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ABSTRACT 

  
Background: The elderly population faces a growing burden of various diseases, with dental 

issues—especially periodontal disease—often overlooked due to their asymptomatic nature. Periodontitis, 
however, is linked to numerous systemic conditions, leading to serious complications and negatively impacting 
quality of life. Affecting over a billion people globally, periodontal diseases pose a significant public health 
challenge due to their potential for severe oral complications. Early and accurate diagnosis is crucial, yet current 
methods, which rely on clinical exams and radiographs, have limitations. This study aims to develop and 
validate AI-driven models to enhance diagnostic accuracy and consistency in detecting periodontal disease. 
Methods: We analyzed 2,000 panoramic radiographs using image processing techniques. The YOLOv8 model 
segmented teeth, identified the cemento-enamel junction (CEJ), and quantified alveolar bone loss to assess 
stages of periodontitis. Results: The teeth segmentation model achieved an accuracy of 97%, while the CEJ and 
alveolar bone level segmentation models reached 98%. Our AI model demonstrated a remarkable performance 
with 94.4% accuracy and perfect sensitivity (100%). In comparison, periodontists achieved 91.1% accuracy 
with a sensitivity of 90.6%. General practitioners (GPs) also benefited from AI assistance, achieving 86.7% 
accuracy and 85.9% sensitivity, with AI enhancing diagnostic outcomes further. Conclusions: This research 
underscores the transformative potential of AI in dental diagnostics, highlighting its crucial role in reducing 
diagnostic errors, saving time, enhancing patient care, and optimizing healthcare efficiency. The implications 
are profound, suggesting that AI integration in periodontal diagnostics may become standard practice, 
significantly improving patient outcomes and streamlining dental care processes. 
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Convolutional Neural Networks (CNNs) 
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CHAPTER 1 

Introduction 

According to the World Health Organization (WHO) on November 18, 2022 [1, 2], the 
elderly population is increasingly burdened by various chronic diseases, significantly impacting 
healthcare systems globally. The top ten diseases affecting the elderly include cardiovascular 
diseases, chronic respiratory diseases, cancers, diabetes, Alzheimer's disease and other dementias, 
osteoarthritis, chronic kidney disease, stroke, depression, and dental diseases such as periodontitis 
(Fig. 1). 

1. Cardiovascular Diseases: Cardiovascular diseases (CVD) affect approximately 
60% of older adults and remain the leading cause of morbidity and mortality among the elderly. 
Conditions such as coronary artery disease, hypertension, and heart failure are prevalent, largely 
due to prolonged exposure to risk factors and the natural aging of the cardiovascular system. 

2. Chronic Respiratory Diseases: Chronic respiratory diseases, particularly chronic 
obstructive pulmonary disease (COPD) and asthma, are common among older adults, affecting 
about 15-20% of this population. These diseases are often exacerbated by long-term exposure to 
tobacco smoke, environmental pollutants, and other respiratory irritants. 

3. Cancers: The incidence of various cancers, including lung, colorectal, prostate, 
and breast cancer, increases with age, affecting around 20-30% of the elderly population. Early 
detection and treatment are crucial; however, the overall burden of cancer remains high in the 
elderly population. 

4. Diabetes: Type 2 diabetes affects approximately 25-30% of older adults. Factors 
such as obesity, sedentary lifestyle, and genetic predisposition drive its prevalence. Managing 
diabetes in older adults is complicated by the presence of comorbidities and the risk of 
complications like neuropathy and cardiovascular disease. 

5. Alzheimer's Disease and Other Dementias: Neurodegenerative diseases, including 
Alzheimer's disease, are major causes of disability and dependency among older individuals. The 
prevalence of dementia doubles every five years after the age of 65, affecting nearly 10-15% of 
the elderly population, significantly impacting patients' quality of life and placing a burden on 
caregivers. 
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6. Osteoarthritis: Osteoarthritis affects about 30-40% of older adults and is a leading 
cause of pain and disability in the elderly. It affects joints such as the knees, hips, and hands, 
resulting from cartilage degeneration and is exacerbated by factors like obesity and joint injuries. 

7. Chronic Kidney Disease: Chronic kidney disease (CKD) affects around 20-25% 
of the elderly due to factors like hypertension, diabetes, and the natural decline in kidney function 
with age. CKD often progresses to end-stage renal disease, requiring dialysis or transplantation. 

8. Stroke: The incidence of stroke increases significantly with age, with risk factors 
including hypertension, atrial fibrillation, and diabetes. Around 10-15% of older adults experience 
strokes, leading to severe long-term disabilities affecting mobility, speech, and cognitive 
functions. 

9. Depression: Depression affects approximately 10-20% of older adults and is often 
linked to chronic diseases, loss of independence, and social isolation. It significantly affects the 
quality of life and can exacerbate other medical conditions. 

10. Dental diseases: While dental caries is the most prevalent condition in the oral 
cavity, periodontitis is often overlooked due to its asymptomatic nature, affecting approximately 
20-30% of the elderly population [3]. This condition can lead to tooth loss, adversely impacting 
nutrition and overall health. Additionally, poor oral health is linked to systemic conditions such as 
diabetes and cardiovascular diseases, which can result in severe complications and diminish 
quality of life. 

 

Figure 1: The prevalence of the top ten diseases in the elderly in 2024 [2]. 
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Following the above data, aging is a universal phenomenon that has profound 
implications for health systems, economies, and societies worldwide. The global demographic 
shift towards an older population presents numerous challenges, particularly concerning chronic 
diseases prevalent in the elderly. Among these, periodontal disease stands out due to its high 
prevalence and significant impact on overall health, quality of life, and economic burden. This 
introduction explores the multifaceted impact of diseases in the elderly, with a specific focus on 
periodontal disease, from economic, social, and health perspectives. 

1. Economic Impact of Elderly Diseases 
1.1 Healthcare Costs: 

The aging population drives an increase in healthcare expenditures, 
primarily due to the rising prevalence of chronic conditions that require long-term management. 
Elderly individuals often suffer from multiple comorbidities such as cardiovascular diseases, 
diabetes, arthritis, and respiratory disorders, alongside periodontal disease. Treating these 
conditions involves significant direct costs, including hospital admissions, medication, routine 
medical consultations, and specialized care [4]. 

Periodontal disease, in particular, necessitates ongoing dental care, 
including professional cleanings, periodontal surgeries, and maintenance therapy. These 
treatments are costly and often not fully covered by insurance, leading to substantial out-of-
pocket expenses for the elderly. The indirect costs, such as loss of productivity and long-term 
disability, further compound the economic burden [5-7]. 

1.2 Impact on National Economies: 
The economic impact extends beyond individual healthcare costs to affect 

national economies. The increase in healthcare spending can strain public health systems and 
divert resources from other essential services. Additionally, the economic contributions of the 
elderly, although significant, may be offset by their healthcare needs. The cost of caregiving, both 
formal and informal, adds another layer of financial strain. Family members who act as caregivers 
often face reduced work hours or even job loss, affecting household income and national 
productivity [4].  
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1.3 Insurance and Policy Implications: 
The rising prevalence of elderly diseases necessitates changes in health 

insurance policies and public health strategies. There is a growing need for comprehensive 
insurance plans that cover the broad spectrum of elderly care, including dental health. 
Policymakers must address the sustainability of healthcare financing systems to ensure that the 
increasing demands do not compromise the quality of care [8]. 

2. Social Impact of Elderly Diseases 
2.1 Quality of Life: 

Chronic diseases significantly impact the quality of life of elderly 
individuals. Periodontal disease, characterized by symptoms such as gum bleeding, pain, and 
tooth loss, can severely affect daily functioning. Difficulty in chewing and eating due to 
periodontal issues can lead to nutritional deficiencies, exacerbating other health conditions. 
Moreover, the aesthetic impact of tooth loss can affect self-esteem and social interactions. Elderly 
individuals may experience social isolation due to embarrassment over their dental appearance or 
physical limitations imposed by other chronic diseases. This isolation can lead to mental health 
issues such as depression and anxiety, further diminishing quality of life [9]. 

2.2 Family Dynamics: 
The need for long-term care for elderly individuals with chronic diseases 

can alter family dynamics. Family members often assume the role of primary caregivers, which 
can lead to emotional and physical stress. Balancing caregiving responsibilities with other family 
and work commitments can strain relationships and lead to caregiver burnout [10]. 

2.3 Community and Social Services: 
Communities must adapt to the increasing needs of the elderly population. 

Social services, including transportation, meal programs, and community health centers, play a 
critical role in supporting elderly individuals. Ensuring access to these services requires 
coordinated efforts and adequate funding. Additionally, public health initiatives focusing on 
preventive care can help mitigate the impact of chronic diseases, including periodontal disease, 
within the community [11].  
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3. Health Impact of Periodontal Disease in the Elderly 
3.1 Systemic Health Connections: 

Periodontal disease is not merely a local oral health issue but has significant 
systemic health implications. Studies have shown strong associations between periodontal disease 
and systemic conditions such as diabetes, cardiovascular disease, respiratory infections, and 
adverse pregnancy outcomes. The chronic inflammation associated with periodontal disease can 
exacerbate these conditions, leading to a vicious cycle of deteriorating health. For instance, 
periodontal pathogens can enter the bloodstream, contributing to systemic inflammation and 
increasing the risk of atherosclerosis and cardiovascular events. Diabetic patients with periodontal 
disease may experience more difficulty in controlling blood glucose levels, highlighting the 
bidirectional relationship between these conditions [12]. 

3.2 Nutritional and Functional Impact: 
The functional impact of periodontal disease on eating and nutrition is 

profound. Elderly individuals with severe periodontal disease may find it challenging to consume 
a balanced diet, leading to malnutrition. Malnutrition, in turn, weakens the immune system, 
making the elderly more susceptible to infections and slowing the healing process [13]. 

3.3 Mental Health: 
The psychological impact of periodontal disease should not be 

underestimated. The visible symptoms and functional limitations can lead to self-consciousness 
and social withdrawal. The chronic pain and discomfort associated with advanced periodontal 
disease can also contribute to mental health issues such as depression and anxiety, which are 
already prevalent in the elderly population [14]. 

4. Addressing the Challenges 
4.1 Integrated Care Approaches: 

Addressing the multifaceted impact of elderly diseases, including 
periodontal disease, requires integrated care approaches. Health systems should promote 
coordinated care models that integrate dental and medical care to manage chronic diseases 
effectively. This integration can ensure that the systemic implications of periodontal disease are 
addressed alongside other health conditions [15].  
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4.2 Preventive Measures: 
Emphasizing preventive care is crucial in reducing the prevalence and 

impact of periodontal disease. Public health campaigns should focus on educating the elderly and 
their caregivers about the importance of oral hygiene and regular dental check-ups. Fluoride 
treatments, professional cleanings, and early intervention can help manage periodontal disease 
more effectively and prevent severe complications [12]. 

4.3 Policy and Funding: 
Policymakers must recognize the growing healthcare needs of the aging 

population and allocate appropriate resources. Funding for research into the connections between 
periodontal disease and systemic health conditions can lead to better prevention and treatment 
strategies. Additionally, expanding access to dental care through public health insurance and 
community health programs can help reduce the economic and social burden of periodontal 
disease [16]. 

4.4 Identification of Diseases Using Advanced Technology: 
At present, both medicine and dentistry are entering a new era due to the 

rapid advancement and integration of technologies in these fields. This growth is expected to 
assist human labor and emphasize new trends in disease diagnosis, prognostication, treatment 
planning, and the selection of treatment modalities. 

Moreover, elderly diseases, including periodontal disease, pose significant 
challenges across economic, social, and health domains. The economic burden of managing 
chronic conditions in the elderly can strain healthcare systems and national economies. Socially, 
these diseases impact quality of life, family dynamics, and community services. Healthwise, the 
systemic implications of periodontal disease underscore the need for integrated care approaches. 
Addressing these challenges requires a coordinated effort from policymakers, healthcare 
providers, and communities to ensure that the elderly receive comprehensive and compassionate 
care. 

In an epidemiological study, the highest prevalence of chronic periodontitis 
was observed in the elderly population at 82%, followed by adults at 73% and adolescents at 59% 
[17]. Notably, 100% of older individuals in China, India, and Croatia were found to have 
periodontal disease, with the highest rates in Germany (88%), Croatia (83%), Nepal (73%), and 
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Taiwan (73%) [18] (Fig. 2). The elevated prevalence of periodontal disease among older adults 
can be linked to inadequate oral hygiene, insufficient government funding for oral health services, 
and a lack of targeted health promotion programs [19]. Additionally, low income serves as a 
barrier to accessing oral healthcare, with individuals lacking dental insurance less likely to seek 
routine care [20]. Many low-income individuals may underestimate the importance of oral health 
and be unaware of their dental care needs, contributing to lower expectations regarding their 
health [21]. Consequently, those from higher-income backgrounds are more likely to have dental 
insurance, facilitating both preventive and curative dental care, which aids in the retention of 
natural teeth [22]. 

 

 

Figure 2: Global prevalence of periodontitis among the elderly [18]. 

According to the Bureau of Dental Health, Department of Health in Thailand, the 
National Oral Health Survey is conducted every five years. The 9th National Oral Health Survey 
(2022-2023) assessed the oral health status, behaviors, and key factors related to oral health 
among the Thai population [23]. It was found that the prevalence of periodontitis in Thailand is 
higher than the global data reported by the WHO. The Global Burden of Disease Study reported 
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that severe periodontal disease affects 19% of adults worldwide, over 1 billion people, making it 
the 11th most prevalent disease [24-26] (Fig. 3). However, the latest survey in 2023 showed that 
48.7% of older patients in Thailand suffer from periodontitis, an increase from 36.3% in the 
previous survey (Fig. 4). The highest prevalence was found in the Northern Region at 58.4%, 
followed by the Southern Region at 56.7%, the North-Eastern Region at 47.1%, and the Central 
Region at 42.3% (Fig. 5). Additionally, at Fang Hospital in Chiangmai Province, 35.65% of 
patients (2,391 out of 6,706) were found to have periodontitis from June 2023 to May 2024. 

 

 

Figure 3: Global Impact of Oral Diseases. This infographic from the World Health Organization, 
dated December 16, 2022, illustrates the prevalence of oral diseases affecting nearly half of the 

global population, including untreated tooth decay (2.5 billion), complete tooth loss (350 million), 
severe gum disease or periodontitis (1 billion), and oral cancer (380,000). It underscores the 
importance of early intervention for the prevention and treatment of these conditions [26]. 
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Figure 4: Prevalence of Oral Diseases Among Populations Aged 60-74 Years (Years 2527 to 
2566). This bar graph illustrates the prevalence of oral diseases in the population aged 60-74 

years from the year 2527 to 2566. Notably, the latest survey in Year 2566 (2023) indicated that 
48.7% of older patients in Thailand are affected by periodontitis, representing an increase from 

36.3% in the previous survey [23]. 

 

Figure 5: The highest prevalence of periodontitis was observed in the Northern Region at 58.4%, 
followed by the Southern Region at 56.7%, the North-Eastern Region at 47.1%, and the Central 

Region at 42.3% [23]. 
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Focusing on periodontitis, its prevalence is quite high in Thailand. Periodontitis is a 
chronic inflammatory disease that damages the tissues supporting teeth, leading to attachment 
loss, tooth mobility, and potentially tooth loss [27]. It affects a large portion of the global 
population and is a significant public health concern. A new classification system introduced in 
2018 uses staging and grading to assess the severity of attachment and bone loss and the 
progression rate, considering systemic health and smoking. Using existing databases is essential 
for validating this system [28, 29]. 

Panoramic radiography, commonly used in dental practice, captures the entire dentition 
in one image, providing comprehensive diagnostic information on impacted teeth, orthodontic 
issues, developmental anomalies, TMJ disorders, and maxillofacial trauma [30-32]. This imaging 
technique offers a holistic view of oral and maxillofacial health, identifying missing teeth, dental 
prostheses, restorations, implants, caries, and periodontal disease. It is crucial for diagnosing 
periodontal conditions, planning treatments, and monitoring disease progression. Although it has 
some diagnostic limitations, panoramic radiography offers a lower radiation dose compared to 3D 
imaging methods like Cone Beam Computed Tomography (CBCT) [33]. 

Artificial Intelligence (AI) mimics human cognitive functions, mainly through machine 
learning, where algorithms learn from data to make predictions [34-37]. This process begins with 
creating a well-prepared training dataset, which undergoes preprocessing for effective training. 
Training involves using 2D and 3D convolutional neural networks (CNNs) on large datasets to 
recognize structures' boundaries, translating this knowledge into output through multi-layered 
artificial neural networks [38]. In radiology, AI improves visual diagnosis, reduces errors, and 
enhances clinical and research capabilities, aiding in lesion detection, image segmentation, data 
analysis, feature extraction, and automatic report generation [39, 40]. 

In the medicine, AI enhances healthcare by improving diagnosis, prediction, and 
prevention. However, machine learning (ML) and deep learning (DL) face challenges, such as the 
need for massive data during training and the costly, time-consuming process of labeling data, 
especially for rare or new diseases [41]. In dentistry, AI focuses on caries, periodontal diseases, 
endodontic lesions, and jawbone pathologies [42, 43]. CNNs have been successful with both two-
dimensional (2D) and three-dimensional (3D) images [44, 45]. While 3D evaluations are common 
in implantology, surgery, endodontics, and orthodontics, periodontology mainly uses them to 
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assess furcations, craters, bone defects, root form, and alveolar relationships [46]. Standard 
periodontal assessments typically use periapical, bite-wing, and panoramic radiography for cost-
effective, quick, and lower-radiation evaluations of alveolar bone levels [47]. These issues have 
led to the development of supportive diagnostic tools to improve accuracy. 

Research Questions: 
1. How can artificial intelligence (AI) improve the accuracy and efficiency of 

periodontal disease diagnosis using panoramic radiographs? 
2. What are the limitations of current conventional methods in periodontal diagnosis 

and how can AI address these challenges? 
3. How do the diagnostic capabilities of AI models compare to those of general 

practitioners and specialized periodontists in detecting periodontal diseases? 
Objectives: 

1. To critically review existing literature on periodontal diagnosis and 
prognostication, identifying the limitations of traditional diagnostic methods. 

2. To develop a comprehensive protocol for periodontal diagnosis and 
prognostication that incorporates advanced image analysis techniques using AI. 

3. To evaluate the performance of AI models in diagnosing periodontal diseases 
through a comparative analysis with general practitioners and specialized periodontists, focusing 
on diagnostic accuracy and efficiency. 

Hypothesis: 
1. The integration of artificial intelligence (AI) into periodontal diagnostics will 

significantly enhance diagnostic accuracy compared to current methods. 
2. AI-driven image analysis techniques will outperform dental professionals in 

diagnosing periodontal diseases, demonstrating higher sensitivity and specificity. 
3. The implementation of a novel AI protocol for periodontal diagnosis, dental 

professionals can provide faster, less labor-intensive, more precise, and comprehensive care. 
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Definitions: 
Periodontitis: Periodontitis is a chronic inflammatory disease that affects the 

supporting structures of the teeth, leading to gingival tissue damage and potential tooth loss. It is 
caused by the long-term effects of plaque deposition, which triggers an immune response that 
damages the gingival tissues and supporting structures [27]. 

Cemento-enamel junction: The cemento-enamel junction (CEJ) refers to the 
anatomical area where the enamel of the crown meets the cementum of the root of the tooth.  
It marks the boundary between the crown and the root and is important in periodontal assessments 
[28, 29]. 

Clinical Attachment Level (CAL): Clinical attachment level is a measurement 
used in periodontal assessment to determine the extent of attachment loss of the periodontal 
tissues, indicating the degree of periodontal disease progression [28, 29]. 

Probing Depth (PD): Probing depth is the measurement of the distance from the 
gingival margin to the bottom of the periodontal pocket, indicating the presence of inflammation 
and the severity of periodontal disease [28, 29]. 

Prognosis: Prognosis is defined as the expected outcome or the prospect of 
recovery from a disease, based on the usual course of the disease or the particularities of the case. 

Panoramic Radiography: Panoramic radiography, also known as a panoramic  
X-ray, is a two-dimensional (2-D) dental X-ray examination that captures the entire mouth in  
a single image, including the teeth, upper and lower jaws, and surrounding structures and tissues 
[33]. 

Artificial Intelligence (AI): Artificial Intelligence simulates human cognitive 
functions, primarily through machine learning, which involves creating algorithms that learn from 
data and make predictions [34-37]. 
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Conceptual framework: 
 

 
 
 

Guidelines:  
- Dx: AAP/EFP 2018 →  
- extent (localized, generalized, 

molar/incisor pattern) 
  - stage I-IV → severity 

(CAL, bone loss, tooth loss)  
+ complexity + extent and 
distribution (?) 
- grade A-C → progression, 
modifiers, systemic impact, 
biomarkers 
- Prog: Thai Association of 
periodontology → remaining 
bone support, PD, mobility, 
furcation 

: Mcquire&Nunn996 → 
individual tooth (%bone loss, 
PD, horizontal/vertical bone 
loss, furcation, mobility, c/r 
ratio,…) and overall (age, med 
hx, fam hx, hygiene, ..) 

Clinical 
exam 

Periodontal Diagnosis 
and 

Prognostication 

Radiographic 
exam Full-mouth 

series 

Panoramic 

- X-ray machine (receptor type, focal trough, 
ghost artifact, sharpness, image processing, 
etc.) – same machine 

- Patient positioning (horizontal/ vertical 
magnifications, L/R asymmetry) → do not 
control 

To overcome the afore mentioned challenges, 
a comprehensive methodology involving 
machine learning and AI techniques will be 
developed for the automated detection of 
abnormal teeth in dental X-ray films.  
Five major steps are to be proposed:  
Images preprocessing, feature extraction, 
image analysis using Convolutional Neural 
Networks, localization and classification 
thresholding for abnormality detection,  
and model evaluation and validation. 



 

 

 

CHAPTER 2 

Literature review 

The outline of this literature review is as follows: 
2.1 Review of existing literature on periodontal diseases, diagnosis, and prognosis. 
2.2 Examination of the role of panoramic radiographs in periodontal assessment. 
2.3 Introduction to Artificial Intelligence (AI) and discussion of AI integration in 

medicine. 
2.4 Discussion of AI and medical image processing techniques and their potential in 

dental diagnostics. 
2.5 Identification of research gaps and the need for enhanced diagnostic and prognostic 

tools. 

2.1 Review of existing literature on periodontal diseases, diagnosis, and prognosis. 
Periodontitis is a chronic inflammatory disease that damages the gingival tissues and 

supporting structures of the teeth, often leading to tooth loss. It is caused by plaque accumulation, 
which triggers an immune response [27] (Fig. 6). Moreover, periodontitis is the major cause of 
tooth loss in the adult population [48]. In 2022, severe periodontal disease affects 19% of adults 
worldwide, over 1 billion people, making it the 11th most prevalent disease [24, 25]. This 
widespread condition poses a significant public health concern, affecting oral function, aesthetics, 
social equality, and quality of life [28]. Recently, in 2018, a new classification system was 
introduced, using a multidimensional staging and grading approach based on attachment loss, 
radiographic bone loss, progression rate, systemic health, and smoking status. This system helps 
in patient risk stratification, and utilizing existing databases is essential for its validation [28, 29]. 
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Figure 6: Example of the clinical appearance of a case of periodontitis. 

Clinical Definition of Periodontitis: 
Periodontitis involves inflammation caused by microbial factors, leading to the loss 

of periodontal tissue attachment. This loss is measured as clinical attachment loss (CAL) using  
a periodontal probe relative to the cement-enamel junction (CEJ). 

Important Considerations: 
1. CAL can occur in conditions other than periodontitis. 
2. Defining periodontitis solely by marginal radiographic bone loss is limited and 

may miss mild to moderate cases [49]. Radiographic definitions are primarily useful during mixed 
dentition and tooth eruption when CAL measurement is not feasible. In such cases, bitewing 
radiographs, typically used for caries detection, can be used to assess marginal bone loss. 

The measurement of CAL with a periodontal probe has a margin of error, leading to 
potential misclassification in early periodontitis. As the disease worsens, CAL measurements 
become more accurate. Adjusting the CAL threshold affects sensitivity and specificity; lower 
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thresholds increase sensitivity, while higher thresholds improve specificity. Until advanced 
methods like salivary biomarkers or soft-tissue imaging are validated, accurate early detection 
relies on the clinician's training and experience. 

Bleeding on probing (BOP) is useful for assessing treatment outcomes and residual 
disease risk but does not change the initial case definition based on CAL or impact the 
classification of periodontitis severity. Various periodontitis definitions, including those from the 
American Association of Periodontology /Centers for Disease Control (AAP/CDC) and the 
European Federation of Periodontology (EFP), exist with some differences. 

According to the 2017 World Workshop, a unified definition for periodontitis diagnosis 
in clinical care is recommended: 

A patient is considered to have periodontitis if: 
1. Interdental CAL is found at ≥2 non-adjacent teeth, or 
2. Buccal or lingual CAL ≥3 mm with probing depth (PD) >3 mm is found at ≥2 

teeth. 
These criteria exclude CAL due to non-periodontal causes such as: 

1. Trauma-induced gingival recession 
2. Dental caries extending to the cervical area 
3. CAL on the distal aspect of a second molar due to third molar issues 
4. Endodontic problems draining through the marginal periodontium 
5. Vertical root fractures (VRF) 

The definition emphasizes "detectable" interdental CAL, meaning clinicians must 
identify attachment loss during probing or visually at the CEJ. Detection accuracy depends on 
clinician skill and local factors like gingival margin position and presence of calculus. This 
definition avoids specifying a CAL threshold to prevent misclassification and maintain 
consistency. For epidemiological surveys, thresholds may be adjusted for measurement errors. 

According to the 1999 International Classification Workshop [50], it has become 
evident that a more comprehensive approach is required in diagnosing and classifying 
periodontitis cases. Such an approach should not only consider the specific form of periodontitis, 
severity, and extent of periodontal breakdown but should also encompass the potential systemic 
implications of the disease. This broader clinical diagnosis should account for both oral effects 
and systemic impacts of periodontitis. 
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Severity: 
Conventionally, the degree of periodontal breakdown observed at diagnosis has 

been a key descriptor for classifying individual cases of periodontitis. The 1999 case definition 
also focused on severity, considering management complexity and disease extent. However, 
recent therapeutic advancements necessitate refining severe periodontitis definitions to 
distinguish the most severe cases better [51]. A key limitation is the paradoxical decrease in 
severity when the worst affected teeth are lost. Thus, tooth loss due to periodontitis should be 
included in the severity definition. 

Complexity of Management: 
Several factors increase periodontal treatment complexity, including probing depths 

[52], type of bone loss (vertical and/or horizontal) [53], furcation status [54], tooth mobility [55-
57], missing teeth, bite collapse [58], and residual ridge defect size can increase the complexity of 
periodontal treatment These elements, crucial for diagnostic classification, affect the skill and 
experience needed for the best treatment outcomes. 

Extent: 
The 1999 classification defined chronic periodontitis by the percentage of affected 

teeth [50, 59], and aggressive periodontitis by the distribution of lesions (localized or generalized) 
[60, 61]. This information remains valuable in the classification system as specific patterns of 
periodontitis offer indirect insights into host-biofilm interactions. 

Rate of Progression: 
A key aspect of classifying periodontitis is accounting for variability in progression 

rates. The 1989 AAP classification recognized rapidly progressing periodontitis [62]. However, 
assessing progression rates at initial examination is challenging without older diagnostic 
radiographs for comparison of bone loss over time. 

Risk Factors: 
In the past, recognized risk factors for periodontitis, such as smoking or diabetes 

mellitus, were not formally integrated into the classification system. Instead, they were primarily 
used as descriptors to identify specific patient characteristics. However, with advancements in our 
understanding of how these risk factors influence periodontitis, it has become evident that they 
should play a more integral role in the classification process. 
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This updated perspective on risk factors is supported by several key findings. First, 
research has shown that individuals with these risk factors tend to experience more severe and 
extensive periodontitis at an earlier age. Second, their response to treatment is often less 
favorable, with smaller improvements in surrogate outcomes. Additionally, these patients are at a 
higher risk of experiencing tooth loss during supportive periodontal therapy [63, 64]. Given these 
insights, it is advisable to formally incorporate recognized risk factors into the classification of 
periodontitis. This inclusion can enhance the accuracy of the classification system by accounting 
for the impact of these factors on disease severity, progression, and treatment outcomes.  

Interrelationship with General Health: 
Since the 1999 workshop, evidence has linked periodontitis to systemic diseases. 

Oral bacteria and inflammatory mediators from periodontal pockets can enter the bloodstream, 
raising systemic inflammation levels and impacting conditions like coronary artery disease, 
stroke, and Type II diabetes [65-77]. Studies have shown that periodontitis increases overall 
inflammation, and there is initial evidence suggesting systemic inflammation may also increase 
the risk of periodontitis. Treatment of periodontitis in individuals with uncontrolled Type II 
diabetes has shown benefits in reducing hyperglycemia, though larger studies have been less 
conclusive [78, 79]. Health economics analyses indicate reduced healthcare costs for various 
conditions following periodontitis treatment [80]. While the evidence suggests potential systemic 
health benefits from treating periodontitis, further research is needed. In diagnostic classification, 
consider the patient's medical status and required expertise. Severe systemic diseases, as indicated 
by the American Society of Anesthesiologists (ASA) status, can hinder disease management due 
to the patient's limited ability to tolerate treatment or attend maintenance care. 

In the staging of periodontitis, severity and complexity are key dimensions assessed 
for each case at diagnosis using patient history, clinical examination, and imaging. Severity is 
primarily determined by interdental CAL measurements due to their specificity, with marginal 
bone loss considered as an additional descriptor. The severity score reflects the attachment loss 
attributed solely to periodontitis, based on the most affected tooth. 

Grading in periodontitis adds another dimension, considering the rate of disease 
progression. It is based on direct or indirect evidence of progression. Direct evidence comes from 
longitudinal observations or older radiographs, while indirect evidence assesses bone loss relative 



 

 

  19 

to age at the most affected tooth. Moreover, risk factors can modify the grade of disease. The goal 
of grading periodontitis is to assess the likelihood of rapid disease progression or unpredictable 
response to treatment. Clinicians should start by assuming a moderate progression rate (grade B) 
and refine this based on patient history and evidence of disease progression. Risk factors, like 
poorly controlled Type II diabetes, can adjust the grade to a higher value, indicating a faster 
progression rate (grade C). 

1. Severity of periodontitis (Fig. 7): 
1.1 Stage I: Interdental CAL of 1–2 mm and <15% radiographic bone loss. 
1.2 Stage II: Interdental CAL of 3–4 mm and 15–33% radiographic bone loss. 
1.3 Stage III: Interdental CAL of ≥5 mm, bone loss to the middle third of root 

and beyond, and ≤4 teeth lost due to periodontitis. 
1.4 Stage IV: Interdental CAL of ≥5 mm, bone loss to the middle third of root 

and beyond, and ≥5 teeth lost due to periodontitis. 
 

 

Figure 7: Staging of Periodontal Disease According to the 2018 Classification Criteria [28] 
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2. Extent and distribution in periodontal disease  
In the context of periodontal disease classification, the extent and distribution of 

the condition are categorized into three main patterns: localized, generalized, and molar-incisor 
distribution. These categories help in assessing the scope and spread of periodontal involvement 
in a patient's oral health. 

2.1 Localized: This category refers to cases where periodontal disease is 
confined to specific areas or a limited number of teeth in the oral cavity. The extent of localized 
disease is typically evaluated by calculating the percentage of total teeth affected by attachment 
loss in relation to the overall number of teeth present. If the affected teeth constitute less than 
30% of the total, it is classified as localized periodontal disease. 

2.2 Generalized: Generalized periodontal disease, on the other hand, 
encompasses a broader distribution and involves a higher percentage of teeth. In this case, if more 
than 30% of the total teeth exhibit attachment loss due to periodontal inflammation, it is 
categorized as generalized periodontal disease. 

2.3 Molar-Incisor Distribution:  
This distinctive category, known as molar-incisor distribution, arises from 

the original diagnosis of aggressive periodontitis. It characterizes cases where periodontal 
inflammation predominantly affects molars and incisors, typically indicating a more aggressive 
form of the disease. 

The assessment of extent and distribution in periodontal disease classification is 
essential for treatment planning and determining the appropriate management approach. It helps 
clinicians tailor interventions based on the pattern and severity of periodontal involvement in 
individual patients, ultimately contributing to effective periodontal treatment. 

3. Rate of progression (Fig. 8): 
3.1 Grade A—Slow progression: Characterized by no bone loss or attachment 

loss over five years, or a percentage of bone loss relative to age of less than 0.25. This grade 
includes nonsmokers and individuals without a diagnosis of diabetes. 

3.2 Grade B—Moderate progression: Defined by less than 2 mm of bone loss or 
attachment loss over five years, or a percentage of bone loss relative to age between 0.25 and 1.0. 
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This grade applies to individuals who smoke fewer than 10 cigarettes per day and have an HbA1c 
level below 7.0% if they have diabetes. 

3.3 Grade C—Rapid progression: Identified by 2 mm or more of bone loss or 
attachment loss over five years, or a percentage of bone loss relative to age greater than 1.0. This 
grade includes individuals who smoke 10 or more cigarettes per day and have an HbA1c level of 
7.0% or higher if they have diabetes. 

 

 

Figure 8: Grading of periodontal disease according to the 2018 classification criteria [28] 

According to Merriam-Webster, "prognosis" is the expected course and recovery from a 
disease. In dentistry, especially periodontology, various systems assess prognosis. A deep CNN 
algorithm has shown performance comparable to experienced periodontists in predicting 
periodontal disease using radiographic images [81]. Most prognostic systems focus on tooth 
mortality, predicting the likelihood of extractions [82-84].  Accurate tooth prognosis benefits both 
patients and clinicians by indicating the success likelihood of periodontal and restorative 
treatments. However, no universally accepted gold standard for periodontal prognosis exists due 
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to disease complexity and influencing factors like systemic conditions, local factors, and 
practitioner skill [85]. 

The most widely used prognosis system, proposed by McGuire and Nunn in 1996 [56, 
86], includes five categories: good, fair, poor, questionable, and hopeless (Fig. 9). Clinicians 
categorize each tooth based on factors such as disease etiology control, attachment loss, furcation 
involvement, crown/root ratio, and tooth mobility. 

McGuire and Nunn's categories for periodontal prognosis are: 
Good Prognosis: Effective control of periodontal disease factors and sufficient 

periodontal support. The tooth is easy to maintain with proper care. 
Fair Prognosis: Approximately 25% attachment loss and/or Class I furcation 

involvement. Maintenance is feasible with patient compliance. 
Poor Prognosis: 50% attachment loss and Class II furcation involvement. 

Maintenance is possible but difficult. 
Questionable Prognosis: Over 50% attachment loss, unfavorable crown-to-root 

ratio, poor root form, difficult-to-maintain Class II or Class III furcations involvement, grade II 
mobility or more, and close root proximity. Maintenance and long-term retention are challenging. 

Hopeless Prognosis: Inadequate attachment to sustain stability. Extraction is 
recommended or performed. 

 

 

Figure 9: Periodontal prognosis as defined by McGuire and Nunn [56, 86] 
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In addition to the periodontal prognosis system proposed by McGuire and Nunn in 
1996, the Thai Association of Periodontology has established its own classification for 
periodontal prognosis, as described in the table below (Table 1.): 

Table 1: Periodontal Prognosis as Defined by the Thai Association of Periodontology [87] 
Prognostic level Bone support 

(from the most 
severe site) 

Probing depth Mobility Furcation 
involvement 

Good > 75% < 6 mm 0 0 
Fair  50-75% < 6 mm 0-1 0-1 
Poor 50-75% ≥ 6 mm 0-2 0-2 (B, Li) 

Questionable 25-50% ≥ 6 mm 0-3 2-3 
Hopeless < 25% ≥ 6 mm 2-3 3 

 
These prognosis categories play a crucial role in treatment planning and guide clinicians 

in making informed decisions regarding the management of periodontal disease and the retention 
or removal of affected teeth. 

2.2 Examination of the role of panoramic radiographs in periodontal assessment. 
In standard periodontal examinations, periapical radiographs and periodontal probes are 

crucial diagnostic tools for assessing and predicting periodontitis affected teeth, but these 
methods are time-consuming and depend on clinician expertise [88]. Currently, panoramic 
radiography, a commonly used imaging modality in routine dental practice [30], offers distinct 
advantages compared to other conventional X-ray techniques, including bitewing and periapical 
radiography. It provides a holistic view of the dentition, quick, and valuable diagnostic 
information, including impacted teeth, orthodontic issues, anomalies, temporomandibular joint 
(TMJ) disorders, and trauma within a single image [31, 32]. Furthermore, its capability to 
visualize periodontal structures, bone levels, tooth positioning, and associated pathologies makes 
it a vital tool for diagnosing periodontal conditions, planning treatments, and monitoring disease 
progression. Additionally, it is important for diagnosing periodontal conditions, treatment 
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planning, and monitoring progression, with lower radiation doses than 3D methods like CBCT 
[33]. 

The studies compared periapical radiographs with panoramic radiographs in detecting 
key features such as alveolar bone levels, bone resorption patterns, and furcation involvement. 
They concluded that both periapical and panoramic radiographs can reliably identify these 
characteristics. Therefore, panoramic radiographs can be credibly used for diagnosing periodontal 
disease [89, 90]. This finding aligns with Takeshita W. and colleauges, which evaluated various 
radiographic techniques for assessing alveolar bone loss. Their study found that CBCT produced 
average bone loss values most similar to the control group, while panoramic radiographs showed 
slightly lower values. However, statistical analysis revealed no significant difference. Thus, the 
study concluded that panoramic radiographs can be effectively used for preliminary assessment of 
alveolar bone loss [91]. Therefore, the panoramic radiograph may be used as an alternative to a 
periapical full-mouth radiographs, serving to reduce the overall radiation exposure [92]. 
Assessing the extent of supporting tooth tissues, particularly the quantity of bone surrounding the 
tooth, is crucial in preventing tooth loss due to periodontal diseases [93]. Novel radiological 
techniques, especially those involving average percentage values of bone loss, which significant 
promise for early diagnosis and also timely treatment plan for periodontal diseases [94]. 

Routine panoramic radiographs are indispensable for evaluating the degree of alveolar 
bone loss, which is vital for the diagnosis and prognostication detection of periodontal diseases 
[95]. Alveolar bone loss serves as a primary parameter for determining the severity of 
periodontitis, as outlined in the current periodontal classification [28, 29]. The development of 
automated systems for classifying periodontal diseases based on clinical and radiological features 
dates back to 1987. However, the assessment of alveolar bone loss, an important factor in 
detecting periodontal diseases, is a relatively recent focus, particularly in AI studies [96, 97]. 
Furthermore, it is essential to emphasize that the results of AI studies aimed at detecting 
periodontal bone loss and facilitating periodontal diagnosis can exhibit variability based on 
factors such as the choice of imaging processing techniques, the volume of available data, and the 
specific algorithms utilized. 
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2.3 Introduction to Artificial Intelligence (AI) and discussion of AI integration in medicine. 
In recent years, scientific advancements in electronics and computing have progressed 

significantly. Various tools and devices have been developed for application across a wide range 
of disciplines. As a result, we have become accustomed to hearing the term AI. AI represents to 
the intelligence or knowledge created from non-living entities, which integrates multiple 
components to meet human needs. AI can think and assist in various areas, such as autonomous 
vehicle navigation systems, intelligent assistants in smartphones, as well as applications in 
medicine and dentistry. 

Since its inception in 1955 by McCarthy, AI has evolved to enable machines to 
undertake tasks that typically need human intellect, such as learning and problem-solving [98].  
A key breakthrough in AI is machine learning, which revolves around creating algorithms that 
can learn from data to make predictions. Starting with a well-prepared and labeled training dataset 
is crucial. This data undergoes formatting and pre-processing for effective training with both 2D 
and 3D CNN architectures. Simplified, the process involves training the system with extensive 
datasets by outlining specific structures for it to autonomously learn and produce results through 
complex ANNs [99]. Additionally, AI has begun to flourish in medicine and dentistry, offering  
a range of applications from diagnostics and decision-making to treatment planning and predicting 
outcomes [100]. 

Machine learning is the process that machines learn to use a set of instructions to 
distinguish and analyze data. From this data, they create models to make decisions or predictions 
about various subjects. Instead of writing code as a set of specific instructions, machine learning 
involves training with large datasets to learn how to perform tasks. There are various techniques 
to teach a computer to learn effectively [101]. 

Deep learning is a subset of machine learning that employs hierarchical mechanisms 
using groups of algorithms or mathematical equations to solve processing problems. It can 
function both with and without supervision, relying on ANNs that mimic the workings of human 
brain. These networks consist of neurons, each connected to form a network. In software, neurons 
are referred to as nodes, and these nodes are organized into layers [98, 102]. In image analysis or 
image classification, CNNs are commonly used. CNNs are a type of neural network commonly 
used for image recognition and computer vision tasks. They employ a process called convolution 
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to extract features from images. This involves sliding a small window, known as a filter or kernel, 
over the image and performing mathematical operations on the pixels within the window. The 
result of this convolution operation is a feature map that highlights the important features of the 
image.  CNN architecture is well-known for its performance in learning and validation contests 
using the ImageNet dataset. It provides developers with pre-trained weights that can be utilized in 
new projects. These pre-trained models are essential due to the high complexity and resource 
demands of deep learning, which result in lengthy initial training times. Additionally, after 
training on vast amounts of data, the model contains numerous weight factors that need to be 
randomized and adjusted. Once these weights stabilize, the model can be used for ongoing 
applications. At this point, Real-time object detection is crucial in autonomous vehicles, robotics, 
video surveillance, and augmented reality. The YOLO (You Only Look Once) framework stands 
out for its speed and accuracy, providing quick and reliable object identification in images. Since 
its inception, YOLO has seen several iterations, each enhancing performance and addressing 
previous limitations (Fig. 10) [103]. 
 

 

Figure 10: A timeline of YOLOv1 to the latest YOLOv8 [103]. 

In the medical field, YOLO has been used for cancer detection, skin segmentation, and 
pill identification, improving diagnostic accuracy and treatment processes. In remote sensing, 
YOLO assists in object detection and classification in satellite and aerial imagery, aiding land use 
mapping, urban planning, and environmental monitoring. Recently, the medical images are 
produced using various equipment, including ultrasound, X-rays, computed tomography (CT), 
magnetic resonance imaging (MRI), microscopy, and scintigraphy. These techniques generate 
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diverse images, all of which can be analyzed by AI algorithms to investigate and predict different 
diseases. To understand how each AI-based model assists in diagnosing and predicting diseases, it 
is crucial to examine the application of multiple algorithms [104]. 

In this study, we used YOLOv8, released in January 2023 by Ultralytics [105]. No 
official paper has been published on YOLOv8 yet, so insights are based on available information. 
YOLOv8 is anchor-free, reducing box predictions and speeding up the Non-Maximum 
Suppression (NMS) process. It uses mosaic augmentation during training, which is disabled for 
the last ten epochs to avoid detrimental effects. YOLOv8 can be run from the command line 
interface (CLI) or installed as a PIP package and offers integrations for labeling, training, and 
deployment. It is available in five scaled versions: YOLOv8n (nano), YOLOv8s (small), 
YOLOv8m (medium), YOLOv8l (large), and YOLOv8x (extra large) [106].  

The integration of AI in medicine is seen in the study by Steimann et al. [107], who 
developed a neural network called ProstAsure Index to classify prostate diseases as aggressive or 
non-aggressive. Their study found that the program provided accurate diagnoses up to 90%, with 
a sensitivity of 81% and a specificity of 92%. Moreover, Pranav R and colleagues [108] 
conducted a study that utilized AI to develop a program called CheXNet. The aim was to evaluate 
its capability in analyzing and detecting pneumonia-related abnormalities in comparison to expert 
radiologists. The study concluded that CheXNet outperformed radiologists in detecting 
atelectasis, achieving an AUC of 0.862 compared to the radiologists' AUC of 0.808, which was 
statistically significant. Early detection and treatment initiation are vital in managing respiratory 
infections. AI algorithms offer valuable support to healthcare providers in the detection and 
analysis of pulmonary diseases (Fig. 11). 
  



 

 

  28 

 

Figure 11: An example of frontal chest radiograph shows airspace opacity in the right lower lobe, 
indicating pneumonia. The algorithm accurately identified and located the abnormality [108]. 

Recently, a deep learning-based CNN model was created to analyze respiratory audio 
data for detecting Chronic Obstructive Pulmonary Disease (COPD), achieving 93% accuracy 
[109]. Additionally, a CNN-based framework was developed to diagnose COVID-19 using X-ray 
images, reaching an accuracy of 95.7% (Fig. 12) [110]. 
 

 

Figure 12: These chest X-ray images show both non-COVID (left) and COVID-19 (right) cases 
[110]. 



 

 

  29 

In the present, many studies reveal that AI plays a wide role in healthcare, aiding in 
diagnosis, prediction, and prevention. However, there are challenges in using machine learning 
and deep learning for disease diagnosis and prediction. A significant challenge is the need for 
massive amounts of data during training, which is often impractical for many diseases. 
Additionally, labeling data requires expertise, is time-consuming, and expensive, making it 
difficult to develop accurate models for rare or new diseases [111]. One potential solution is data 
augmentation, which can artificially increase the size of the dataset [112]. 

Furthermore, numerous AI techniques are currently utilized in medicine for various  
purposes. Table 2 below highlights some AI techniques and their descriptions, while Table 3 provides 
examples of their use in diagnosing different diseases, along with their accuracy rates [113]. 

Table 2: AI Techniques in Medicine 
AI Technique Description 

Support Vector Machines (SVM) SVM is used for classification and regression 
by identifying the optimal hyperplane that 
separates different classes [114, 115]. 

K-Nearest Neighbors (KNN) KNN classifies data points based on the 
majority class among its k-nearest neighbors, 
making it effective for classification and 
regression tasks [116, 117]. 

Naïve Bayes A probabilistic classifier based on Bayes' 
theorem, assuming independence among 
predictors, simplifying computation [118, 119]. 

Decision Trees Decision Trees use a tree-like model of 
decisions to split data based on feature values, 
identifying significant variables and 
relationships [120, 121]. 

AdaBoost AdaBoost combines multiple weak classifiers 
to create a strong classifier by adjusting 
weights of incorrectly classified instances to 
improve accuracy [122, 123]. 
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Table 2: Cont. 
AI Technique Description 

Random Forest An ensemble method constructing multiple 
decision trees and aggregating their results for 
improved accuracy and control over-fitting 
[124, 125]. 

K-Means Clustering An unsupervised algorithm that partitions data 
into k clusters based on feature similarity, 
aiding in pattern recognition and segmentation 
[126, 127]. 

Recurrent Neural Networks (RNN) RNNs handle sequential data by maintaining a 
'memory' of previous inputs, suitable for time-
series predictions and sequential data analysis 
[128, 129]. 

Convolutional Neural Networks (CNN) CNNs are used for image analysis, learning 
spatial hierarchies of features, extensively 
applied in medical imaging for detecting 
abnormalities [130, 131]. 

Deep-CNN These networks have multiple layers to learn 
complex features from the data, providing high 
accuracy in image classification tasks [132-
134]. 

Generative Adversarial Networks (GAN) GANs consist of a generator and a 
discriminator network, generating realistic data 
samples useful for augmenting medical datasets 
[135, 136]. 

Long Short-Term Memory (LSTM) LSTMs are a type of RNN designed to 
remember long-term dependencies, making 
them ideal for processing sequential data such 
as patient health records [137, 138]. 



 

 

  31 

Table 3: AI Techniques and their accuracy in diagnosing diseases [113] 
Disease AI Technique Accuracy 

Cancer Detection SVM 85-95% 
Diabetes KNN 75-90% 
Heart Disease Naïve Bayes 70-85% 
Various Conditions Decision Trees 80-90% 
Skin Cancer AdaBoost 85-95% 
Breast Cancer Random Forest 90-98% 
Pattern Recognition K-Means Clustering Not directly applicable 
Disease Progression RNN 85-92% 
Radiology Analysis CNN 90-98% 
Medical Imaging Deep-CNN 92-99% 
Data Augmentation GAN 85-95% 
Chronic Disease LSTM 88-93% 

 
Moreover, in the medical field, research has extensively examined the use of both 

machine learning and deep learning models to diagnose a variety of diseases. These include 
cancer, diabetes, chronic conditions, heart disease, Alzheimer's, stroke and cerebrovascular 
diseases, hypertension, skin disorders, and liver diseases. Among machine learning techniques, 
Random Forest Classifiers, Logistic Regression, Fuzzy Logic, Gradient Boosting Machines, 
Decision Trees, K-Nearest Neighbors (KNN), and Support Vector Machines (SVM) are 
frequently employed. In the context of deep learning, Convolutional Neural Networks (CNN) are 
predominantly utilized for disease diagnosis. Furthermore, models such as Recurrent 
Convolutional Neural Networks, Multilayer Perceptrons, and Long Short-Term Memory (LSTM) 
networks have also seen widespread application in the literature [113]. 
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2.4 Discussion of AI and medical image processing techniques and their potential in dental 
diagnostics. 

In the field of medicine, there has been a recent increase in studies aimed at evaluating 
anatomical and pathological structures using artificial intelligence [139–141]. When examining 
the primary challenges that contribute to develop the AI applications in dentistry, several issues 
come to light. These include the potential for human-induced diagnostic errors due to factors like 
a shortage of experienced clinicians, time constraints for radiographic interpretation, and the 
necessity for radiograph reporting. These challenges can impact both the timeliness and cost of 
treatment. However, as the utilization of AI in the field of dentistry continues to expand, and 
more sophisticated programming methods are devised, these challenges are expected to gradually 
diminish. Furthermore, the implementation of AI programs can expedite the diagnostic process 
and improve reliability, making it more practical and efficient to diagnose dental restorations, 
maxillofacial abnormalities, dental deformities, and periodontal and endodontic lesions from 
panoramic radiographs [142, 143]. 

In Periodontology, AI has found applications in the diagnosis of periodontitis and the 
classification of various types of periodontal diseases [144, 145]. For instance, Krois and 
colleagues used CNNs to detect periodontal bone loss (PBL) in panoramic X-ray images [146]. 
Lee and colleagues conducted research to explore the ability of a CNN algorithm for the 
automatic identification of periodontitis affected teeth, assessing its accuracy [147]. Moreover, 
Yauney and colleagues made a notable contribution by developing a CNN algorithm capable of 
evaluating periodontal conditions using systemic health-related data [148]. These studies have 
leveraged AI in the context of periodontal disease diagnosis and management [149]. They provide 
valuable insights into the integration of advanced technology in Periodontology. Given the 
relatively early stages of AI's integration into healthcare, it is not unexpected to observe 
substantial heterogeneity in methodology and reporting outcomes among the reviewed studies. It 
is imperative that future research endeavors strive to align with increasingly recognized gold 
standards for research and reporting. The establishment of an international consensus on a gold 
standard for assessing these tools would greatly aid readers in evaluating the utility of this 
technology for diagnosis, prognostication, and the development of treatment protocols for patients 
with periodontal disease. Consequently, at this stage, it remains challenging to draw definitive 
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conclusions regarding the efficacy and utility of AI in Periodontology. Most often, researchers 
chose to use individualized networks, possibly because many pretrained networks were not well-
suited for the relatively small datasets commonly used in these investigations. On average, these 
studies had around 1,000 images in their datasets, whereas most pretrained CNNs were trained on 
much larger datasets, often unrelated to the medical field, where limited data is a common 
challenge [150].  

According to the study conducted by Thanathornwong B. and colleague [151], a novel 
approach was introduced to identify periodontitis affected teeth using a deep learning-based 
object detection method on digital panoramic X-ray images (Fig. 13). This method utilized  
a state-of-the-art deep detection network called Faster Regional Convolutional Neural Network 
(Faster R-CNN). Adapted from the natural image domain and trained on a relatively small 
annotated clinical dataset, Faster R-CNN demonstrated satisfactory performance in detecting 
periodontitis affected teeth. Using Faster R-CNN could streamline the diagnostic process by 
reducing assessment time and enabling automated screening documentation. This model achieved 
a sensitivity of 0.84, a specificity of 0.88, and an F-measure of 0.81, respectively, indicating its 
effectiveness in this context. 

 

 

Figure 13: Example of a panoramic X-ray image of the provided dataset showing periodontitis 
affected teeth (No. 14, 23, 25, 26, 37, 35, and 47 in the boxes) [151]. 
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In the study conducted by Huang Y.C. and colleagues [152], an innovative approach is 
introduced for automating the segmentation of panormaic X-ray images (Fig. 14), focusing on 
isolating individual teeth and accurately placing each segmented tooth within a predefined 
reference table. It also includes an automated process for identifying the precise location of each 
tooth within a panoramic X-ray image. The image processing phase uses various techniques of 
image enhancement to improve image quality, including sharpening, histogram equalization, and 
flat-field correction. Iterative image processing is applied to improve contrast between teeth and 
cavities. An additional step detects dental cavities by identifying segments and points that 
separate the upper and lower jaws based on pixel value differences. These sections are used to 
connect cavity feature points, creating a detailed representation of the jaw sections. 

Adjustments are made by shifting the curve to identify gaps between teeth, which helps 
in identifying missing teeth and overlap issues. The study adopts the Fédération Dentaire 
Internationale (FDI) two-digit notation system, assigning unique codes to each tooth for clinical 
use. To address the challenge of accurately marking missing teeth on conventional X-ray films, 
the paper introduces artificial center positioning and ensures uniform counts of gap feature points, 
which are then connected to the jaw curve for visual dental segmentation. This proposed method 
achieves an accuracy rate of 89.95% in tooth positioning. For tooth cutting, where the position of 
each tooth is determined by the edge of the cutting box, the accuracy reaches 92.78%. 

 

 

Figure 14: Automated tooth position determination in dental panoramic X-ray imaging through 
Image Enhancement Technique [152]. 
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A recent study by Uzun Saylan B.C. and colleagues [153] assessed the effectiveness of 
AI models in detecting alveolar bone loss of periodontitis affected teeth in periodontal disease 
using panoramic X-ray images. The findings indicated that AI models hold significant potential 
for analyzing periodontal bone loss (Fig. 15). 

 

 

Figure 15: AI Predictions of alveolar bone loss in panoramic X-ray images and testing results 
[153]. 

2.5 Identification of research gaps and the need for enhanced diagnostic and prognostic tools. 
In the present situation, The Global Burden of Disease Study reported that severe 

periodontal disease affects 19% of adults worldwide, over 1 billion people, making it the 11th 
most prevalent disease [24, 25]. At Fang Hospital in Chiangmai Province, Thailand, 35.65% of 
patients (2,391 out of 6,706) had periodontitis from June 2023 to May 2024. Furthermore, the 
current periodontal classification system introduced in 2018, grounded in current evidence and 
employing a multidimensional staging and grading approach, and there are a limited number of 
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periodontists who are experts in Periodontology. Moreover, the current diagnostic challenges 
include errors from inexperienced dentists, limited time for radiograph analysis, and mandatory 
reporting, affecting the delay in treatment planning. 

Limitations of current periodontal diagnosis involve analyzing various aspects of the 
diagnostic process, from clinical practices to technological applications include: 

• 4.1 Reliance on Classical Methods:  
Subjectivity in clinical examination, such as variability in manual probing 

and visual examination, leads to inconsistencies in diagnosis. Inaccuracies in depth measurement 
due to factors like probe angulation and pressure are also concerns [50]. 

• 4.2 Diagnostic Sensitivity and Specificity:  
Challenges exist in early disease detection and differentiating between 

stable conditions and active disease progression [154, 155].  
• 4.3 Technological Limitations:  

Radiographs, while essential, have limitations in early bone loss detection 
and 3D bone defect assessment [156]. The method discussed has limitations in providing exact 
measurements of periodontal bone loss due to inconsistencies in image magnification and 
distortion common in dental panoramic radiography. Future research should focus on enhancing 
this method's accuracy, potentially through collaborations across different organizations to 
validate and improve its performance [157]. 

• 4.4 Integration of New Technologies:  
Currently, research on integrating digital technologies into dentistry is 

somewhat limited. The exploration of these technologies could potentially revolutionize 
diagnostic methods, treatment planning, and patient care in the dental field. Further studies and 
investments are needed to fully understand and leverage digital innovations for improving dental 
practices and patient outcomes. Incorporating advanced diagnostic tools and methodologies is an 
ongoing process, aiming to overcome the limitations of classical methods [158]. 
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Despite these advancements, research on AI's integration into dentistry, particularly 
periodontology, remains limited (Table 4). Further studies are needed, such as AI assistance in 
periodontal diagnosis and prognosis, to develop innovative diagnostic software (Fig. 16). This 
could lead to tailored treatment protocols based on individual periodontal diagnoses. 

Table 4: Examples of AI technologies enhancing the detection of periodontal bone loss through 
dental panoramic X-ray images 

Study Year Description Total data 
Summary of model 

performances 
Krois et al. [146] 2019 Used CNN to identify 

periodontal bone loss on 
dental panoramic X-ray 
images. 

2,001 The model has an accuracy, 
sensitivity, and specificity all 
at 0.81. 

Kim et al. [159] 2019 Created a system for 
automatically 
identifying periodontal 
bone loss using 
panoramic dental X-ray 
images. 

12,179 The developed model 
outperformed dental 
clinicians on the test set with 
an F1 score of 0.75, 
compared to the clinicians' 
average score of 0.69. 

Chang et al. [94] 2020 Created a system to 
automatically classify 
stages of periodontitis 
using deep learning 
techniques on dental 
panoramic X-ray 
images. 

340 The accuracy levels were 
recorded at 0.93 for 
periodontal bone and 0.91 for 
both CEJ level and teeth 
identification. 

Bayrakdar et al. 
[160] 

2020 Used CNN to identify 
periodontal bone loss on 
dental panoramic X-ray 
images. 

2,276 The model's accuracy is 
measured at 0.9. 
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Table 4: Cont. 

Study Year Description Total data 
Summary of model 

performances 
Thanathornwong 
et al. [151] 

2020 Used CNN to identify 
periodontally 
compromised teeth on 
dental panoramic X-ray 
images. 

100 The model reached a 
sensitivity of 0.84, specificity 
of 0.88, and an F-measure of 
0.81. 

Jiang et al. [161] 2022 Created a model for 
radiological staging of 
periodontal alveolar 
bone loss on dental 
panoramic X-ray 
images. 

640 The model's overall accuracy 
rate was recorded at 0.77. 

Zadrozny et al. 
[162] 

2022 Evaluated the accuracy 
of AI in automatically 
analyzing panoramic 
dental X-rays. 

30 The tested CNN displayed 
poor reliability in evaluating 
caries (Intra-Class Correlation 
(ICC) = 0.681) and periapical 
lesions (ICC = 0.619). 
However, it showed good 
reliability for identifying 
fillings (ICC = 0.920), 
endodontically treated teeth 
(ICC = 0.948), and 
periodontal bone loss  
(ICC = 0.764). 

Uzun Saylan  
et al. [153] 

2023 Assessed how well AI 
models can detect the 
presence or absence of 
alveolar bone loss in 
various areas. 

685 The models in detecting 
alveolar bone loss (ABL) 
across various teeth regions 
showed sensitivity, precision, 
and F1 score ranges as 
follows: 
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Table 4: Cont. 

Study Year Description Total data 
Summary of model 

performances 
    For general alveolar bone 

loss, the scores were 0.75, 
0.76, and 0.76. Specifically, 
maxillary incisor ABL had 
perfect precision at 1, with an 
F1 score of 0.95. Maxillary 
canine, premolar, and molar 
ABL showed balanced 
scores, with the highest F1 
score of 0.91 for molar ABL. 
In the mandible, incisor, 
canine, premolar, and molar 
ABL scores varied, with 
mandibular incisor ABL 
scoring an F1 of 0.86 and 
molar ABL at 0.79, 
indicating the models' varied 
effectiveness in different 
dental regions. 

Kong et al. [163] 2023 Used two-stage CNN-
based periodontitis 
detection network in 
periodontitis bone loss 
diagnosis in panoramic 
radiographs 

1747 The model for radiographic 
bone loss (RBL) 
classification has an accuracy 
of 0.762. 
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Figure 16: The example of AI in illustrating the detection of periodontal bone loss on dental 
panoramic X-ray image. 

Additionally, AI has also been increasingly applied in dentistry for diagnosing and 
predicting various dental diseases. These techniques encompass both machine learning and deep 
learning models, each providing different levels of accuracy for specific conditions. The 
following table (Table 5) highlights some of these techniques and their corresponding 
applications in dental diagnostics. 
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Table 5: AI Techniques in Dentistry 
Disease AI Technique Accuracy 

Dental Caries [164, 165] Convolutional Neural Networks (CNN) 89-94% 
Periodontal Disease [146, 166] Random Forest, SVM 85-90% 
Tooth Fracture [167, 168] CNN, Deep-CNN 92-97% 
Oral Cancer [169, 170] CNN, LSTM 90-95% 
Orthodontics [171, 172] SVM, KNN 88-93% 
Root Canal Treatment [173, 174] Decision Trees, Random Forest 87-92% 
Implantology [175, 176] CNN, RNN 90-94% 
 

This research aims to fill that gap by focusing on enhancing the accuracy and efficiency 
of periodontal diagnosis and prognostication detection using medical image processing techniques 
and AI. By employing advanced image analysis algorithms on dental panoramic X-ray images, 
this study strives to make a valuable contribution to improving periodontal disease management 
and, consequently, enhancing overall patient care outcomes. 

This represents a novel innovation designed to assist periodontists and general 
practitioners in screening diagnoses and making prognostication decisions using panoramic X-ray 
images, which are valuable tools in treatment planning. 
 



 

 

 

CHAPTER 3 

Materials and methods 

3.1 Study Design 
This research is divided into three phases: 

Phase I - Review Study: This phase critically evaluates the existing literature on 
periodontal diagnosis and prognostication, emphasizing the limitations of traditional diagnostic 
methods. A comprehensive review was conducted following PRISMA guidelines. We searched 
several databases, including PubMed, Scopus, Wiley Online Library, and ScienceDirect, for 
studies published between January 2018 and December 2023. The search utilized keywords such 
as “artificial intelligence,” “panoramic radiograph,” “periodontitis,” “periodontal disease,” and 
“diagnosis.” Inclusion criteria were established for studies that involved the application of AI in 
diagnosing periodontitis, included human subjects, were published in English, and were 
accessible as open access. Conversely, the exclusion criteria eliminated non-AI studies, studies 
unrelated to periodontitis, those not utilizing panoramic radiographs, as well as abstracts, 
editorials, and letters. 

Phase II - Retrospective Study: The panoramic radiographs used in this study 
were obtained from the Dental Department of Fang Hospital, Chiang Mai, Thailand. It is 
important to note that all radiographs were captured using the same imaging device, the SIDEXIS 
Next Generation Program (Sirona, Bensheim, Germany). Only one radiograph per patient was 
included in the analysis. The dataset comprised 2,000 panoramic radiographs, divided into 1,000 
periodontally healthy radiographs and 1,000 periodontitis radiographs. Following the collection of 
these radiographs, a comprehensive model for periodontal diagnosis and prognostication was 
developed, integrating advanced image analysis techniques utilizing artificial intelligence (AI). 
The assessment was based solely on radiographic evaluation, with the primary focus being the 
assessment of the alveolar bone crest relative to the cemento-enamel junction (CEJ) of each tooth. 
The distance between the CEJ and the alveolar bone crest was measured. Periodontal diagnosis 
followed the 2018 periodontal classification, and prognostication was performed using medical 
image processing techniques, as follows: 



 

 

  43 

Teeth Segmentation Model: A machine learning framework designed to 
accurately identify and classify individual teeth within panoramic radiographs. 

Distance Between the Cemento-Enamel Junction (CEJ) and the Crestal 
Bone Model: A method to measure the vertical distance between the CEJ of each tooth and the 
corresponding alveolar bone crest on panoramic radiographs. 

Phase III - Analytical Study: This phase aims to evaluate the performance of AI 
models in diagnosing periodontal diseases through a comparative analysis with general 
practitioners (GPs) and specialized periodontists. The evaluation will be based on the assessments 
made by expert periodontists with over 10 years of experience in periodontology, focusing on 
diagnostic accuracy and efficiency. 

3.2 Research Workflow 
3.2.1 Phase I: To critically review existing literature on periodontal diagnosis and 

prognostication, identifying the limitations of traditional diagnostic methods. 
A comprehensive literature review was conducted following PRISMA guidelines. 

We searched multiple databases, including PubMed, Scopus, Wiley Online Library, and 
ScienceDirect, for studies published between January 2018 and December 2023. The keywords 
employed in the search included “artificial intelligence,” “panoramic radiograph,” “periodontitis,” 
“periodontal disease,” and “diagnosis.” Inclusion criteria were established for studies that 
involved the application of AI in diagnosing periodontitis, included human subjects, were 
published in English, and were accessible as open access. Conversely, the exclusion criteria 
eliminated non-AI studies, studies unrelated to periodontitis, those not utilizing panoramic 
radiographs, as well as abstracts, editorials, and letters, as illustrated in the flowchart below. 
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3.2.2 Phase II: To develop a comprehensive model for periodontal diagnosis and 
prognostication that integrates advanced image analysis techniques utilizing artificial intelligence 
(AI). The overall procedure for the development of the AI model includes phases for image 
enhancement, model training, and evaluation, as shown in the flowchart below. 

 

 
  

Collection of Panoramic Radiograph Data 

Image Enhancement 

Data Labeling using LabelMe tool 

Data Conversion using Labelme2yolo tool 

The percentage of alveolar bone loss was measured for each tooth. 

Compared to the periodontal prognosis categories—
Good, Fair, Poor, Questionable, and Hopeless. 

CNN models were developed using YOLOv8. 

Localization and classification Localization and classification 

Distance between CEJ and alveolar bone level Teeth segmentation 

Thresholding for Abnormality Detection level 

Periodontitis: 
Stage I, II, III, IV 
Grade A, B, C 
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3.2.3 Phase III: To evaluate the performance of AI models in diagnosing periodontal 
diseases through a comparative analysis with general practitioners (GPs) and specialized 
periodontists. This evaluation will reference the assessments made by expert periodontists with 
over 10 years of experience in the field of periodontology, focusing on diagnostic accuracy and 
efficiency, as illustrated in the flowchart below. 

 

 

3.3 Study Population and Sample size 
The research will utilize the rule of ten, supplemented by weighting factors, to 

determine the necessary volume of data required for training. This study will evaluate ten critical 
aspects (Fig. 17), namely: 

1. Tooth position, 
2. Contrast between teeth and gum, 
3. Contrast between teeth and bone, 
4. Tooth edge, 
5. Tooth reference point, 

AI 

AI Model Development 

90 previously unseen panoramic radiographs of patients with periodontitis and non-periodontitis 

The expert periodontist provided the diagnosis of periodontitis for each patient 

Periodontist GPs 

To evaluate performance metrics, including accuracy, sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), and weighted Cohen’s Kappa value 

Conclude the study 
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6. Tooth angle, 
7. Distance between the reference point and the end of the tooth root, 
8. Tooth shape, 
9. Degree of alignment between upper and lower jaws, and 
10. Degree of bone loss. 

The Rule of 10 is a practical guideline suggesting that, for the development of an 
efficient AI model, the number of training datasets should ideally be ten times greater than the 
total number of model parameters, also referred to as degrees of freedom. The primary objective 
behind this '10 times' rule is to reduce data variability and enhance data diversity. Consequently, 
this rule of thumb serves as a valuable initial reference point for determining the necessary 
quantity of datasets to commence your project. Recognizing the intricate nature of CNNs, we will 
expand the training dataset tenfold, resulting in a total of 1,000 datasets for AI training. 
 

 

Figure 17: An illustrative of bone level and cementoenamel junction (CEJ) from panoramic 
radiograph 

  

Bone Level 
CEJ. 
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3.4 Inclusion and Exclusion Criteria 
The dataset of panoramic radiographs of patients obtained from the Dental Department 

of Fang Hospital, Chiangmai, Thailand following the inclusion and exclusion criteria below: 
Inclusion criteria: 

1. Age: Participants aged 18 years and older to ensure that only fully erupted 
molars are included, while excluding erupting or unerupted molar teeth. 

2. Diagnosis: Individuals diagnosed with periodontitis, as identified through 
diagnosis codes from the HOSxP Program (Bangkok Medical Software, Bangkok, Thailand). 

3. Radiograph Quality: High-quality panoramic radiographs obtained from the 
SIDEXIS Next Generation Program (Sirona, Bensheim, Germany) and captured using a 
consistent device. 

Exclusion criteria: 
1. Missing Radiographs: Absence of panoramic radiographs in the SIDEXIS 

Next Generation Program. 
2. Image Quality: Radiographs were excluded if they exhibited improper patient 

positioning, poor quality due to movement, uncommon bone morphologies (Fig. 18), or if the 
alveolar bone loss in the affected area could not be accurately assessed (Fig. 19). 

3. Panoramic radiographs of patients with craniofacial anomalies, as these 
conditions may affect bone morphology. 

 

 

Figure 18: An illustration of panoramic X-ray image where the area could not be accurately 
selected for determining periodontal bone destruction. 
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Figure 19: An illustration of panoramic X-ray image with incorrect patient positioning and 
low quality radiograph. 

3.5 Data collections 
The good quality panoramic radiographs of patients both periodontitis (Fig. 20) and  

non-periodontitis patients (Fig. 21) were recruited from the SIDEXIS next Generation Program 
(Sirona, Bensheim, Germany) (Fig. 22) from January 2015 - December 2023. Panoramic X-ray 
images with incorrect patient positioning, low quality due to patient movement, rare bone 
morphologies, and those where the affected area could not be accurately selected for periodontal 
bone destruction determination were excluded. The dataset included 2,000 panoramic radiographs 
of patients diagnosed with periodontitis, identified using diagnosis codes from the HOSxP 
Program (Bangkok Medical Software, Bangkok, Thailand) (Fig. 23). It is noteworthy that all 
radiographs employed in this study were captured using the same imaging device (ORTHOPHOS 
XG, Sirona, Bensheim, Germany) (Fig. 24). 
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Figure 20: An illustrative panoramic radiograph of periodontitis patient captured 
from the SIDEXIS Next Generation Program 

 

Figure 21: An illustrative panoramic radiograph of non-periodontitis patient captured 
from the SIDEXIS Next Generation Program 
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Figure 22: An illustrative of panoramic radiographs from the SIDEXIS Next Generation Program 
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Figure 23: Examples of panoramic radiographs from the SIDEXIS Next Generation Program 

  



 

 

  53 

  

Figure 24: Imaging device (ORTHOPHOS XG, Sirona, Bensheim, Germany). 

3.6 Medical Image Processing and AI Techniques 
To overcome the afore mentioned challenges, a comprehensive methodology involving 

machine learning and AI techniques will be developed for the automated detection of abnormal 
teeth in dental X-ray films. Five major steps are to be proposed:  Images preprocessing, image 
analysis using CNNs, localization and classification thresholding for abnormality detection, and 
model evaluation and validation (Fig. 25). 

 

 

Figure 25: Workflow of AI model development 
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1. Image Preprocessing [152] 
Image preprocessing and enhancement is an important part of the proposed 

algorithm to produce more suitable images for the applications than the original image. 
1.1 Image sharpening (Fig. 26) 

One of the most commonly used modification techniques is sharpening, which 
enhances edges and makes pixel boundaries more distinct. This clarity improves subsequent 
processing steps. Psychophysical experiments indicate that edge-enhanced images, including 
those in radiology, are often more visually pleasing and easier for the human visual system to 
interpret. 

 

 

Figure 26: An illustration of image sharpening: original image (left), sharpened image (right). 

1.2 Image Contrast Adjustment (Fig. 27) 
In this stage, the histogram equalization is used to equalize the brightness level 

of the X-ray picture. The contrast is adjusted to distinguish the target teeth from the background 
using a histogram equalization method. This technique transforms the original image’s grayscale 
values from a concentrated range to an evenly distributed range. Histogram equalization expands 
the image nonlinearly, redistributing the grayscale values so that the proportions of the image in 
each range are approximately equal. 

Histogram transformation, a type of grayscale transformation, defines the 
relationship between input and output grayscale values. This transformation relates the input and 
output random variables, allowing for more effective processing. In digital image processing, 
continuous variables are used for deriving generalizations that can be applied to discrete data. 
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Figure 27: An illustrative of image contrast adjustment using Histogram equilibrium. 

1.3 Gaussain filtering (Fig. 28, 29) 
Before this step, Gaussian filtering is applied to the processed X-ray film to 

reduce noise and smooth the image using a 3x3 kernel matrix. 
 

 

Figure 28: Image show kernel of size 3x3 for Gaussian blur filter. 

 

Figure 29: An illustration of Gaussian filtering: original image (left), the image after 
preprocessing (right). 



 

 

  56 

2. Data labeling (Fig. 30): 
Recognizing the importance of labeled data in supervised machine learning, labeling 

tools have been introduced. This research utilizes LabelMe [177] as a labeling tool for object 
segmentation, while Labelme2yolo is used for converting data into a ready-to-train format. 

 

 
 

 

Figure 30: Image showing the distance between the CEJ and the bone (upper) and teeth (lower), 
labeled using LabelMe. 

3. Distance between crestal bone level and CEJ, and the teeth analysis using CNNs: 
CNNs will be employed to extract meaningful features from dental X-ray images. 

Transfer learning from pre-trained models will be explored to leverage existing knowledge in 
image recognition tasks. These images were randomly assigned to the training, validation, and 
test sets in a 70:10:20 ratio. 

To address existing issues, we selected a dataset that includes 2000 X-ray images of 
both healthy and infected teeth. We propose using the YOLOv8 [178, 179] model to extract 
regions of interest and minimize the background's impact on target segmentation. 
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3.1 Training Environment 
The experimental setup included an Intel Core i7-8700K CPU, 16 GB of RAM, 

an Nvidia GeForce RTX2080 GPU with 8 GB of video memory, the CUDA Toolkit 9.0, CUDNN 
V11.7, and Python 3.11.5. 

4. Localization and Classification (Fig. 31): 
The developed model is trained to not only classify teeth but also localize the area 

between CEJ and the attachment level within the X-ray images. Localization will involve 
generating bounding boxes or heat maps indicating the presence and location of abnormal teeth 

 

 
 

 

Figure 31: Image showing the predicted area between the CEJ and the bone level (upper), 
and teeth segmentation (lower). 
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5. Thresholding for Abnormality Detection (Fig. 32): 
A thresholding mechanism will be devised to determine the extent of abnormality 

based on the width of the gap between the tooth and the bone structure. Teeth with gaps 
exceeding the predefined threshold (e.g., >2mm) will be flagged as abnormally positioned.  

 

 

Figure 32: Panoramic X-ray image showing the percentage of thresholding for abnormality 
detection. 

A thresholding mechanism will be developed to assess the extent of abnormality by 
measuring the distance between the CEJ and the bone structure (Fig. 33). The percentage of bone 
loss is calculated using the following formula [22, 180]: 
 

𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒐𝒇  𝒃𝒐𝒏𝒆 𝒍𝒐𝒔𝒔 =
(𝑪𝑬𝑱 − 𝑨𝒍𝒗𝒆𝒐𝒍𝒂𝒓 𝒃𝒐𝒏𝒆 𝒄𝒓𝒆𝒔𝒕) − 𝟐𝒎𝒎

(𝑪𝑬𝑱 − 𝑹𝒐𝒐𝒕 𝒂𝒑𝒆𝒙) − 𝟐𝒎𝒎
𝒙𝟏𝟎𝟎 
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Where each variable is as follow: 
 

 

Figure 33: CEJ stands for the cemento-enamel junction. ABC refers to the alveolar bone crest or 
crestal bone. AP indicates the root apex of the tooth. Here, d1represents the distance from the CEJ 

to the crestal bone, and d2 represents the distance from the CEJ to the root apex [180]. 
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Figure 34: he overall procedure for developing the AI model encompasses phases for image 
enhancement, model training, and evaluation, aimed at detecting and classifying periodontal 

bone loss 
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6. Model Evaluation and Validation: 
The trained models, including the teeth segmentation model and the CEJ and bone 

level segmentation model, will be evaluated using sensitivity, specificity, F1 score, precision, and 
accuracy metrics. Cross-validation and testing on new, unseen X-ray images will be conducted to 
validate the models' performance. 

3.7 Statistical Analysis 
A confusion matrix visually represents a model's prediction accuracy on a dataset. For 

binary class datasets, such as those with "positive" and "negative" classes, the confusion matrix 
consists of four key elements [181, 182]. To gauge the model's effectiveness, a set of performance 
metrics were computed, including (Fig. 35): 

True Positive (TP): The count of correctly labeled areas indicating bone loss. 
True Negative (TN): The count of accurately identified areas without bone loss. 
False Positive (FP): The count of areas erroneously labeled as having bone loss 

when there was none. 
False Negative (FN): The count of areas with bone loss that were not labeled. 
 

 

Figure 35: The structure of the confusion matrix [181]. 
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These metrics were used to evaluate the model's performance using the following 
calculations: 

Sensitivity or Recall (TP / (TP + FN)): The proportion of actual positive cases 
correctly identified by the model. 

Specificity (TN / (TN + FP)): The proportion of actual negative cases correctly 
identified by the model. 

F1-Score: The harmonic means of precision and recall, balancing the trade-off between 
them. A high F1-Score indicates a good balance between detecting true positives and avoiding 
false positives. These metrics collectively provide a comprehensive evaluation of the model's 
performance in identifying and classifying bone loss areas in dental radiographic images. 

 
Accuracy and Precision can be computed as follow: 

 

 

3.8 Sample Size Calculation for Evaluating the Effectiveness of a New Tool Compared to the 
Standard Tool 

1. Sample Size Calculation for Evaluating Sensitivity 
When researchers aim to estimate the sensitivity of a tool or diagnostic method to 

differentiate between diseased and non-diseased individuals, the sample size calculation for 
estimating the sensitivity of a new tool or method compared to the standard tool or method can be 
performed using the following formula [183]: 
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𝑛𝑠𝑒 =

𝑧
1−

𝛼
2

2 𝑆𝑒(1 − 𝑠𝑒)

𝑑2(𝑝𝑟𝑒𝑣)
 

 
When 𝑛𝑆𝑒  is the sample size for estimating sensitivity. 
 𝑧

1−
𝛼

2

2  is the Z-value from the standard normal distribution at the1-α/2 

quantile. 
 𝛼 is the error rate for the confidence interval, typically set at 0.05. 
 𝑠𝑒 is the sensitivity. 
 𝑑 is the allowable error margin from the reviewed work. 
 𝑃𝑟𝑒𝑣 is the prevalence of the disease being studied. 

 
From the research conducted by Bayrakdar SK et al. [160], the sensitivity was found 

to be 0.9429, tested on a sample of 210, with 105 samples indicating bone loss (50%).  
When calculating the sample size, the researcher set d (the allowable error margin of sensitivity 
from the referenced research) at 5%, which equals 0.9429×0.05=0.04710.9429 \times 0.05 = 
0.04710.9429×0.05=0.0471. The sample size calculation is as follows: 

𝑛𝑠𝑒 =

𝑧
1−

𝛼
2

2 0.9429(1 − 0.9429)

0.04712(0.50)
 

𝑛𝑠𝑒 =
(1.962)0.9429(0.0571)

0.04712(0.50)
 

𝑛𝑠𝑒 = 186.47 ≈ 187 

Table 6 represents a sample size of 187, determined based on the sensitivity value 
from previous research (0.9429) and a prevalence of 0.50, with an allowable error margin of 5% 
(0.0471). The allowable error margin can be adjusted. When the allowable error margin is set at 
5%, 10%, 15%, and 20%, the resulting sample sizes are as follows: 
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Table 6: Sample Size Calculation for Estimating Sensitivity with Adjusted Error Margins of 5%-
20% 
Formula Sensitivity Prevalence Error Margin (%) Allowable Error Sample Size 
1 0.9429 0.50 5 0.0471 187 
2 0.9429 0.50 6 0.0565 130 

3 0.9429 0.50 7 0.0660 95 
4 0.9429 0.50 8 0.0754 73 
5 0.9429 0.50 9 0.0848 58 
6 0.9429 0.50 10 0.0942 47 
7 0.9429 0.50 15 0.1414 21 
8 0.9429 0.50 20 0.1885 12 
 

2. Sample Size Calculation for Measuring Agreement Using Kappa Statistics 
When researchers aim to study agreement measurement, which involves evaluating 

the opinions or diagnostic results of two or more raters or tools (inter-rater agreement) to 
determine if they are in concordance, the sample size can be calculated to estimate agreement 
using Cohen’s kappa coefficient. The calculation method is as follows [184, 185]: 
 

 
 

When 𝑛 is the sample size for estimating agreement:  
 𝑘1 is the alternative hypothesis value of the Kappa statistic. 
 𝑘0 is the null hypothesis value of the Kappa statistic. 
 𝜋𝑒  is the probability that Rater 1 gives a positive result. 
 𝜋𝑜  is the probability that Rater 2 gives a positive result. 
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Based on the research conducted by Lee JH et al. [147], the agreement values 
between the convolutional neural network (CNN) and periodontists were reported. For premolars, 
the agreement values were 0.828 and 0.797, respectively, and for molars, the values were 0.734 
and 0.766, respectively. When calculating the sample size, the researcher set 𝑑, the deviation of 
the agreement values from previous studies, at 5%, 10%, 15%, and 20%. The results are shown in 
Table 7: 

Table 7: Sample Size Calculation for Molar Cases with Adjusted Error Rates (5%-30%) 
Formula P(CNN) P(periodontists) ko Deviation (%) k1 Sample Size (n) 
1 0.734 0.766 0.766 5 0.8043 2,842 
2 0.734 0.766 0.766 10 0.8426 673 
3 0.734 0.766 0.766 15 0.8809 281 
4 0.734 0.766 0.766 20 0.9192 146 

5 0.734 0.766 0.766 25 0.9575 83 
6 0.734 0.766 0.766 30 0.9958 46 
 

In the clinical implementation of this study, we calculated a sample size of 83 
panoramic X-ray images, accounting for an adjusted error rate of 25%. However, we ultimately 
used 90 images to assess the accuracy of the AI model in comparison to general practitioners 
(GPs) and periodontists, relative to expert periodontists. The expert periodontists in this context 
are certified specialists in the field of Periodontology with over 10 years of experience. 

In this study, intraoral examinations were not conducted, and retrospective 
evaluation of radiological data was performed. This study was approved by the Ethical Review 
Board of Fang Hospital (COA No. 03/2566) and the Ethics Committee of Research Involving 
Human Subjects of Mahasarakham University (No. 533-589/2023). Moreover, the consent letter 
for data collection for this research project was granted by the director of Fang Hospital in Chiang 
Mai, Thailand (No. 0033.306/3674). 

 



 

 

 

CHAPTER 4 
Results 

 
This research is divided into three phases: Phase I - Review Study: This phase 

critically evaluates the existing literature on periodontal diagnosis and prognostication, 
emphasizing the limitations of traditional diagnostic methods. A comprehensive review was 
conducted following PRISMA guidelines. We searched several databases, including PubMed, 
Scopus, Wiley Online Library, and ScienceDirect, for studies published between January 2018 
and December 2023. The search utilized keywords such as “artificial intelligence,” “panoramic 
radiograph,” “periodontitis,” “periodontal disease,” and “diagnosis.” Inclusion criteria were 
established for studies involving the application of AI in diagnosing periodontitis, including 
human subjects, published in English, and accessible as open access. Exclusion criteria eliminated 
non-AI studies, studies unrelated to periodontitis, those not utilizing panoramic radiographs, as 
well as abstracts, editorials, and letters. 

Phase II - Retrospective Study: The panoramic radiographs used in this study were 
obtained from the Dental Department of Fang Hospital, Chiang Mai, Thailand. It is important to 
note that all radiographs were captured using the same imaging device, the SIDEXIS Next 
Generation Program (Sirona, Bensheim, Germany). Only one radiograph per patient was included 
in the analysis. The dataset comprised 2,000 panoramic radiographs, divided into 1,000 
periodontally healthy radiographs and 1,000 periodontitis radiographs. Following the collection of 
these radiographs, a comprehensive model for periodontal diagnosis and prognostication was 
developed, integrating advanced image analysis techniques utilizing artificial intelligence (AI). 
The assessment was based solely on radiographic evaluation, with the primary focus being the 
assessment of the alveolar bone crest relative to the cemento-enamel junction (CEJ) of each tooth. 
The distance between the CEJ and the alveolar bone crest was measured. Periodontal diagnosis 
followed the 2018 periodontal classification, and prognostication was performed using medical 
image processing techniques. 

Phase III - Analytical Study: This phase aims to evaluate the performance of AI 
models in diagnosing periodontal diseases through a comparative analysis with general 
practitioners (GPs) and specialized periodontists. The evaluation will be based on the assessments 
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made by expert periodontists with over 10 years of experience in periodontology, focusing on 
diagnostic accuracy and efficiency. 

In Phase I, a critical review of the existing literature on periodontal diagnosis and 
prognostication was conducted to identify the limitations of traditional diagnostic methods. 
Following PRISMA guidelines, an initial search identified 211 records. After applying the 
inclusion and exclusion criteria, 12 studies were included in the final review, as shown in Figure 36  
below, with the details provided in Table 8. 

 

 

Figure 36: PRISMA flow diagram. 
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This process involved excluding articles that were not related to artificial intelligence 
(AI), did not focus on periodontitis, lacked panoramic radiographs, or were categorized as 
abstracts, editorials, or letters. Additionally, a significant number of papers were excluded due to 
restricted access to full texts. The remaining 12 studies employed advanced models, particularly 
convolutional neural networks (CNNs), with accuracy rates for periodontal bone loss detection 
ranging from 0.76 to 0.98 [94, 146, 160, 161, 163, 186, 187, 188]. The methodologies utilized in 
these studies included deep learning hybrid approaches, automated identification systems, and 
machine learning classifiers, all contributing to improved diagnostic precision and efficiency. 

Table 8: Examples of AI technologies enhancing the detection of periodontal bone loss through 
dental panoramic X-ray images 

Study Year Description Total data 
Summary of model 

performances 
Krois et al. [146] 2019 Used CNN to identify 

periodontal bone loss on 
dental panoramic X-ray 
images. 

2,001 The model has an accuracy, 
sensitivity, and specificity all 
at 0.81. 

Kim et al. [159] 2019 Created a system for 
automatically 
identifying periodontal 
bone loss using 
panoramic dental X-ray 
images. 

12,179 The developed model 
outperformed dental 
clinicians on the test set with 
an F1 score of 0.75, 
compared to the clinicians' 
average score of 0.69. 

Chang et al. [94] 2020 Created a system to 
automatically classify 
stages of periodontitis 
using deep learning 
techniques on dental 
panoramic X-ray 
images. 

340 The accuracy levels were 
recorded at 0.93 for 
periodontal bone and 0.91 for 
both CEJ level and teeth 
identification. 
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Table 8: Cont. 

Study Year Description Total data 
Summary of model 

performances 
Bayrakdar et al. 
[160] 

2020 Used CNN to identify 
periodontal bone loss on 
dental panoramic X-ray 
images. 

2,276 The model's accuracy is 
measured at 0.9. 

Thanathornwong 
et al. [151] 

2020 Used CNN to identify 
periodontally 
compromised teeth on 
dental panoramic X-ray 
images. 

100 The model reached a 
sensitivity of 0.84, specificity 
of 0.88, and an F-measure of 
0.81. 

Jiang et al. [161] 2022 Created a model for 
radiological staging of 
periodontal alveolar 
bone loss on dental 
panoramic X-ray 
images. 

640 The model's overall accuracy 
rate was recorded at 0.77. 

Zadrozny et al. 
[162] 

2022 Evaluated the accuracy 
of AI in automatically 
analyzing panoramic 
dental X-rays. 

30 The tested CNN displayed 
poor reliability in evaluating 
caries (Intra-Class Correlation 
(ICC) = 0.681) and periapical 
lesions (ICC = 0.619). 
However, it showed good 
reliability for identifying 
fillings (ICC = 0.920), 
endodontically treated teeth 
(ICC = 0.948), and 
periodontal bone loss  
(ICC = 0.764). 
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Table 8: Cont. 

Study Year Description Total data 
Summary of model 

performances 
Ertas et al. [186] 2022 Used deep learning 

(DL) for classifying 
periodontitis and 
evaluate the accuracy of 
this method 

144 The ResNet50 combined 
with the SVM machine 
learning architecture 
achieved an accuracy of 
0.882, an F1 score of 0.072, a 
precision of 0.864, and a 
recall of 0.882. 

Widyaningrum 
et al. [187] 

2022 Assessed image 
segmentation for 
periodontitis staging 
using DL techniques 

1100 The Multi-Label U-Net and 
Mask model achieved an 
accuracy of 95%, a recall of 
0.88, and an F1-score of 
0.87. 

Uzun Saylan et 
al. [153] 

2023 Assessed how well AI 
models can detect the 
presence or absence of 
alveolar bone loss in 
various areas. 

685 The models in detecting 
alveolar bone loss (ABL) 
across various teeth regions 
showed sensitivity, precision, 
and F1 score ranges as 
follows: For general alveolar 
bone loss, the scores were 
0.75, 0.76, and 0.76. 
Specifically, maxillary 
incisor ABL had perfect 
precision at 1, with an F1 
score of 0.95. Maxillary 
canine, premolar, and molar 
ABL showed balanced 
scores,  
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Table 8: Cont. 

Study Year Description Total data 
Summary of model 

performances 
    with the highest F1 score of 

0.91 for molar ABL. In the 
mandible, incisor, canine, 
premolar, and molar ABL 
scores varied, with 
mandibular incisor ABL 
scoring an F1 of 0.86 and 
molar ABL at 0.79, 
indicating the models' varied 
effectiveness in different 
dental regions. 

Kong et al. [163] 2023 Used two-stage CNN-
based periodontitis 
detection network in 
periodontitis bone loss 
diagnosis in panoramic 
radiographs. 

1747 The model for radiographic 
bone loss (RBL) 
classification has an accuracy 
of 0.762. 

Amasya et al. 
[188] 

2023 Developed a web-based 
AI software, 
DiagnoCat, for 
detecting periodontal 
bone loss on panoramic 
radiographs. 

6000 The study reported an overall 
F-score of 0.948, an accuracy 
of 0.977, and a Cohen's 
kappa coefficient of 0.933. 
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In Phase II, a comprehensive model for periodontal diagnosis and prognostication was 
developed, integrating advanced image analysis techniques utilizing artificial intelligence (AI). 
The panoramic radiographs used in this study were obtained from the Dental Department of Fang 
Hospital, Chiang Mai, Thailand. It is important to note that all radiographs were captured using 
the same imaging device, the SIDEXIS Next Generation Program (Sirona, Bensheim, Germany). 
Only one radiograph per patient was included in the analysis. The dataset comprised 2,000 
panoramic radiographs of patients diagnosed with periodontitis, identified using diagnosis codes 
from the HOSxP Program (Bangkok Medical Software, Bangkok, Thailand). Image processing 
techniques were then applied to all images, which were randomly divided into training, 
validation, and test sets in a 70:10:20 ratio. The demographic data of the patients are presented in 
Table 9. To address the identified challenges, a robust methodology incorporating machine 
learning and AI techniques was developed for the automated detection of abnormal teeth in dental 
panoramic X-ray images. Following image enhancement, the LabelMe tool was utilized for object 
segmentation, while Labelme2yolo was employed to convert the data into a format suitable for 
training. Subsequently, two models were trained, validated, and tested: the teeth segmentation 
model and the CEJ and bone level segmentation model. 

The teeth segmentation model achieved sensitivity, specificity, F1 score, precision, and 
accuracy of 0.90, 0.96, 0.80, 0.80, and 0.97, respectively. In contrast, the CEJ and bone level 
segmentation model recorded scores of 1.00, 0.98, 0.90, 0.90, and 0.98, as detailed in Table 10. 
Moreover, Figure 37 and 38 provide an example of the developed AI model applied to the 
diagnosis and prognostication detection of periodontitis from panoramic X-ray images. 

Table 9: The demographic data of the patients 
Sex Numbers of Patients Mean Age(Years) 
Male 823 47.04 
Female 1177 45.27 
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Table 10: The AI models developed achieved the following scores [189]: 
 Teeth segmentation model CEJ and bone level segmentation 

model 

Precision 

 
0.80 

 
0.90 

F1 

 
0.80 

 
0.90 

Sensitivity 

 
0.90 

 
1.0 
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Table 9: Cont. 
 Teeth segmentation model CEJ and bone level segmentation 

model 

Accuracy 

 
0.97 

 
0.98 

mAP50 0.92 0.995 
Confusion 
matrix 

  
 

Both the CEJ and bone level segmentation model (Table 11) and the teeth segmentation 
model (Table 12) demonstrated strong performance in accurately classifying relevant areas in 
panoramic radiographs. In Table 11, the CEJ and bone level model correctly predicted 18,385 
instances, with only 234 false positives, indicating high precision. The model also exhibited 
strong recall, with minimal false negatives (11). Similarly, the teeth segmentation model (Table 12) 
performed well, accurately identifying 983 teeth instances and 18,687 true negatives. However,  
it had a slightly higher false positive rate (589), where non-teeth areas were incorrectly classified 
as teeth. Despite the higher false positive rate in the teeth model, both models exhibited high 
accuracy and efficiency in their respective tasks, with low false negative rates and a strong ability 
to differentiate between positive and negative classes in their predictions.  
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Table 11: Confusion matrix for the CEJ and bone level segmentation model 
 Actual value 

Predicted value 
 

 Positive Negative 
Positive TP:508 FP:234 
Negative FN:11 TN:17877 

Legend:  
True Positive (TP): Correctly identified areas indicating bone loss. 
True Negative (TN): Correctly identified areas without bone loss. 
False Positive (FP): Areas incorrectly labeled as having bone loss when none is present. 
False Negative (FN): Areas with bone loss that were incorrectly identified as normal. 

Table 12: Confusion matrix for the teeth segmentation model 
 Actual value 

Predicted value  Positive Negative 
Positive TP:983 FP:589 
Negative FN:11 TN:18687 

Legend:  
True Positive (TP): Correctly identified areas indicating bone loss. 
True Negative (TN): Correctly identified areas without bone loss. 
False Positive (FP): Areas incorrectly labeled as having bone loss when none is present. 
False Negative (FN): Areas with bone loss that were incorrectly identified as normal. 
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Figure 37: An example of our developed AI model in use is shown above: the original image is 
displayed on the top, and the final result after applying the model is shown on the bottom. 

  



 

 

  77 

 
(A.) 

 
(B.) 

 
(C.) 

 
(D.) 

Figure 38: Panoramic X-ray images illustrating the threshold percentages for periodontitis 
severity: A represents Stage I, B represents Stage II, C represents Stage III, and D represents 

Stage IV. 

Additionally, in Phase III: To evaluate the performance of AI models in diagnosing 
periodontal diseases through a comparative analysis with general practitioners (GPs) and 
specialized periodontists. In the clinical implementation, we calculated a sample size of 83 
panoramic X-ray images with an adjusted error rate of 25%; however, we ultimately used 90 
images to compare the accuracy of the AI model, general practitioners (GPs), and periodontists 
against expert periodontists. The demographic data of the patients are presented in Table 13. 

Table 14 reveals that the AI model achieved the highest accuracy (94.4%) and perfect 
sensitivity (100%), indicating its ability to detect all positive cases. However, it struggled with 
specificity (0%), meaning it had difficulty ruling out false positives. Periodontists demonstrated 
strong overall performance with 91.1% accuracy, 90.6% sensitivity, and perfect specificity 
(100%), while GPs exhibited slightly lower accuracy (86.7%) and sensitivity (85.9%), yet also 
achieved perfect specificity (100%). The AI model's high sensitivity makes it effective at 
identifying true positives, although it requires human oversight for confirming negatives, as both 
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periodontists and GPs performed more consistently in terms of sensitivity and specificity. The 
distribution of results among expert periodontists, periodontists, GPs, and the AI model is 
illustrated in Table 15. 

Table 13: Demographic data of patients used to compare the accuracy percentage of the AI 
model, general practitioners (GP), and periodontists with expert periodontists 

Sex Numbers of Patients Mean Age(Years) 
Male 42 44.29 
Female 48 43.56 

Table 14: The diagnostic performances of the AI model, general practitioners (GP), and 
periodontists with expert periodontists 

Test Accuracy % Sensitivity % Specificity % PPV % NPV % 
(95%CI) (95%CI) (95%CI) (95%CI) (95%CI) 

Periodontist 91.1 90.6 100 100 38.5 
 (83.2 - 96.1) (82.3 - 95.8) (47.8 - 100) (95.3 - 100) (13.9 - 68.4) 
GP 86.7 85.9 100 100 29.4 
 (77.9 - 92.9) (76.6 - 92.5) (47.8 - 100) (95.1 - 100) (10.3 - 56) 
AI 94.4 100 0 94.4 0 
 (87.5 - 98.2) N/A N/A N/A N/A 
Legend: Abbreviations: PPV, positive predictive value; NPV, negative predictive value; CI, 
confident interval. 
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Table 15: The distribution of result by expert periodontists, periodontists, general practitioners 
(GP) and AI model 
 Expert 
 0 1 2 3 4 
 n (%) n (%) n (%) n (%) n (%) 
Periodontist           

0 5 (5.6) 1 (1.1) 6 (6.7) 1 (1.1) 0 (0.0) 
1 0 (0.0) 4 (4.4) 8 (8.9) 0 (0.0) 0 (0.0) 
2 0 (0.0) 0 (0.0) 20 (22.2) 8 (8.9) 0 (0.0) 
3 0 (0.0) 0 (0.0) 2 (2.2) 34 (37.8) 0 (0.0) 
4 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (1.1) 
GP           

0 5 (5.6) 4 (4.4) 8 (8.9) 0 (0.0) 0 (0.0) 
1 0 (0.0) 1 (1.1) 14 (15.6) 3 (3.3) 0 (0.0) 
2 0 (0.0) 0 (0.0) 11 (12.2) 15 (16.7) 0 (0.0) 
3 0 (0.0) 0 (0.0) 3 (3.3) 22 (24.4) 0 (0.0) 
4 0 (0.0) 0 (0.0) 0 (0.0) 3 (3.3) 1 (1.1) 
AI           

1 0 (0.0) 1 (1.1) 0 (0.0) 0 (0.0) 0 (0.0) 
2 4 (4.4) 0 (0.0) 29 (32.2) 6 (6.7) 0 (0.0) 
3 1 (1.1) 4 (4.4) 6 (6.7) 35 (38.9) 1 (1.1) 
4 0 (0.0) 0 (0.0) 1 (1.1) 2 (2.2) 0 (0.0) 
Legend: 0 represents Non-periodontitis, 1 represents Periodontitis Stage I, 2 represents 
Periodontitis Stage II, 3 represents Periodontitis Stage III, and 4 represents Periodontitis Stage IV. 
 

Table 15 illustrates the diagnostic distribution of results among expert periodontists, 
periodontists, general practitioners (GPs), and the AI model across different stages of 
periodontitis. The results show varying performance levels in detecting stages of periodontal 
disease, labeled from non-periodontitis (0) to periodontitis stage IV (4). The AI model showed a 
relatively balanced detection rate, especially for periodontitis stage III, where it correctly 
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identified 38.9% of cases. However, it struggled with stage I, detecting only 1.1% of cases. 
Periodontists performed best in detecting stage III cases (37.8%), while GPs showed strong 
performance in stage II detection (16.7%). Overall, the AI model demonstrated high potential but 
requires further refinement for early-stage detection, as human experts outperformed the model in 
this area. These results suggest that AI can be a valuable tool in aiding periodontal diagnostics but 
may require human oversight, particularly in less severe stages. 

Furthermore, we evaluated the diagnostic agreement between three different raters—AI, 
periodontists, and general practitioners (GPs)—and an expert, considered the gold standard. We 
used the weighted Cohen's kappa statistic to measure the level of agreement beyond chance. The 
statistical significance of these weighted kappa coefficients was tested at an alpha level of 0.05. 
The weighted Cohen's kappa coefficients are presented in Table 16. 

Table 16: The weighted Cohen's kappa coefficient for the comparisons of the AI model, general 
practitioners (GP), and periodontists with expert periodontists 
  Agreement (%) Kappa (95%CI) p-value 
Periodontist vs. Expert  90.1 0.634 (0.621 - 0.694) <0.001 
GP vs. Expert 83.1 0.429 (0.298 - 0.542) <0.001 
AI vs. Expert 90.0 0.445 (0.398 - 0.471) <0.001 

 
According to guidelines suggested by Landis and Koch (1977), Cohen's Kappa values 

can be interpreted as follows [190]:  
• 0.00 - 0.20: Slight agreement 
• 0.21 - 0.40: Fair agreement 
• 0.41 - 0.60: Moderate agreement 
• 0.61 - 0.80: Substantial agreement 
• 0.81 - 1.00: Almost perfect agreement 
From Table 16, the study reveals that the evaluations made by periodontists showed a 

high level of agreement with those of the experts, evidenced by a Cohen's kappa coefficient of 
0.634 (95% CI: 0.621 - 0.694, p-value <0.001). The assessments by general practitioners (GPs) 
demonstrated a moderate level of agreement with the experts, with a Cohen's kappa coefficient of 
0.429 (95% CI: 0.298 - 0.542, p-value <0.001). Similarly, the AI model's evaluations also 
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exhibited a moderate level of agreement with the experts, reflected by a Cohen's kappa coefficient 
of 0.445 (95% CI: 0.398 - 0.471, p-value <0.001). These results underscore the AI model's 
potential in achieving diagnostic consistency comparable to that of human practitioners, albeit at a 
moderate agreement level. 

Additionally, we conducted the clinical implementation by calculating a larger sample 
size for comparison among groups, resulting in an adjusted error rate of 15%, which equated to 
281 previously unseen panoramic images (Table 7). In this study, however, we utilized a total of 
300 previously unseen panoramic images to compare the diagnostic accuracy of the AI model and 
periodontists against expert periodontists.  

The general characteristics of the sample population revealed that the majority were 
female, accounting for 64.7%. The average age of participants was 40.26 ± 16.42 years, with 
females having an average age of 40.52 ± 15.74 years and males having an average age of 40.12 
± 16.82 years, as shown in Table 17. 

Table 17: Demographic data of patients used to compare the accuracy percentage of the AI 
model and periodontists with expert periodontists 

Variables 
Total Male Female 

n (%) n (%) n (%) 
All patients 300 (100.0) 106 (35.3) 194 (64.7) 
Age (years), Mean ± SD 40.26 ± 16.42 40.52 ± 15.74 40.12 ± 16.82 

 
In Table 18, the study results indicate that the assessments made by expert periodontists 

revealed that 3.3% were non-periodontists, 10.3% were classified as periodontitis stage I, 47.0% 
as periodontitis stage II, 38.7% as periodontitis stage III, and 0.7% as periodontitis stage IV. 
When comparing the evaluations of periodontists with those of expert periodontists, a consistency 
rate of 62.7% was observed, which included 2% non-periodontists, 5% periodontitis stage I, 28% 
periodontitis stage II, 27% periodontitis stage III, and 0.7% periodontitis stage IV. Furthermore, 
the evaluation of the AI model in comparison to expert periodontists showed a consistency rate of 
71.7%, including 0.3% non-periodontists, 2% periodontitis stage I, 40% periodontitis stage II, 
29% periodontitis stage III, and 0.3% periodontitis stage IV. 
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Moreover, In Table 19, the study results indicated a moderate agreement between the 
assessments of periodontists and experts, with a Cohen's kappa coefficient of 0.530 (95% CI: 
0.457 - 0.584, p-value < 0.001). Similarly, the evaluation of the AI model compared to the expert 
assessments also showed moderate agreement, reflected in a Cohen's kappa coefficient of 0.497 
(95% CI: 0.470 - 0.533, p-value < 0.001). 

Table 19: The weighted Cohen's kappa coefficient for the comparisons of periodontists and the 
AI model with expert periodontists 
  Agreement (%) Kappa (95%CI) p-value 
Periodontist vs. Expert  88.5 0.530 (0.457 - 0.584) <0.001 
AI vs. Expert 91.3 0.497 (0.470 - 0.533) <0.001 

 

Finally, in Table 20, the findings revealed that the accuracy of the periodontist 
evaluations in comparison to the experts was 87.3% (95% CI: 83.0 - 90.9), with a sensitivity of 
88.3% (95% CI: 84.0 - 91.7) and specificity of 60% (95% CI: 26.2 - 87.8). The positive predictive 
value was 98.5% (95% CI: 96.1 - 99.6), while the negative predictive value was 15% (95% CI: 
5.7 - 29.8). In contrast, the AI model's evaluation compared to the experts demonstrated an accuracy of 
97% (95% CI: 94.4 - 98.6), a sensitivity of 100% (95% CI: 98.7 - 100), a specificity of 10%  
(95% CI: 0.3 - 44.5), a positive predictive value of 97% (95% CI: 94.4 - 98.6), and a negative 
predictive value of 100% (95% CI: 2.5 - 100). 

Table 20: Diagnostic performances for the comparisons of periodontists and the AI model with 
expert periodontists 

Test 
Accuracy % Sensitivity % Specificity % PPV % NPV % 

(95%CI) (95%CI) (95%CI) (95%CI) (95%CI) 
Periodontist 87.3 88.3 60 98.5 15 

 (83.0 - 90.9) (84 - 91.7) (26.2 - 87.8) (96.1 - 99.6) (5.7 - 29.8) 
AI 97 100 10 97 100 
  (94.4 - 98.6) (98.7 - 100) (0.3 - 44.5) (94.4 - 98.6) (2.5 - 100) 
Abbreviations: PPV, positive predictive value; NPV, negative predictive value; CI, confident 
interval. 



 

 

 
 

 

CHAPTER 5 
Discussion and conclusion 

 
In 2018, the field of periodontology updated its classification system, now focusing on 

the percentage of alveolar bone loss to assess disease severity [25]. Current standard periodontal 
evaluations, periapical, bite-wing, and panoramic radiographs are preferred methods for assessing 
interproximal alveolar bone levels because they are cost-effective, quick, and emit less radiation 
than 3D imaging techniques [47]. In the past, there have been extensive studies using panoramic 
radiographic images for various purposes, including disease diagnosis, prognosis, and treatment 
planning. However, panoramic radiographs have significant limitations, such as the overlap of 
structures in adjacent areas and image distortion in certain positions, which affect image clarity at 
a level perceivable by the human eye and in areas that cannot be distinguished. Despite these 
limitations, Persson RE and colleagues found that panoramic radiography is superior for scanning 
the entire jaw for lesions, with high consistency in measurements of the CEJ to crestal bone 
distances and their root length ratios when comparing intra-oral periapical with panoramic images 
[191]. However, manually measuring periodontal bone loss (PBL) for every tooth on a panoramic 
X-ray requires significant time and effort. Recent efforts have focused on overcoming the 
limitations of conventional periodontitis diagnostics through AI-assisted detection of periodontal 
bone loss from dental panoramic X-rays. These challenges have led to discussions about creating 
supportive diagnostic tools. In recent years, AI has begun to flourish in dentistry, offering a range 
of applications from diagnostics and decision-making to treatment planning and predicting 
outcomes. AI tools for dental applications are becoming increasingly sophisticated, precise, and 
dependable, with research extending across all dental disciplines [100]. 

One significant limitation of this study is the substantial decrease in the number of 
papers included in the study while adhering to the PRISMA methodology. Initially, 211 records 
were identified, but after applying the inclusion and exclusion criteria, only 12 studies were 
included in the final review. A considerable number of papers were excluded due to the lack of 
full-text accessibility, highlighting a critical barrier in conducting comprehensive reviews. This 
limitation underscores the importance of "open access" and the availability of current research to 
ensure that valuable studies are not overlooked due to access restrictions. Open access to research 
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publications can significantly enhance the ability of researchers to conduct thorough and inclusive 
reviews, thereby advancing the field more effectively. 

In the phase of AI development, the present study found that the teeth segmentation 
model achieved sensitivity, specificity, F1, precision, and accuracy scores of 0.9, 0.96, 0.8, 0.8, 
and 0.97, respectively. In contrast, the CEJ and bone level segmentation model attained scores of 
1, 0.98, 0.9, 0.9, and 0.98, respectively. Despite the recent surge in publications on dental AI, 
comparing these studies is challenging due to discrepancies in study design, data distribution 
(training, testing, and validation sets), and performance metrics (accuracy, sensitivity, specificity, 
F1 score, AUC [Area Under the ROC Curve], recall). Many articles do not fully report these 
critical details. However, accuracy emerged as the most commonly referenced indicator of model 
performance in the studies, with detection rates for periodontal bone loss ranging between 0.76 to 
0.98 [94, 146, 160, 161, 163, 186, 187, 188].  This is consistent with the findings of this study, 
which reported accuracy scores of 0.97 for the teeth segmentation model and 0.98 for the CEJ and 
bone level segmentation model. These accuracy scores are higher than those reported in all 
previous studies. The dataset of dental panoramic X-ray images used in various studies ranged 
from 100 to 6,000 images [94, 146, 151, 153, 160, 161, 163, 186-188], with only one study 
employing a significantly larger dataset of 12,179 images [159]. In this study, a dataset of 2,000 
dental panoramic X-ray images was used, yet the accuracy rate remained high. Furthermore, 
many studies have aimed to detect periodontal bone loss on dental panoramic X-ray images. 
Specifically, Chang et al.'s advanced study, which sought to classify stages of periodontitis 
following the latest periodontal classification, found that the automatic method had a Pearson 
correlation coefficient of 0.73 with radiologist diagnoses for the entire jaw and an intraclass 
correlation of 0.91 for the entire jaw [94]. Similarly, Jiang et al. revealed creating a deep learning 
model to evaluate and categorize the stages of periodontitis, achieving an overall model accuracy 
of 0.77 [161]. Our study uniquely detects periodontal bone loss, classifies the stage of 
periodontitis, and identifies the percentage of bone loss for each tooth, aiding in prognosis 
evaluation. This novel innovation has not been previously achieved. 

The strengths of these studies lie in their innovative approaches and high accuracy rates. 
For example, the integration of ResNet50 with SVM by Ertas et al. [186] achieved an accuracy of 
0.882, showcasing the potential of hybrid models. Additionally, Widyaningrum et al. [187] used 
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Multi-Label U-Net and Mask R-CNN models, achieving 95% accuracy, which highlights the 
effectiveness of advanced segmentation techniques. However, a common weakness across several 
studies is the reliance on relatively small datasets, as seen in the work by Zadrożny et al. [162], 
which included only 30 images. This limitation can affect the generalizability and robustness of 
the models. Moreover, discrepancies in performance metrics and lack of standardized reporting 
pose challenges for direct comparison and evaluation of the studies. 

Explainability and trustworthiness are critical aspects of AI application in healthcare. 
Many reviewed papers highlighted limitations in these areas [144, 146]. For instance, the black-
box nature of deep learning models often leads to a lack of transparency, making it difficult for 
clinicians to understand and trust AI decisions fully [147]. Additionally, some models, despite 
their high accuracy, require significant computational resources, which may not be feasible in all 
clinical settings [145]. To enhance trustworthiness, future research should focus on developing 
explainable AI models that provide clear insights into their decision-making processes and 
integrating these models into clinical workflows in a manner that complements rather than 
replaces human expertise [94].  

In the clinical context, we evaluated the diagnostic agreement between three different 
raters—AI, periodontists, and general practitioners (GPs)—and an expert periodontist, considered 
the gold standard. We used the weighted Cohen's kappa statistic to measure the level of 
agreement beyond chance. The statistical significance of these weighted kappa coefficients was 
tested at an alpha level of 0.05. Studies in various medical fields have shown similar trends in the 
performance of AI systems. For instance, Esteva et al. (2017) demonstrated that AI could classify 
skin cancer with dermatologist-level accuracy, achieving a high level of agreement with expert 
diagnoses [192]. Similarly, Mazurowski et al. (2019) found that AI could significantly enhance 
the accuracy of radiological image analysis, aligning with our findings that AI can effectively 
support diagnostic processes in dentistry [193]. 

In dental research, Lee et al. (2018) reported that a CNN-based AI system achieved high 
agreement values with periodontists for diagnosing periodontally compromised teeth, with kappa 
values of 0.828 and 0.797 for premolars and molars, respectively [147]. While our AI model's 
kappa value of 0.445 is moderate, it demonstrates significant potential for further refinement and 
improvement. This analysis underscores the diagnostic capabilities of periodontists, GPs, and AI 
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in comparison to an expert. While periodontists show the highest agreement, the AI system 
demonstrates promising results, potentially serving as a valuable diagnostic tool. GPs, although 
showing lower agreement, still provide a significant level of diagnostic accuracy. These findings 
emphasize the importance of specialized training and the potential of AI to augment diagnostic 
processes in periodontal care. 

The discrepancy between matrix performance and clinical accuracy can be attributed to 
several factors. First, differences between controlled environments and real-world variability play 
a significant role. In experimental settings, data is often curated and preprocessed to optimize 
model performance. In contrast, clinical environments present numerous uncontrolled variables, 
such as varying patient positioning, and inconsistent imaging quality. These factors can adversely 
impact the performance of AI models trained under controlled conditions [194]. Second, the 
preprocessing steps used in studies, such as noise reduction, contrast enhancement, and 
normalization, ensure high-quality inputs for AI models. However, in clinical practice, such 
preprocessing may not be consistently applied, leading to suboptimal inputs and consequently 
lower accuracy [195]. Third, AI models often perform well on the datasets they were trained on 
but may struggle to generalize across diverse patient populations with different demographic 
characteristics, oral health conditions, and comorbidities. The training data might not fully 
represent the variability encountered in real clinical settings [196]. Moreover, clinical diagnoses 
involve more than just interpreting radiographs; they require a comprehensive assessment of the 
patient's medical history, symptoms, and other diagnostic tests. While AI models are proficient at 
image analysis, they lack the ability to integrate this holistic approach, which can limit their 
effectiveness in real-world diagnostics [197]. 

Additionally, we conducted the clinical implementation by calculating a larger sample 
size for comparison among groups, resulting in an adjusted error rate of 15%, which equated to 
281 previously unseen panoramic images (Table 7). In this study, however, we utilized a total of 
300 previously unseen panoramic images to compare the diagnostic accuracy of the AI model and 
periodontists against expert periodontists. The results from this study underscore the diagnostic 
capabilities of the AI model when compared to periodontists and expert periodontists in 
diagnosing periodontitis. The findings revealed a moderate agreement between assessments made 
by expert periodontists and those of regular periodontists, with a Cohen's kappa coefficient of 
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0.530, indicating a notable level of consistency in diagnosing various stages of periodontitis 
(Table 18). Similarly, the AI model demonstrated a kappa coefficient of 0.497, suggesting that the 
model's diagnostic performance is comparable to that of trained periodontists, aligning with 
findings from previous studies that highlight the potential of AI in enhancing diagnostic accuracy 
in dentistry [198, 199]. 

The accuracy rates reported in this study are particularly compelling, with the AI model 
achieving an impressive accuracy of 97% and a sensitivity of 100% (Table 19). This performance 
surpasses that of the periodontists, who had an accuracy of 87.3% and a sensitivity of 88.3%. The 
positive predictive value of the AI model was also high at 97%, indicating that when the AI 
model predicts the presence of periodontitis, it is likely to be correct. These results are consistent 
with other research that shows AI can achieve diagnostic performance levels similar to or 
exceeding those of human practitioners in the detection of dental diseases [200, 201]. 

Moreover, the study highlights the pressing need for the integration of advanced AI 
technologies in clinical settings to address limitations of current diagnostic methods, such as 
variability in human judgment and the time constraints faced by practitioners. This alignment 
with contemporary research emphasizes the potential of AI not only to augment diagnostic 
processes but also to promote more efficient treatment planning and patient management [202]. 

Based on the findings presented in the present and previous studies, it's quite clear that 
AI-assisted technologies significantly improve the detection of periodontal bone loss from 
panoramic radiographs, thereby enhancing periodontitis diagnosis, as detailed in Table 21 [203]. 
Given these challenges, the future direction of periodontitis diagnosis appears to lean towards 
using AI to develop supportive diagnostic tools. 
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Table 21: Advantages of AI-assisted technologies in detecting periodontal bone loss from 
panoramic radiographs significantly enhance the diagnosis of periodontitis [203] 

Advantages Roles of AI 
1. Automated Detection AI algorithms can automatically identify signs of bone loss, 

highlighting areas of concern for further examination by dental 
professionals.  

2. Increased Accuracy By analyzing subtle differences in radiographic images that may 
not be easily visible to the human eye, AI improves the accuracy of 
periodontitis diagnosis.  

3. Time Efficiency AI reduces the time needed for manual analysis of radiographs, 
enabling quicker diagnosis and allowing dentists to focus on 
treatment planning. 

4. Consistency AI offers consistent evaluation across different cases and patients, 
reducing variability that can arise from individual clinician 
assessments. 

5. Progress Monitoring AI can track changes in bone levels over time, aiding in the 
monitoring of disease progression or the effectiveness of treatment. 

6. Enhanced Visualization Some AI tools provide enhanced imaging capabilities, making it 
easier to visualize and understand the extent of periodontal bone 
loss. 

 
The integration of AI and machine learning in dental diagnostics, particularly in 

periodontology, has shown promising results. The prevalence of periodontal disease, especially in 
the elderly, underscores the necessity for innovative diagnostic tools to enhance detection 
accuracy and efficiency. The study demonstrated that AI models could significantly improve the 
detection of periodontal bone loss from panoramic radiographs, offering several advantages over 
traditional diagnostic methods. AI algorithms can automatically identify signs of bone loss, 
providing consistent and accurate evaluations that reduce variability in clinical assessments. 
These tools can process large datasets quickly, enabling faster diagnosis and allowing dental 
professionals to focus on treatment planning. The enhanced visualization capabilities of AI tools 
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also aid in better understanding the extent of periodontal bone loss, thereby improving patient 
outcomes. 

One of the most significant issues highlighted by this study is the high prevalence of 
periodontal disease, particularly in developing countries like Thailand. According to the Bureau 
of Dental Health, Department of Health, the National Oral Health Survey conducted every five 
years indicates that the prevalence of periodontitis in Thailand is higher than the global average 
reported by the World Health Organization (WHO) [23] .  The Global Burden of Disease Study 
reported that severe periodontal disease affects 1 9%  of adults worldwide, over 1  billion people, 
making it the 1 1 th most prevalent disease globally [24, 25]. However, the latest survey in 2023 
revealed that 48.7%  of older patients in Thailand suffer from periodontitis, an increase from 
36.3%  in the previous survey. The highest prevalence was found in the Northern Region at 
58.4% , followed by the Southern Region at 56.7% , the North-Eastern Region at 47.1% , and the 
Central Region at 42.3% [23]. 

These alarming statistics underscore the urgent need for improved disease prevention 
and highlight the importance of periodontal health. The AI models developed in this study offer  
a promising solution by providing quicker, less labor-intensive, and more precise alternatives to 
current approaches. This is crucial for treatment planning, helping dentists decide on the 
management of periodontal disease, including whether to retain or extract affected teeth 
immediately after uploading the panoramic radiograph into the developed AI software for each 
patient. If the Ministry of Public Health, as the central policy-maker, prioritizes this critical issue 
and supports the deployment of our AI model nationwide and globally, we could significantly 
reduce the prevalence of periodontal disease, thereby improving the overall quality of life for the 
population. 

Despite these advancements, the implementation of AI in dental diagnostics faces 
several challenges. One primary challenge is the variability in image quality and the need for 
standardized imaging protocols to ensure the consistency of AI model outputs. Additionally, there 
is a need for comprehensive training datasets that encompass a wide range of demographic and 
clinical scenarios to enhance the generalizability of AI models. 
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Limitations 
The current study faced several limitations that need to be addressed in future research. 

Firstly, future studies should include comparisons with a broader range of dental professionals, 
including general practitioners and specialist dentists, to validate the AI models comprehensively. 

Secondly, the study relied on panoramic radiographs from a single imaging device, 
which might limit the generalizability of the findings. Different imaging devices may produce 
variations in image quality and resolution, impacting the performance of AI models. Future 
research should test the AI models on panoramic radiographs obtained from various imaging 
devices to ensure robustness and applicability across different clinical settings. 

Another limitation is the exclusion of certain patient demographics, such as those with 
rare bone morphologies or incorrect patient positioning during imaging. Including a more diverse 
patient population in future studies will help in developing more comprehensive AI models that 
can handle a wider range of clinical scenarios. 

Future Research Directions 
Future research should focus on several key areas to enhance the effectiveness and 

applicability of AI in periodontal diagnostics: 
1. Comparative Studies: Conduct studies comparing the performance of AI models 

with various levels of dental expertise, including general practitioners, periodontists, and other 
dental specialists. This will provide a more comprehensive validation of the AI models' 
effectiveness. 

2. Standardization of Imaging Protocols: Develop standardized protocols for 
capturing panoramic radiographs to ensure consistency in image quality and resolution. This will 
help in minimizing variability and improving the accuracy of AI models across different clinical 
settings. 

3. Incorporation of Advanced Techniques: Explore the use of advanced CNN 
architectures and algorithms to enhance the sensitivity and accuracy of AI models. Techniques 
such as transfer learning and ensemble learning could be investigated to improve model 
performance. 
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4. Extended Datasets: Include a more extensive and diverse dataset comprising 
various demographic and clinical scenarios. This will help in developing AI models that are more 
generalizable and capable of handling a wide range of periodontal conditions. 

5. Integration with Other Diagnostic Tools: Investigate the integration of AI models 
with other diagnostic tools such as Cone Beam Computed Tomography (CBCT) and intraoral 
scanners. Combining multiple diagnostic modalities could provide a more comprehensive 
assessment of periodontal health. 

6. Patient-Centric Applications: Develop AI applications that are user-friendly and 
accessible to patients. This could include mobile applications that allow patients to upload their 
radiographs for preliminary assessments, thereby promoting early detection and intervention. 

Conclusion 
The integration of artificial intelligence (AI) into periodontal diagnostics represents  

a significant advancement in enhancing diagnostic accuracy over current methods. The AI-driven 
models demonstrated impressive performances, affirming their role as valuable tools for dental 
professionals. This study introduces an innovative protocol for periodontal diagnosis and 
prognostication, optimizing the assessment process and providing a reliable resource for clinical 
practice. 

Moreover, the comparative analysis indicates that AI models match or even exceed the 
diagnostic capabilities of general practitioners (GPs) and specialized periodontists, underscoring 
the transformative potential of AI in dental diagnostics. By incorporating AI technologies, dental 
practitioners can improve patient outcomes, minimize diagnostic errors, and streamline care 
delivery. Given the profound economic, social, and health implications of periodontal disease, 
especially among the elderly, the integration of AI not only enhances the precision and efficiency 
of diagnostics but also contributes to better patient quality of life. The findings of this study pave 
the way for future research into the long-term impacts of AI in dental health, highlighting the 
urgent need for innovative solutions that address the complexities of periodontal disease 
management within healthcare systems. 
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The dataset of 2000 panoramic radiographs from the SIDEXIS Next Generation Program 
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Examples of AI results in detecting the distance from the CEJ to crestal bone 
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A total of 90 images were used in the clinical implementation to compare the 
accuracy of periodontitis diagnosis between the AI model, general practitioners (GPs), and 
periodontists against expert periodontists. 

ID HN Code Sex Age Periodontist GPs AI Expert 
1 60143 1 1 18 0 0 2 0 
2 60170 2 1 23 0 0 2 0 
3 60381 3 1 45 3 3 2 3 
4 330377 4 1 44 0 1 2 2 
5 60682 5 1 22 0 0 1 1 
6 66150 6 2 38 3 2 2 2 
7 61196 7 2 19 0 0 2 2 
8 61351 8 1 18 0 1 3 3 
9 56862 9 2 54 3 4 3 3 

10 199709 15 2 41 2 2 2 2 
11 120959 19 2 60 3 3 4 3 
12 67506 23 2 59 2 2 3 3 
13 67783 25 1 27 0 0 2 2 
14 67887 25 1 42 3 3 3 3 
15 69235 27 1 38 2 1 2 2 
16 110450 27 1 66 3 2 2 3 
17 69258 28 1 39 2 1 2 2 
18 236897 28 2 63 3 2 3 3 
19 15893 30 1 51 2 3 2 2 
20 71353 31 1 24 0 0 2 2 
21 164875 35 1 41 3 3 3 3 
22 439251 37 2 61 2 2 3 3 
23 440567 39 2 53 2 3 3 3 
24 441900 40 2 32 1 0 2 2 
25 187435 41 2 57 3 3 3 3 
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ID HN Code Sex Age Periodontist GPs AI Expert 
26 442741 42 2 45 3 3 3 3 
27 445491 44 2 23 1 0 3 1 
28 44708 45 2 28 1 1 2 2 
29 447490 47 2 57 2 2 2 2 
30 165557 48 2 48 3 3 3 3 
31 447725 49 2 42 3 3 3 3 
32 447798 50 2 76 4 4 3 4 
33 447841 51 1 28 1 1 2 2 
34 448319 53 2 19 2 0 2 2 
35 448945 54 1 44 1 2 2 2 
36 449991 55 2 48 2 3 3 3 
37 451129 58 1 60 2 1 3 2 
38 452657 59 1 69 2 2 2 2 
39 456846 62 2 26 2 1 3 2 
40 460024 64 1 68 3 4 2 3 
41 462094 65 2 19 0 0 2 2 
42 465008 67 2 55 3 2 2 3 
43 465631 68 2 28 3 1 3 3 
44 466578 69 1 34 3 3 3 3 
45 466602 70 1 63 3 3 3 3 
46 467098 71 1 34 1 1 3 1 
47 467099 72 1 54 3 3 3 3 
48 468491 73 2 67 2 2 3 3 
49 468673 74 2 52 3 1 2 3 
50 471611 75 2 40 2 1 2 2 
51 472466 76 2 33 2 1 2 2 
52 473563 77 2 20 1 1 2 2 
53 473726 78 1 25 1 0 3 1 
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ID HN Code Sex Age Periodontist GPs AI Expert 
54 474492 79 1 40 2 2 3 2 
55 173676 79 1 58 3 2 3 3 
56 480322 80 2 47 3 2 3 3 
57 484910 81 1 57 3 2 2 3 
58 489081 82 1 44 3 3 3 3 
59 490238 83 1 24 1 0 3 1 
60 49316 84 1 39 2 2 2 2 
61 160737 84 1 39 3 2 3 3 
62 493573 85 2 38 2 0 3 2 
63 496926 86 2 51 3 3 3 3 
64 498691 87 1 31 2 2 3 3 
65 501425 88 1 60 3 3 3 3 
66 503182 89 1 24 1 2 2 2 
67 503203 90 1 57 2 1 3 2 
68 503694 91 2 51 3 1 2 2 
69 505894 92 1 64 2 2 3 2 
70 18872 92 2 59 3 3 3 3 
71 508204 93 1 57 3 3 3 3 
72 113087 93 2 58 2 2 3 3 
73 512236 94 2 36 1 1 2 2 
74 181505 94 2 53 2 1 2 2 
75 53268 95 1 54 3 3 3 3 
76 106120 96 2 18 0 0 2 0 
77 106545 97 1 80 2 3 4 2 
78 107410 98 1 20 0 0 3 0 
79 10783 99 2 22 1 0 2 2 
80 107916 100 1 58 2 2 2 2 
81 105554 100 2 48 3 2 3 3 
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ID HN Code Sex Age Periodontist GPs AI Expert 
82 10898 101 1 28 0 3 2 2 
83 144873 101 2 68 3 4 4 3 
84 109191 102 1 61 3 3 3 3 
85 109545 103 1 18 0 0 2 0 
86 18885 110 1 49 3 3 3 3 
87 118857 124 1 37 3 2 3 3 
88 52749 229 1 59 3 3 3 3 
89 53302 236 2 48 2 2 2 2 
90 53416 241 1 56 2 2 3 3 

Legend: 0 represents Non -periodontitis, 1 represents Periodontitis Stage I, 2 represents 
Periodontitis Stage II, 3 represents Periodontitis Stage III, and 4 represents Periodontitis Stage IV.  
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A total of 90 images represented the AI model's results in diagnosing periodontitis 
during clinical implementation. 
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A total of 300 previously unseen panoramic images were utilized in the clinical 
implementation to evaluate the accuracy of periodontitis diagnosis. This comparison 
focused on the performance of the AI model and periodontists against expert periodontists, 
ensuring a comprehensive assessment of diagnostic efficacy, as shown in the table below. 

ID HN Sex Age Periodontist AI Expert 
1 233863 1 18 2 2 2 
2 48385 2 40 2 2 2 
3 114993 2 27 2 2 2 
4 100066 2 26 1 2 2 
5 100432 2 48 3 2 3 
6 10285 1 64 2 2 2 
7 102981 2 70 2 3 3 
8 103643 2 64 3 3 3 
9 10380 2 51 2 3 2 

10 104194 2 80 2 3 3 
11 105865 2 30 2 2 2 
12 105973 1 24 2 2 2 
13 107446 1 40 1 2 1 
14 107580 2 24 2 2 2 
15 107937 1 42 3 2 3 
16 108375 2 71 2 3 3 
17 108756 2 24 1 2 1 
18 10898 2 29 2 2 2 
19 1096 2 55 2 2 2 
20 111407 2 49 2 2 3 
21 111968 2 24 2 3 3 
22 112837 2 69 2 2 3 
23 113901 2 26 2 2 2 
24 114326 2 48 3 3 3 
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ID HN Sex Age Periodontist AI Expert 
25 114993 2 27 2 2 2 
26 116690 2 65 3 3 3 
27 117056 2 71 3 3 3 
28 117392 1 63 3 2 3 
29 119558 2 56 3 2 2 
30 119863 2 32 2 2 2 
31 120935 2 23 2 2 1 
32 121444 2 23 1 2 1 
33 390228 2 38 2 3 2 
34 1229 2 63 3 3 3 
35 12365 2 64 3 2 2 
36 124044 2 63 3 3 3 
37 124192 2 53 2 2 2 
38 125359 2 45 3 2 3 
39 125360 1 51 3 3 3 
40 12564 2 69 3 2 3 
41 129490 2 57 3 3 3 
42 12979 2 49 2 2 2 
43 130494 2 67 3 2 3 
44 130637 1 64 3 3 3 
45 130687 2 23 2 3 3 
46 137093 1 32 2 2 1 
47 137179 1 22 2 2 2 
48 137439 2 38 2 2 2 
49 137764 1 22 2 2 2 
50 138718 1 18 1 2 0 
51 13931 2 65 3 3 3 
52 140767 2 32 2 2 2 
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ID HN Sex Age Periodontist AI Expert 
53 220396 2 18 1 3 0 
54 486648 1 39 1 2 2 
55 178879 2 36 2 2 2 
56 88660 1 58 3 2 3 
57 101665 2 59 2 2 2 
58 490873 1 26 0 2 1 
59 143093 2 64 3 2 2 
60 143125 1 34 3 3 3 
61 143318 2 40 2 2 2 
62 200613 2 20 1 0 0 
63 204111 2 46 3 3 3 
64 204145 2 19 2 2 2 
65 204189 1 41 2 2 2 
66 204249 1 65 3 3 3 
67 204369 2 66 3 3 3 
68 20443 2 35 2 2 2 
69 204441 1 52 2 2 3 
70 20451 2 33 2 2 2 
71 205167 1 62 3 3 3 
72 205451 2 31 3 3 3 
73 205929 2 18 1 2 1 
74 206030 1 19 1 2 0 
75 206089 2 77 3 3 3 
76 206240 2 43 2 3 3 
77 20632 2 52 2 3 2 
78 206328 2 18 0 3 1 
79 206393 2 24 0 2 2 
80 206408 2 44 2 2 2 
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ID HN Sex Age Periodontist AI Expert 
81 206420 2 39 3 2 3 
82 20649 2 18 2 2 2 
83 206707 2 45 2 2 2 
84 206853 1 49 2 2 2 
85 207048 2 67 1 2 2 
86 207180 2 23 1 2 2 
87 207212 1 18 0 2 1 
88 207275 2 68 3 3 3 
89 207329 2 42 3 3 3 
90 20735 2 33 3 3 3 
91 20759 1 31 1 2 2 
92 20766 2 64 2 3 2 
93 207723 2 27 1 1 1 
94 207806 2 45 3 3 3 
95 207819 2 58 3 3 3 
96 207860 2 38 1 2 1 
97 208080 1 66 2 3 2 
98 208115 2 48 3 3 3 
99 300446 2 25 2 2 2 

100 300727 2 34 2 2 2 
101 300794 1 29 1 3 2 
102 301100 1 41 2 2 2 
103 301179 1 29 2 2 2 
104 301361 1 35 3 3 3 
105 301500 1 25 0 2 2 
106 301630 1 27 0 2 2 
107 301724 2 25 0 2 2 
108 3019 1 65 2 2 2 
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ID HN Sex Age Periodontist AI Expert 
109 31000 2 22 3 3 3 
110 310014 2 27 2 2 1 
111 310089 2 26 2 2 2 
112 310102 2 27 0 1 1 
113 150736 1 51 4 4 4 
114 150770 1 29 0 2 2 
115 152552 2 71 3 3 3 
116 152906 2 69 3 3 3 
117 153020 2 26 2 3 2 
118 153065 2 31 2 2 2 
119 153068 1 57 2 3 2 
120 1532 2 59 2 2 2 
121 153258 1 18 0 2 1 
122 153398 2 20 0 2 0 
123 153471 2 32 2 2 2 
124 153523 1 32 1 2 2 
125 153683 1 63 3 3 3 
126 153736 2 24 3 2 3 
127 153921 2 25 1 1 1 
128 15395 2 24 1 2 2 
129 154047 2 30 0 3 3 
130 154169 1 45 3 3 3 
131 15423 2 62 3 3 3 
132 154241 1 54 2 2 2 
133 15429 1 45 3 2 3 
134 154302 1 40 2 3 3 
135 154473 1 22 2 3 3 
136 154656 2 25 2 2 2 
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ID HN Sex Age Periodontist AI Expert 
137 154666 1 30 2 2 2 
138 154702 1 62 2 2 3 
139 154869 1 51 2 3 3 
140 154911 2 26 2 2 3 
141 4001 1 26 2 2 2 
142 400287 2 23 2 2 1 
143 400293 2 25 0 2 1 
144 400315 2 33 1 3 1 
145 40041 2 22 0 2 2 
146 400458 2 22 0 2 2 
147 400498 2 22 2 2 2 
148 401660 1 23 2 2 2 
149 410626 2 56 2 3 2 
150 410937 2 31 2 2 2 
151 41177 2 37 2 2 2 
152 412065 2 21 1 2 2 
153 412437 2 29 0 2 2 
154 41325 2 28 1 3 2 
155 41348 2 52 2 3 2 
156 413530 1 38 3 3 3 
157 413862 2 21 1 3 2 
158 414015 1 34 0 1 1 
159 414111 2 19 0 3 3 
160 41426 1 46 3 2 3 
161 414691 1 28 0 2 2 
162 4147 2 57 3 3 3 
163 41504 1 39 2 3 3 
164 415073 2 20 0 1 1 
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ID HN Sex Age Periodontist AI Expert 
165 415198 1 66 2 3 3 
166 415876 2 22 2 2 2 
167 416797 2 18 0 2 2 
168 41744 1 28 1 2 2 
169 420004 2 26 1 2 1 
170 420111 2 29 1 2 2 
171 420266 1 20 1 2 2 
172 420440 2 24 2 2 2 
173 340026 2 25 2 2 2 
174 340260 2 54 3 3 3 
175 3141 2 26 1 2 2 
176 34153 2 60 3 3 3 
177 341570 2 21 1 2 2 
178 34168 2 25 0 2 2 
179 341703 2 20 0 2 2 
180 342202 2 21 1 3 1 
181 342206 2 31 2 3 3 
182 34271 1 27 1 2 2 
183 343703 2 53 3 2 2 
184 34374 1 34 2 2 2 
185 344066 1 24 2 2 1 
186 344261 2 33 2 2 2 
187 344388 2 19 1 2 2 
188 344720 2 45 3 3 3 
189 344944 2 19 1 2 1 
190 344958 2 34 1 2 2 
191 345366 2 18 0 2 1 
192 345603 2 32 1 2 2 
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ID HN Sex Age Periodontist AI Expert 
193 34572 2 54 2 2 2 
194 34588 2 26 0 2 2 
195 346123 2 28 1 2 2 
196 346367 2 36 2 2 3 
197 346440 2 20 2 2 2 
198 346522 1 18 0 3 2 
199 346539 2 47 2 2 3 
200 347364 1 22 0 2 1 
201 50010 2 61 3 3 3 
202 34791 2 54 2 3 3 
203 143041 2 32 2 2 2 
204 207287 2 54 2 3 3 
205 371397 1 45 2 2 3 
206 371450 2 45 3 3 2 
207 37220 2 62 3 2 2 
208 346733 2 36 2 2 3 
209 346350 1 29 2 2 3 
210 344901 2 36 2 2 2 
211 60143 2 18 0 2 0 
212 60170 2 23 0 2 0 
213 60381 2 45 3 2 3 
214 330377 2 44 0 2 2 
215 60682 2 22 0 1 1 
216 66150 1 38 3 2 2 
217 61196 1 19 0 2 2 
218 61351 2 18 0 3 3 
219 56862 1 54 3 3 3 
220 199709 1 41 2 2 2 
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ID HN Sex Age Periodontist AI Expert 
221 120959 1 60 3 4 3 
222 67506 1 59 2 3 3 
223 67783 2 27 0 2 2 
224 67887 2 42 3 3 3 
225 69235 2 38 2 2 2 
226 110450 2 66 3 2 3 
227 69258 2 39 2 2 2 
228 236897 1 63 3 3 3 
229 15893 2 51 2 2 2 
230 71353 2 24 0 2 2 
231 164875 2 41 3 3 3 
232 439251 1 61 2 3 3 
233 440567 1 53 2 3 3 
234 441900 1 32 1 2 2 
235 187435 1 57 3 3 3 
236 442741 1 45 3 3 3 
237 445491 1 23 1 3 1 
238 44708 1 28 1 2 2 
239 447490 1 57 2 2 2 
240 165557 1 48 3 3 3 
241 447725 1 42 3 3 3 
242 447798 1 76 4 3 4 
243 447841 2 28 1 2 2 
244 448319 1 19 2 2 2 
245 448945 2 44 1 2 2 
246 449991 1 48 2 3 3 
247 451129 2 60 2 3 2 
248 452657 2 69 2 2 2 
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ID HN Sex Age Periodontist AI Expert 
249 456846 1 26 2 3 2 
250 460024 2 68 3 2 3 
251 462094 1 19 0 2 2 
252 465008 1 55 3 2 3 
253 465631 1 28 3 3 3 
254 466578 2 34 3 3 3 
255 466602 2 63 3 3 3 
256 467098 2 34 1 3 1 
256 467099 2 54 3 3 3 
258 468491 1 67 2 3 3 
259 468673 1 52 3 2 3 
260 471611 1 40 2 2 2 
261 472466 1 33 2 2 2 
262 473563 1 20 1 2 2 
263 473726 2 25 1 3 1 
264 474492 2 40 2 3 2 
265 173676 2 58 3 3 3 
266 480322 1 47 3 3 3 
267 484910 2 57 3 2 3 
268 489081 2 44 3 3 3 
269 490238 2 24 1 3 1 
270 49316 2 39 2 2 2 
271 160737 2 39 3 3 3 
272 493573 1 38 2 3 2 
273 496926 1 51 3 3 3 
274 498691 2 31 2 3 3 
275 501425 2 60 3 3 3 
276 503182 2 24 1 2 2 
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ID HN Sex Age Periodontist AI Expert 
277 503203 2 57 2 3 2 
278 503694 1 51 3 2 2 
279 505894 2 64 2 3 2 
280 18872 1 59 3 3 3 
281 508204 2 57 3 3 3 
282 113087 1 58 2 3 3 
283 512236 1 36 1 2 2 
284 181505 1 53 2 2 2 
285 53268 2 54 3 3 3 
286 106120 1 18 0 2 0 
287 106545 2 80 2 4 2 
288 107410 2 20 0 3 0 
289 10783 1 22 1 2 2 
290 107916 2 58 2 2 2 
291 105554 1 48 3 3 3 
292 10898 2 28 0 2 2 
293 144873 1 68 3 4 3 
294 109191 2 61 3 3 3 
295 109545 1 18 0 2 0 
296 18885 2 49 3 3 3 
297 118857 2 37 3 3 3 
298 52749 2 59 3 3 3 
299 53302 1 48 2 2 2 
300 53416 2 56 2 3 3 
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