Please use this identifier to cite or link to this item: http://202.28.34.124/dspace/handle123456789/2410
Full metadata record
DC FieldValueLanguage
dc.contributorPariwat Pianpailoonen
dc.contributorปริวรรต เพียรภายลุนth
dc.contributor.advisorJaree Thongkamen
dc.contributor.advisorจารี ทองคำth
dc.contributor.otherMahasarakham Universityen
dc.date.accessioned2023-12-20T14:36:57Z-
dc.date.available2023-12-20T14:36:57Z-
dc.date.created2021
dc.date.issued30/6/2021
dc.identifier.urihttp://202.28.34.124/dspace/handle123456789/2410-
dc.description.abstractThis research aims to study the factors of choosing vocational courses students of secondary grade 3. In this research, data were collected from students who graduated with a vocational certificate from the Sarisongkram Industrial Technology College. Nakhon Phanom University From the academic year 2012 to the academic year 2019, 926 records consisted of 13 variables, the variables were selected by the wrapper method, in conjunction with the Random Tree technique, support vector machines technique, Naive Bayes technique, and the Chi Square principle, and then used to create a model using K technique -Nearest neighbors, Decision Tree C4.5 technique, Random Forest technique, and Artificial Neural technique. Moreover, this research has applied the bagging technique, a joint technique, to enhance the above techniques. To measure the performance of the different models, the researchers used 10-fold cross validation to divide the datasets into coaches and test sets, using the practice sets to create the models and the test sets to test the models. And measured with accuracy, sensitivity, and specificity the results showed that the method of selecting variables using the wrapper principle in conjunction with the random tree technique was the most efficient and when using the data that was selected by the wrapper principle using the random tree technique as a dataset from the selection. The most effective variable to increase the efficiency by bagging was found that the Decision Tree C4.5 technique, together with the bagging technique, increased efficiency further with the accuracy increased by 5.93%. 9.38 and achieved an increase of 4.15% specificity.en
dc.description.abstract          งานวิจัยฉบับนี้มีวัตถุประสงค์เพื่อเพื่อศึกษาตัวแปรของการเลือกหลักสูตรระดับประกาศนียบัตรวิชาชีพ ของนักเรียนระชั้นมัธยมศึกษาปีที่ 3 ในงานวิจัยได้รวบรวมข้อมูลนักศึกษาที่จบการศึกษาระดับประกาศนียบัตรวิชาชีพจากวิทยาลัยเทคโนโลยีอุตสาหกรรมศริสงคราม มหาวิทยาลัยนครพนม ตั้งแต่ปีการศึกษา 2555 ถึงปีการศึกษา 2562 จำนวน 926  ระเบียน มีตัวแปรทั้งสิ้น 13 ตัวแปร มาทำการคัดเลือกตัวแปรด้วยวิธีการ Wrapper ที่ร่วมกับเทคนิค Random Tree เทคนิค support vector machines และเทคนิค Naive Bayes และวิธีการของ Chi Square แล้วนำมาสร้างแบบจำลองด้วยเทคนิค K-Nearest neighbors เทคนิค Decision Tree C4.5 เทคนิค Random Forest และเทคนิค Artificial Neural ยิ่งไปกว่านั้นงานวิจัยนี้ยังได้นำเอาเทคนิค Bagging ซึ่งเป็นเทคนิคแบบร่วมมาช่วยในการเพิ่มประสิทธิภาพให้กับเทคนิคข้างต้นอีกด้วยในการวัดประสิทธิภาพของแบบจำลองแบบต่าง ๆ ผู้วิจัยได้ใช้ 10-fold cross validation ในการแบ่งชุดข้อมูลออกเป็นชุดฝึกสอนและชุดทดสอบโดยใช้ชุดฝึกในการสร้างแบบจำลองและชุดทดสอบนำมาทดสอบแบบจำลอง และวัดด้วยค่าความถูกต้อง ค่าความไว และค่าความจำเพาะ ผลการทดลองพบว่าวิธีการที่ทำการคัดเลือกตัวแปรด้วยวิธีการ Wrapper ร่วมกับเทคนิค Random Tree นั้นให้ประสิทธิภาพที่สูงที่สุดและเมื่อนำข้อมูลที่ผ่านการคัดเลือกตัวแปรด้วยวิธีการ Wrapper โดยใช้เทคนิค Random Tree ที่เป็นชุดข้อมูลที่ได้จากการคัดเลือกตัวแปรที่มีประสิทธิภาพดีที่สุดมาทำการเพิ่มประสิทธิภาพด้วย Bagging พบว่าเทคนิค  Decision Tree C4.5 ร่วมกับเทคนิค Bagging ให้ประสิทธิภาพสูงขึ้นอีกโดยได้ค่าความถูกต้องเพิ่มขึ้นถึงร้อยละ 5.93 ได้ค่าความไวเพิ่มขึ้นถึงร้อยละ 9.38 และได้ค่าความจำเพาะเพิ่มขึ้นถึงร้อยละ 4.15th
dc.language.isoth
dc.publisherMahasarakham University
dc.rightsMahasarakham University
dc.subjectตัวแปรth
dc.subjectการคัดเลือกตัวแปรth
dc.subjectหลักสูตรth
dc.subjectVariableen
dc.subjectVariable Selectionen
dc.subjectFactorsen
dc.subject.classificationComputer Scienceen
dc.subject.classificationEducationen
dc.titleDevelopment of Vocational Certificate Course Selection Models using Data Mining Techniquesen
dc.titleการพัฒนาแบบจำลองการเลือกหลักสูตรระดับประกาศนียบัตรวิชาชีพด้วยเทคนิคเหมืองข้อมูลth
dc.typeThesisen
dc.typeวิทยานิพนธ์th
dc.contributor.coadvisorJaree Thongkamen
dc.contributor.coadvisorจารี ทองคำth
dc.contributor.emailadvisorjaree.thongkam@gmail.com
dc.contributor.emailcoadvisorjaree.thongkam@gmail.com
dc.description.degreenameMaster of Science (M.Sc.)en
dc.description.degreenameวิทยาศาสตรมหาบัณฑิต (วท.ม.)th
dc.description.degreelevelMaster's Degreeen
dc.description.degreelevelปริญญาโทth
dc.description.degreedisciplineสาขาระบบสารสนเทศเพื่อการจัดการen
dc.description.degreedisciplineสาขาระบบสารสนเทศเพื่อการจัดการth
Appears in Collections:The Faculty of Informatics

Files in This Item:
File Description SizeFormat 
62011284502.pdf8.34 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.