Please use this identifier to cite or link to this item: http://202.28.34.124/dspace/handle123456789/2167
Full metadata record
DC FieldValueLanguage
dc.contributorNarong Boonsirisumpunen
dc.contributorณรงค์ บุญสิริสัมพันธ์th
dc.contributor.advisorOlarik Surintaen
dc.contributor.advisorโอฬาริก สุรินต๊ะth
dc.contributor.otherMahasarakham Universityen
dc.date.accessioned2023-09-07T14:25:21Z-
dc.date.available2023-09-07T14:25:21Z-
dc.date.created2023
dc.date.issued12/6/2023
dc.identifier.urihttp://202.28.34.124/dspace/handle123456789/2167-
dc.description.abstractThis dissertation aims to develop an automatic vehicle detection and classification system that leverages advanced deep learning architectures. The system comprises three parts. The first part employs advanced convolutional neural networks (CNN) to classify images of five vehicle types in Thailand. By comparing nine different CNN models with data augmentation, we found that MobileNets is the best method in terms of accuracy, speed, and size. The second part uses ensemble methods to combine multiple CNN models to recognize vehicle type and make (logo) using a "partial training set" technique. This approach improves accuracy and reduces overall runtime. In the third part, we propose a hybrid structure of a generative adversarial network (GAN) and a CNN for object detection using YOLO technique to recognize Thai license plates. By testing different GAN architectures and YOLO networks, we found that the hybrid of ESRGAN-YOLOv7 outperformed other combinations in terms of accuracy. Overall, this dissertation provides a comprehensive solution to the problem of automatic vehicle detection and classification using the latest deep learning methods, highlighting the importance of using ensemble methods and partial training sets to improve accuracy and reduce runtime. The proposed system has the potential to be utilized in various real-world applications, including video surveillance systems and mobile devices.en
dc.description.abstract-th
dc.language.isoen
dc.publisherMahasarakham University
dc.rightsMahasarakham University
dc.subjectVehicle Detection and Classification Systemen
dc.subjectDeep Learningen
dc.subjectThai License Plate Recognitionen
dc.subjectConvolutional Neural Networken
dc.subjectEnsemble Methoden
dc.subjectPartial Training Seten
dc.subjectData Augmentationen
dc.subjectGenerative Adversarial Networken
dc.subjectHybrid GAN-YOLOen
dc.subject.classificationComputer Scienceen
dc.subject.classificationInformation and communicationen
dc.subject.classificationComputer scienceen
dc.titleAutomatic Vehicle Detection and Classification System using Advanced Deep Learning Architecturesen
dc.titleระบบตรวจจับและจำแนกยานพาหนะแบบอัตโนมัติด้วยสถาปัตยกรรมการเรียนรู้เชิงลึกขั้นสูง th
dc.typeThesisen
dc.typeวิทยานิพนธ์th
dc.contributor.coadvisorOlarik Surintaen
dc.contributor.coadvisorโอฬาริก สุรินต๊ะth
dc.contributor.emailadvisorolarik.s@msu.ac.th
dc.contributor.emailcoadvisorolarik.s@msu.ac.th
dc.description.degreenameDoctor of Philosophy (Ph.D.)en
dc.description.degreenameปรัชญาดุษฎีบัณฑิต (ปร.ด.)th
dc.description.degreelevelDoctoral Degreeen
dc.description.degreelevelปริญญาเอกth
dc.description.degreedisciplineสาขาเทคโนโลยีสารสนเทศen
dc.description.degreedisciplineสาขาเทคโนโลยีสารสนเทศth
Appears in Collections:The Faculty of Informatics

Files in This Item:
File Description SizeFormat 
61011262001.pdf3.31 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.