Please use this identifier to cite or link to this item: http://202.28.34.124/dspace/handle123456789/1679
Full metadata record
DC FieldValueLanguage
dc.contributorWorawith Sangkatipen
dc.contributorวรวิทย์ สังฆทิพย์th
dc.contributor.advisorPhatthanaphong Chompoowisesen
dc.contributor.advisorพัฒนพงษ์ ชมภูวิเศษth
dc.contributor.otherMahasarakham University. The Faculty of Informaticsen
dc.date.accessioned2022-06-23T13:32:24Z-
dc.date.available2022-06-23T13:32:24Z-
dc.date.issued23/5/2022
dc.identifier.urihttp://202.28.34.124/dspace/handle123456789/1679-
dc.descriptionDoctor of Philosophy (Ph.D.)en
dc.descriptionปรัชญาดุษฎีบัณฑิต (ปร.ด.)th
dc.description.abstractThis thesis aims to improve the performance of multi-label classification (MLC) potentially. The research objectives are to improve the MLC performance using feature encoding and Soft-loss. This work attempts to drive three research questions and investigate scientific approaches to respond to the questions to achieve the research objectives. The thesis's contribution is divided into three folds : (i) Results of comparing state-of-the-art MLC methods with the non-communicable disease dataset. (ii) Feature reconstruction technique using an AutoEncoder network that encodes the features and labels, which improves the efficiency of MLC on the standard dataset. (iii) Applying the label patterns of the data to improve the classification performance.en
dc.description.abstract-th
dc.language.isoen
dc.publisherMahasarakham University
dc.rightsMahasarakham University
dc.subjectMulti-Label Classificationen
dc.subjectFeature Reconstructionen
dc.subjectLabel Correlationen
dc.subjectArtificial Neural Networken
dc.subject.classificationComputer Scienceen
dc.titleA New Feature Engineering Approach for Multi-label Classification using Feature Encoding and Soft-lossen
dc.titleวิธีการวิศวกรรมการแทนข้อมูลด้วยคุณลักษณะใหม่สำหรับการจำแนกประเภทแบบหลายเลเบลโดยใช้การเข้ารหัสคุณลักษณะและซอฟต์ลอสth
dc.typeThesisen
dc.typeวิทยานิพนธ์th
Appears in Collections:The Faculty of Informatics

Files in This Item:
File Description SizeFormat 
62011261002.pdf2.1 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.