Please use this identifier to cite or link to this item: http://202.28.34.124/dspace/handle123456789/2413
Full metadata record
DC FieldValueLanguage
dc.contributorUkrit Srisuken
dc.contributorอุกฤษฏ์ ศรีสุขth
dc.contributor.advisorJaree Thongkamen
dc.contributor.advisorจารี ทองคำth
dc.contributor.otherMahasarakham Universityen
dc.date.accessioned2023-12-20T14:36:57Z-
dc.date.available2023-12-20T14:36:57Z-
dc.date.created2021
dc.date.issued29/6/2021
dc.identifier.urihttp://202.28.34.124/dspace/handle123456789/2413-
dc.description.abstractThis research aims to study the performance of data mining techniques in medical dataset. The data in this research contains data of patients with breast cancer, diabetics and patients with hyperthyroidism. All dataset were collected from UCI databases. This research has been used machine learning in particular Decision Tree C4.5, Naïve Bayes, Neural Networks, Random Forest, Deep Learning techniques and the Gain Ratio principle to create the models of disease Breast cancer, diabetes and hypothyroidism prediction models. In order to measure the performance of prediction models, 10-fold cross validation was utilized to divide the data into training and testing sets. Accuracy, sensitivity and specificity of the prediction models were used to compare the prediction performance of each model. The experimental results showed that the Random Forest technique was the best technique in modeling the prognosis of hypothyroidism. It provided 99.90% accuracy, 99.89% sensitivity and 100 % specificity.en
dc.description.abstractงานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาประสิทธิภาพของเทคนิคเหมืองข้อมูลในข้อมูลที่หลากหลาย ข้อมูลในงานวิจัยนี้ประกอบด้วยข้อมูลผู้ป่วยโรคมะเร็งเต้านม ผู้ป่วยโรคเบาหวาน และผู้ป่วยโรคไฮเปอร์ไทรอยด์ โดยข้อมูลทั้งหมดถูกรวบรวมมาจากฐานข้อมูล UCI จำนวนทั้งหมด 3 ชุดข้อมูล มาทำการคัดเลือกตัวแปรด้วยวิธีการ Wrapper ที่ร่วมกับเทคนิค Decision Tree C4.5, เทคนิค Random Forest, เทคนิค Naïve Bayes, เทคนิค Artificial Neural Networks, เทคนิค Deep Learning และหลักการของ Gain Ratio แล้วนำมาสร้างแบบพยากรณ์ด้วยเทคนิค Decision Tree C4.5, เทคนิค Random Forest, เทคนิค Naïve Bayes, เทคนิค Artificial Neural Networks และเทคนิค Deep Learning ในการวัดประสิทธิภาพแบบพยากรณ์ต่างๆ ผู้วิจัยได้ใช้ 10-fold cross validation ได้ถูกนำมาใช้ในการแบ่งข้อมูลออกเป็นกลุ่มฝึกสอน, กลุ่มทดสอบ และวัดค่าความถูกต้อง ค่าความไว และค่าจำเพาะ หลักการของ Wrapper และ หลักการของ Gain Ratio หลังจากที่นำเข้ามาในการคัดเลือกตัวแปรแล้ว ผลการทดลองพบว่าชุดข้อมูลที่ทำการคัดเลือกตัวแปรด้วยหลักการของ Wrapper โดยใช้เทคนิค Random Forest มีประสิทธิภาพสูงที่สุดคือเทคนิค Random Forest ได้ค่าความถูกต้องในการพยากรณ์โรคไฮโปไทรอยด์ โดยให้ค่าความถูกต้องร้อยละ 99.90 ค่าความไวร้อยละ 99.89 และค่าจำเพาะร้อยละ 100th
dc.language.isoth
dc.publisherMahasarakham University
dc.rightsMahasarakham University
dc.subjectการทำเหมืองข้อมูลth
dc.subjectโรคมะเร็งเต้านมth
dc.subjectโรคเบาหวานth
dc.subjectโรคไฮโปไทรอยด์th
dc.subjectData Miningen
dc.subjectBreast canceren
dc.subjectDiabeticsen
dc.subjectHypothyroiden
dc.subject.classificationComputer Scienceen
dc.subject.classificationHuman health and social work activitiesen
dc.titleThe performance comparison of data mining techniques for patient incidenceen
dc.titleการเปรียบเทียบประสิทธิภาพของเทคนิคเหมืองข้อมูลสำหรับพยากรณ์การเกิดโรคth
dc.typeThesisen
dc.typeวิทยานิพนธ์th
dc.contributor.coadvisorJaree Thongkamen
dc.contributor.coadvisorจารี ทองคำth
dc.contributor.emailadvisorjaree.thongkam@gmail.com
dc.contributor.emailcoadvisorjaree.thongkam@gmail.com
dc.description.degreenameMaster of Science (M.Sc.)en
dc.description.degreenameวิทยาศาสตรมหาบัณฑิต (วท.ม.)th
dc.description.degreelevelMaster's Degreeen
dc.description.degreelevelปริญญาโทth
dc.description.degreedisciplineสาขาระบบสารสนเทศเพื่อการจัดการen
dc.description.degreedisciplineสาขาระบบสารสนเทศเพื่อการจัดการth
Appears in Collections:The Faculty of Informatics

Files in This Item:
File Description SizeFormat 
62011284509.pdf1.61 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.