Please use this identifier to cite or link to this item:
http://202.28.34.124/dspace/handle123456789/1600
Title: | Cassava cultivation monitoring and yield predition using UAV remote sensing การติดตามการเจริญเติบโตและการทำนายผลผลิตของมันสำปะหลังด้วยอากาศยานไร้คนขับ |
Authors: | Thiti Savigamin ฐิติ สะวิคามิน Siwa Kaewplang ศิวา แก้วปลั่ง Mahasarakham University. The Faculty of Engineering |
Keywords: | มันสำปะหลัง อากาศยานไร้คนขับ การติดตามการเจริญเติบโต การประมาณการผลผลิต ค่าสะท้อนแสง Cassava Drone Growth Tracking Yield Estimates Reflective Value |
Issue Date: | 28 |
Publisher: | Mahasarakham University |
Abstract: | The purpose of this study was to develop model for cassava growth monitoring and yield estimation from UAV-Remote sensing by using reflectance spectrum of red, green, blue, nir, red edge and DEM from MAPIR Survey 3 camera type RGB RGN and Red Edge together with the physical properties of cassava from the experimental plantation. Analyze the models with a mathematical algorithm such as Generalized linear model, Deep Learning and Support Vector Machine to compare the performance of the model. The results shown the estimation of height, chlorophyll, LAI, biomass, yield and harvest Index. Highest model accuracy was obtained by analyzing with a generalized linear model algorithm. The best-fit models with R2 values are those of 0.78, 0.70, 0.86, 0.42 and 0.83, respectively, and possess the lowest RMSE values of 0.26, 0.38, 0.65, 1.73 and 0.06, respectively. The chlorophyll estimation model gave the highest model accuracy by analyzing the Support Vector Machine algorithm, R2 was 0.59 and RMSE was 2.06. It is anticipated that the methodology presented in this study can be used as a guideline for estimating the biophysical variables of cassava plantations in other areas, as well. การศึกษานี้มีวัตถุประสงค์เพื่อพัฒนาแบบจำลองการติดตามการเจริญเติบโตและการประมาณผลผลิตของมันสำปะหลังด้วยการรับรู้ระยะไกลจากอากาศยานไร้คนขับ โดยใช้โดยใช้ค่าการสะท้อนแสงของช่วงคลื่น Red, Green, Blue , NIR , Red Edge และแบบจำลองความสูง (DEM) จากกล้อง MAPIR Survey 3 ชนิด RGB RGN และ Red Edge ร่วมกับคุณสมบัติทางกายภาพของมันสำปะหลังจากแปลงทดลอง ทำการวิเคราะห์แบบจำลองด้วยอัลกอริทึมทางคณิตศาสตร์ตัวแบบเชิงเส้นวางนัยทั่วไป (Generalized Linear Models: GLM) แบบป่าสุ่ม (Random Forest: RF) และซัพพอร์ตเวกเตอร์แมชชีน (Support Vector Machine: SVM) เพื่อเปรียบเทียบประสิทธิภาพของแบบจำลอง ผลการศึกษาพบว่า แบบจำลองการประมาณค่าความสูง ค่าดัชนีพื้นที่ใบ ค่าชีวมวล ผลผลิต และค่าดัชนีการเก็บเกี่ยว ให้ค่าความถูกต้องของแบบจำลองสูงที่สุดโดยทำการวิเคราะห์ด้วยอัลกอริทึมตัวแบบเชิงเส้นวางนัยทั่วไป (Generalized Linear Models) ได้ค่า R2 เท่ากับ 0.78, 0.70, 0.86, 0.42 และ 0.83 RMSE เท่ากับ 0.26, 0.38, 0.65, 1.73 และ 0.06 ตามลำดับ และแบบจำลองการประมาณค่าค่าคลอโรฟิลล์ให้ค่าความถูกต้องของแบบจำลองสูงที่สุดโดยทำการวิเคราะห์ด้วยอัลกอริทึมซัพพอร์ตเวกเตอร์แมชชีน (Support Vector Machine) ได้ค่า R2 เท่ากับ 0.59 และ RMSE เท่ากับ 2.06 จากผลการศึกษาแสดงให้เห็นว่าวิธีการที่นำเสนอในการศึกษานี้สามารถนำไปใช้เป็นแนวทางสำหรับการติดตามการเจริญเติบโตและการประมาณผลผลิตของมันสำปะหลังในพื้นที่อื่นๆ ได้ |
Description: | Doctor of Philosophy (Ph.D.) ปรัชญาดุษฎีบัณฑิต (ปร.ด.) |
URI: | http://202.28.34.124/dspace/handle123456789/1600 |
Appears in Collections: | The Faculty of Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
60010363001.pdf | 24.37 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.