Please use this identifier to cite or link to this item: http://202.28.34.124/dspace/handle123456789/2684
Full metadata record
DC FieldValueLanguage
dc.contributorFulian Huangen
dc.contributorFulian Huangth
dc.contributor.advisorNattawoot Suwannataen
dc.contributor.advisorณัฐวุฒิ สุวรรณทาth
dc.contributor.otherMahasarakham Universityen
dc.date.accessioned2025-05-07T11:04:02Z-
dc.date.available2025-05-07T11:04:02Z-
dc.date.created2024
dc.date.issued25/9/2024
dc.identifier.urihttp://202.28.34.124/dspace/handle123456789/2684-
dc.description.abstractThis thesis presents a methodology for classifying Mandarin orange grades according to Chinese criteria with a computer vision system that combines hardware and software elements. A mechanical roller-flipping apparatus alters the Mandarin orange's orientation in multiple positions. A machine vision system subsequently captures thirty images of mandarin orange skin from multiple angles and utilizes various processing techniques, including image collection, blob analysis, preprocessing, segmentation, and feature extraction. The classification of oranges entails utilizing techniques such as morphology, median filtering, and the Fourier transform to find and analyze pixels indicative of surface flaws. For classification and grading purposes, we convert the defective pixels into their diameter and area. The experiment demonstrates the application of diameter and rectangular areas in the classification of Mandarin oranges into three distinct categories: Special Grade, Grade 1, and Grade 2. The grade 3 classification can be established by measuring the diameter and calculating the percentage of the defective area in the orange peel.en
dc.description.abstract-th
dc.language.isoen
dc.publisherMahasarakham University
dc.rightsMahasarakham University
dc.subjectMandarin orange skinen
dc.subjectClassificationen
dc.subjectDefecten
dc.subjectFlawen
dc.subjectMachine visionen
dc.subject.classificationEngineeringen
dc.subject.classificationElectricity, gas, steam and air conditioning supplyen
dc.subject.classificationElectronics and automationen
dc.titleGuangxi Mandarin Orange Classification Processes Using Machine Visionen
dc.titleกระบวนการจำแนกส้มแมนดารินของเมืองกวางสีด้วยการใช้ระบบการมองเห็นของเครื่องจักรth
dc.typeThesisen
dc.typeวิทยานิพนธ์th
dc.contributor.coadvisorNattawoot Suwannataen
dc.contributor.coadvisorณัฐวุฒิ สุวรรณทาth
dc.contributor.emailadvisornattawoot.s@msu.ac.th
dc.contributor.emailcoadvisornattawoot.s@msu.ac.th
dc.description.degreenameMaster of Engineering (M.Eng.)en
dc.description.degreenameวิศวกรรมศาสตรมหาบัณฑิต (วศ.ม.)th
dc.description.degreelevelMaster's Degreeen
dc.description.degreelevelปริญญาโทth
dc.description.degreedisciplineสำนักวิชาวิศวกรรมศาสตร์en
dc.description.degreedisciplineสำนักวิชาวิศวกรรมศาสตร์th
Appears in Collections:The Faculty of Engineering

Files in This Item:
File Description SizeFormat 
65010353008.pdf2.87 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.