Please use this identifier to cite or link to this item: http://202.28.34.124/dspace/handle123456789/1156
Full metadata record
DC FieldValueLanguage
dc.contributorNipada Papukdeeen
dc.contributorนิภาดา พาภักดีth
dc.contributor.advisorPiyapatr Busababodhinen
dc.contributor.advisorปิยภัทร บุษบาบดินทร์th
dc.contributor.otherMahasarakham University. The Faculty of Scienceen
dc.date.accessioned2021-09-05T14:29:16Z-
dc.date.available2021-09-05T14:29:16Z-
dc.date.issued11/9/2020
dc.identifier.urihttp://202.28.34.124/dspace/handle123456789/1156-
dc.descriptionDoctor of Philosophy (Ph.D.)en
dc.descriptionปรัชญาดุษฎีบัณฑิต (ปร.ด.)th
dc.description.abstractFour parameter kappa distribution (K4D) is a generalization of common three-parameter distributions and in particular of the Genelarized extreme value (GEV) distribution involved in several important real-life applications such as insurance, hydrological events, earth- quake and etc. Previous studies showed that  maximum likelihood estimators (MLE) of parameters are unstable for small sample size. The method of L-moments estimation is an alternative method of estimation similar to a conventional method of moments. However, L-moment estimators are sometimes considered neither computable nor feasible. In this study, we proposed to use of maximum penalized likelihood estimation (MPLE) by adjusting the penalty function of Coles and Dixon (1999) and the penalty function of  Martins  and  Stedinger (2000)  for K4D. Monte-Carlo simulation was performed to illustrate the performance of the estimation methods, the maximum penalized likelihood estimation developed from the penalty function of  Martins  and  Stedinger (2000) is MPLE.MS3 and MPLE.MSP3 are better than the MLE and L-moment method in terms RRMSE of all quantiles used K4D. To illustrate, its applicability including annual maximum rainfall data and annual maximum temperature was analyzed, and its fitness was compared with other estimation methods. Finally to study the r-largest order statistics for K4D with can be applied to hydrological data.en
dc.description.abstract-th
dc.language.isoen
dc.publisherMahasarakham University
dc.rightsMahasarakham University
dc.subjectFour parameter kappa distributionen
dc.subjectPenalty functionen
dc.subjectMaximum penalized likelihood estimationen
dc.subjectMonte Carlo simulationen
dc.subject.classificationMathematicsen
dc.titleStatistical Analysis for Extreme Value with Applications to Hydrological Eventsen
dc.titleการวิเคราะห์ทางสถิติสำหรับค่าสุดขีดด้วยการประยุกต์เหตุการณ์ด้านอุทกวิทยาth
dc.typeThesisen
dc.typeวิทยานิพนธ์th
Appears in Collections:The Faculty of Science

Files in This Item:
File Description SizeFormat 
58010264001.pdf8.82 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.