Please use this identifier to cite or link to this item: http://202.28.34.124/dspace/handle123456789/2684
Title: Guangxi Mandarin Orange Classification Processes Using Machine Vision
กระบวนการจำแนกส้มแมนดารินของเมืองกวางสีด้วยการใช้ระบบการมองเห็นของเครื่องจักร
Authors: Fulian Huang
Fulian Huang
Nattawoot Suwannata
ณัฐวุฒิ สุวรรณทา
Mahasarakham University
Nattawoot Suwannata
ณัฐวุฒิ สุวรรณทา
nattawoot.s@msu.ac.th
nattawoot.s@msu.ac.th
Keywords: Mandarin orange skin
Classification
Defect
Flaw
Machine vision
Issue Date:  25
Publisher: Mahasarakham University
Abstract: This thesis presents a methodology for classifying Mandarin orange grades according to Chinese criteria with a computer vision system that combines hardware and software elements. A mechanical roller-flipping apparatus alters the Mandarin orange's orientation in multiple positions. A machine vision system subsequently captures thirty images of mandarin orange skin from multiple angles and utilizes various processing techniques, including image collection, blob analysis, preprocessing, segmentation, and feature extraction. The classification of oranges entails utilizing techniques such as morphology, median filtering, and the Fourier transform to find and analyze pixels indicative of surface flaws. For classification and grading purposes, we convert the defective pixels into their diameter and area. The experiment demonstrates the application of diameter and rectangular areas in the classification of Mandarin oranges into three distinct categories: Special Grade, Grade 1, and Grade 2. The grade 3 classification can be established by measuring the diameter and calculating the percentage of the defective area in the orange peel.
-
URI: http://202.28.34.124/dspace/handle123456789/2684
Appears in Collections:The Faculty of Engineering

Files in This Item:
File Description SizeFormat 
65010353008.pdf2.87 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.