Please use this identifier to cite or link to this item: http://202.28.34.124/dspace/handle123456789/1679
Title: A New Feature Engineering Approach for Multi-label Classification using Feature Encoding and Soft-loss
วิธีการวิศวกรรมการแทนข้อมูลด้วยคุณลักษณะใหม่สำหรับการจำแนกประเภทแบบหลายเลเบลโดยใช้การเข้ารหัสคุณลักษณะและซอฟต์ลอส
Authors: Worawith Sangkatip
วรวิทย์ สังฆทิพย์
Phatthanaphong Chompoowises
พัฒนพงษ์ ชมภูวิเศษ
Mahasarakham University. The Faculty of Informatics
Keywords: Multi-Label Classification
Feature Reconstruction
Label Correlation
Artificial Neural Network
Issue Date:  23
Publisher: Mahasarakham University
Abstract: This thesis aims to improve the performance of multi-label classification (MLC) potentially. The research objectives are to improve the MLC performance using feature encoding and Soft-loss. This work attempts to drive three research questions and investigate scientific approaches to respond to the questions to achieve the research objectives. The thesis's contribution is divided into three folds : (i) Results of comparing state-of-the-art MLC methods with the non-communicable disease dataset. (ii) Feature reconstruction technique using an AutoEncoder network that encodes the features and labels, which improves the efficiency of MLC on the standard dataset. (iii) Applying the label patterns of the data to improve the classification performance.
-
Description: Doctor of Philosophy (Ph.D.)
ปรัชญาดุษฎีบัณฑิต (ปร.ด.)
URI: http://202.28.34.124/dspace/handle123456789/1679
Appears in Collections:The Faculty of Informatics

Files in This Item:
File Description SizeFormat 
62011261002.pdf2.1 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.